Image quantization under spatial smoothness constraints

Abstract : Quantization, defined as the act of attributing a finite number of grey-levels to an image, is an essential task in image acquisition and coding. It is also intricately linked to various image analysis tasks, such as denoising and segmentation. In this paper, we investigate quantization combined with regularity constraints, a little-studied area which is of interest, in particular, when quantizing in the presence of noise or other acquisition artifacts. We present an optimization approach to the problem involving a novel two-step, iterative, flexible, joint quantizing-regularization method featuring both convex and combinatorial optimization techniques. We show that when using a small number of grey-levels, our approach can yield better quality images in terms of SNR, with lower entropy, than conventional optimal quantization methods.
Type de document :
Communication dans un congrès
17th IEEE International Conference on Image Processing, Sep 2010, Hong Kong SAR China. pp.4297-4300, 2010, <10.1109/ICIP.2010.5651796>


https://hal-upec-upem.archives-ouvertes.fr/hal-00714266
Contributeur : Caroline Chaux <>
Soumis le : jeudi 27 juin 2013 - 11:25:57
Dernière modification le : jeudi 27 juin 2013 - 15:51:43
Document(s) archivé(s) le : samedi 28 septembre 2013 - 02:35:08

Fichier

icip10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anna Jezierska, Caroline Chaux, Hugues Talbot, Jean-Christophe Pesquet. Image quantization under spatial smoothness constraints. 17th IEEE International Conference on Image Processing, Sep 2010, Hong Kong SAR China. pp.4297-4300, 2010, <10.1109/ICIP.2010.5651796>. <hal-00714266>

Partager

Métriques

Consultations de
la notice

282

Téléchargements du document

86