D. Gray and A. Giorgini, The validity of the boussinesq approximation for liquids and gases, International Journal of Heat and Mass Transfer, vol.19, issue.5, pp.545-551, 1976.
DOI : 10.1016/0017-9310(76)90168-X

J. Mihaldjan, A Rigorous Exposition of the Boussinesq Approximations Applicable to a Thin Layer of Fluid., The Astrophysical Journal, vol.136, issue.3, pp.1126-1133, 1962.
DOI : 10.1086/147463

F. Archambeau, N. Mehitoua, and M. Sakiz, Code Saturne: A Finite Volume Code for Turbulent flows, Int J Finite Volumes, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

E. Chénier, R. Eymard, and O. Touazi, Numerical Results Using a Colocated Finite-Volume Scheme on Unstructured Grids for Incompressible Fluid Flows, Numerical Heat Transfer, Part B: Fundamentals, vol.10, issue.3, pp.259-276, 2006.
DOI : 10.1017/S0022112091003488

S. Mathur and J. Murthy, PRESSURE BOUNDARY CONDITIONS FOR INCOMPRESSIBLE FLOW USING UNSTRUCTURED MESHES, Numerical Heat Transfer, Part B: Fundamentals, vol.32, issue.3, pp.283-298, 1997.
DOI : 10.1115/1.2910610

O. Pironneau, Finite element methods for fluids, 1989.

F. Brezzi, On the existence uniqueness and approximation of saddlepoint problems arising from Lagragian multipliers, RAIRO Anal Numer, vol.8, pp.129-151, 1974.

F. Brezzi and J. Pitkaranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, Notes Numer Fluid Mech, vol.10, 1984.
DOI : 10.1007/978-3-663-14169-3_2

C. Rhie and W. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, vol.21, issue.11, pp.1525-1532, 1983.
DOI : 10.2514/3.8284

R. Eymard, R. Herbin, J. Latché, and B. Piar, On colocated clustered finite volume schemes for incompressible flow problems. submitted http
URL : https://hal.archives-ouvertes.fr/hal-00136125

R. Eymard, T. Gallouët, and R. Herbin, A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA Journal of Numerical Analysis, vol.26, issue.2, pp.326-353, 2006.
DOI : 10.1093/imanum/dri036

S. Paolucci, Filtering of sound from the Navier-Stokes equations, Sandia National Lab Report, pp.82-8257, 1982.

S. Paolucci and D. Chenoweth, Transition to chaos in a differentially heated vertical cavity, Journal of Fluid Mechanics, vol.64, issue.-1, pp.379-410, 1989.
DOI : 10.1007/BF01940759

L. Quéré, P. Masson, R. Perrot, and P. , A Chebyshev collocation algorithm for 2D non-Boussinesq convection, Journal of Computational Physics, vol.103, issue.2, pp.320-335, 1992.
DOI : 10.1016/0021-9991(92)90404-M

O. Touazi and E. Numérique, un schéma de volumes finis sur des maillages non structurés pour desécoulementsdesécoulements de fluide visqueuxàvisqueuxà densité constante ou faiblement variable, 2006.

E. Saltel and F. Hecht, EM C 2 Un logiciel d'´ edition de maillages et de contours bidimensionnels, INRIA, vol.118, 1995.

R. Eymard, R. Herbin, and J. Latché, On a stabilized colocated Finite Volume scheme for the Stokes problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.3, pp.501-527, 2006.
DOI : 10.1051/m2an:2006024

URL : https://hal.archives-ouvertes.fr/hal-00793601

R. Eymard, R. Herbin, and J. Latché, Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier???Stokes Equations on General 2D or 3D Meshes, SIAM Journal on Numerical Analysis, vol.45, issue.1, pp.1-36, 2007.
DOI : 10.1137/040613081

URL : https://hal.archives-ouvertes.fr/hal-00004841

H. Pailì-ere, L. Quéré, P. Weisman, C. Vierendeels, J. Dick et al., Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 2. Contributions to the June 2004 conference, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.3, pp.617-621, 2005.
DOI : 10.1051/m2an:2005025