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Abstract

This paper presents an advanced computational method for the prediction of the responses in the frequency domain
of general linear dissipative structural-acoustic and fluid-structure systems, in the low- and medium-frequency do-
mains, including uncertainty quantification. The system under consideration is constituted of a deformable dissipative
structure, coupled with an internal dissipative acoustic fluid including wall acoustic impedances and surrounded by
an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to prescribed
mechanical forces. An efficient reduced-order computational model is constructed using a finite element discretization
for the structure and the internal acoustic fluid. The external acoustic fluid is treated using an appropriate boundary
element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency
domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for
the internal acoustic fluid including wall acoustic impedance and a model of uncertainty in particular for modeling
errors. This advanced computational formulation, corresponding to new extensions and complements with respect to
the state-of-the-art, is well adapted for developing new generation of software, in particular for parallel computers.

Keywords: Computational mechanics, Structural acoustics, Vibroacoustic, Fluid-structure interaction, Uncertainty
guantification, Reduced-order model, Medium frequency, Low frequency, Dissipative system, Viscoelasticity, Wall
acoustic impedance, Finite element discretization, Boundary element method

Nomenclature

Qijh - elastic coefficients of the structure g = mechanical body force fiel.d in the structure
bijkh = damping coefficients of the structure : imaginary gompﬁx nurpber | tic fluid
o = speed of sound in the internal acoustic flufd _ Wavebnun; _etr n Ie ex ertr_laDa(;:gus el
CE = speed of sound in the external acoustic fllid _ number of "1 err:a alcggsl‘:'c
f = vector of the generalized forces for the inté® _ number of structura

nal acoustic fluid " = component of vectan
5 = vector of the generalized forces for the struncs _ outward unit normal ‘f’ﬂ

ture n; = component of vectan

ns = outward unit normal t&Q g
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= internal acoustic pressure field [C]
= external acoustic pressure field

= value of the external acoustic pressure field D]
onl'g

= given external acoustic pressure field D]
= value of the given external acoustic pressure
field onT' g D]

= vector of the generalized coordinates for the
internal acoustic fluid [D*]
= vector of the generalized coordinates for thelD*|
structure

= component of the damping stress tensor iD?]

the structure DOF
=time F

= structural displacement field FS

= internal acoustic velocity field Gijkn(0)
= coordinate of poink

= generic point ok 3 Gijrn (1)

= reduced dynamical matrix for the internal G

acoustic fluid [G]
= random reduced dynamical matrix for the in- [Go]
ternal acoustic fluid (K]
= dynamical matrix for the internal acoustic
fluid K]
= reduced matrix of the impedance boundary
operator for the external acoustic fluid (K]
= matrix of the impedance boundary operator

for the external acoustic fluid (K]

= reduced dynamical matrix for the fluid- [K*]
structure coupled system
= random reduced dynamical matrix for the [K°]

fluid-structure coupled system [M]
= dynamical matrix for the fluid-structure cou-
pled system [M]

= reduced dynamical matrix for the structure
= random reduced dynamical matrix for the [M]

structure [M 7]
= dynamical matrix for the structure M)
= reduced dynamical matrix associated with

the wall acoustic impedance [M]

= dynamical matrix associated with the wall P,

acoustic impedance [P]
= reduced coupling matrix between the inter-Q
nal acoustic fluid and the structure QF

= random reduced coupling matrix betweenQ
the internal acoustic fluid and the structure

= coupling matrix between the internal acous-
tic fluid and the structure

= reduced damping matrix for the internal
acoustic fluid

= random reduced damping matrix for the in-
ternal acoustic fluid

= damping matrix for the internal acoustic
fluid

= reduced damping matrix for the structure

= random reduced damping matrix for the
structure

= damping matrix for the structure

= degrees of freedom

= vector of discretized acoustic forces

= vector of discretized structural forces

= initial elasticity tensor for viscoelastic mate-
rial

= relaxation functions for viscoelastic material
= mechanical surface force field 62 5

= random matrix

= random matrix

= reduced "stiffness” matrix for the internal
acoustic fluid

=random reduced "stiffness” matrix for the in-
ternal acoustic fluid

= "stiffness” matrix for the internal acoustic
fluid

= reduced stiffness matrix for the structure

= random reduced stiffness matrix for the
structure

= stiffness matrix for the structure

= reduced "mass” matrix for the internal
acoustic fluid

= random reduced "mass” matrix for the inter-
nal acoustic fluid

="mass” matrix for the internal acoustic fluid
= reduced mass matrix for the structure

= random reduced mass matrix for the struc-
ture

= mass matrix for the structure

= internal acoustic mode

= matrix of internal acoustic modes

= internal acoustic source density

= external acoustic source density

= random vector of the generalized coordi-
nates for the internal acoustic fluid
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1. Introduction

= random vector of the generalized coordof the responses in the frequency domain of general

nates for the structure linear dissipative structural-acoustic and fluid-structure
= random vector of internal acoustic pressuggstems in the low- and medium-frequency domains. The
DOF system under consideration is constituted of a deformable

= vector of internal acoustic pressure DOF dissipative structure, coupled with an internal dissipative
= random vector of structural displacemenicoustic fluid including wall acoustic impedances. The

DOF system is surrounded by an infinite acoustic fluid and is

= vector of structural displacement DOF submitted to given internal and external acoustic sources,
= elastic structural mode and to prescribed mechanical forces.

= matrix of elastic structural modes

= wall acoustic impedance Instead of presenting an exhaustive review of such a
= impedance boundary operator for externploblem in this introductory section, we have preferred to

acoustic fluid move the review discussions in each relevant sections.

= dispersion parameter

= component of the strain tensor in the struc- Concerning the appropriate formulations for com-

ture puting the elastic, acoustic and elastoacoustic modes
= circular frequency in rad/s of the associated conservative fluid-structure system,
= mass density of the internal acoustic fluid including substructuring techniques, and for constructing
= mass density of the external acoustic fluid reduced-order computational models in fluid-structure

= mass density of the structure interaction and for structural-acoustic systems, we refer
= stress tensor in the structure the reader to Morand and Ohayon (1995); Ohayon et al.
= component of the stress tensor in the stru@997); Ohayon and Soize (1998); Ohayon (2004b,a).
ture For dissipative complex systems, the reader can find the
= component of the elastic stress tensor in thetails of the basic formulations in Ohayon and Soize
structure (1998).

= damping coefficient for the internal acoustic

fluid In this paper, the proposed formulation, which corre-
= boundary of2 sponds to new extensions and complements with respect
= boundary of2 iy equal tol' g to the state-of-the-art, can be used for the development of
= boundary of2 ¢ a new generation of computational software in particular,
= coupling interface between the structure amd the context of parallel computers. We present here an
the internal acoustic fluid advanced computational formulation which is based on
= coupling interface between the structure arah efficient reduced-order model in the frequency domain
the external acoustic fluid and for which all the required modeling aspects for the

= coupling interface between the structure ammhalysis of the medium-frequency domain have been
the internal acoustic fluid with acoustical proptaken into account. More precisely, we have introduced

erties a viscoelastic modeling for the structure, an appropriate
= internal acoustic fluid domain dissipative model for the internal acoustic fluid including

=R3\(QpUTE) wall acoustic impedance and finally, a global model of
= external acoustic domain uncertainty. It should be noted that model uncertainties
= structural domain must absolutely be taken into account in the computa-

tional models of complex vibroacoustic systems in order
to improve the prediction of the responses in the medium-
frequency range. The reduced-order computational

The fundamental objective of this paper is to presemtodel is constructed using the finite element discretiza-
an advanced computational method for the predictidion for the structure and for the internal acoustic fluid.



The external acoustic fluid is treated using an apprd-1. Main notations

priate boundary element method in the frequency domain.The physical spac®3 is referred to a cartesian refer-
ence system and we denote the generic poirlR &fby

The sections of the paper are: X = (x1, 2, 23). For any functionf(x), the notationf ;

1. Introduction means the partial derivative with respectitp. We also

2. Statement of the problem in the frequency domain use the classical convention for summations over repeated
3. External inviscid acoustic fluid equations Latin indices, but not over Greek indices. As explained
4. Internal dissipative acoustic fluid equations above, we are interested in vibration problems formulated
5. Structure equations in the frequency domain for structural-acoustic and fluid-
6. Boundary value problem in terms 6, p} struqture interaction systfems. Thergforg, we introducg the
7. Computational model Fourier transform for various quantities involved. For in-
8. Reduced-order computational model stance, for the displacement fiald the stress tenser;;

9. Uncertainty quantification and the strain tensar;; of the structure, we will use the

pllowing simplified notation consisting in using the same

10. Symmetric boundary element method without spuf . ; X
ous frequencies for the external acoustic fluid symbol for a quantity and its Fourier transform. We then
11. Conclusion ave, +o0
TheReferenceare given at the end of the paper. u(x,w) = 1 e~ "tu(x,t)dt, 1)
+oo )

2. Statement of the Problem in the Frequency Domain oij(w) = / e ho(t)dt, 2

We consider a mechanical system made up of a damped Too
linear elastic free-free structufes containing a dissipa- gij(w) = / e e (t)dt, (3)
tive acoustic fluid (gas or liquid) which occupies a domain —o0

Q. This system is surrounded by an infinite external inviga which the circular frequency is real. Nevertheless,
cid acoustic fluid domaifl g (gas or liquid) (see Fig. 2). for other quantities, some exceptions to this rule are done
A partI'z of the internal fluid-structure interface is asand in such a case, the Fourier transform of a funcfion
sumed to be dissipative and is modeled by a wall acoustidl be notedf,
local impedanceZ. This system is submitted to a given oo
internal acoustic source in the acoustic cavity and to given T —iwt

. . 0 giv for= [ e, @
mechanical forces applied to the structure. In the infinite oo
external acoustic fluid domain, external acoustic sources
are given. It is assumed that the external forces are4r?- Geometry - Mechanical and acoustical hypotheses -
equilibrium. Given loadings
We are interested in the responses intive andmedium-  The coupled system is assumed to be in linear vibra-
frequencydomains for the displacement field in the strudions around a static equilibrium state taken as a natural
ture, the pressure field in the acoustic cavity and the prestate at rest.
sure fields on the external fluid-structure interface and
in the external acoustic fluid (near and far fields). It is Structure Qg. In general, a complex structure is
now well established that the predictions in the mediuresemposed of a main part called tmeaster structure
frequency domain must be improved by taking into adefined as the “primary” structure accessible to conven-
count both the system-parameter uncertainties and tlmnal modeling includingincertaintiesmodeling, and a
model uncertainties induced by modeling errors. Such asecondary part called tHazzy substructureelated to the
pects will be considered in the last section of the papsructural complexity and including for example many
devoted toUncertainty QuantificatiofUQ) in structural equipment units attached to the master structure. In the
acoustics and in fluid-structure interaction. present paper, we will not consider fuzzy substructures



and concerning the fuzzy structure theory, we refer thelnternal dissipative acoustic fluid 2. Let Q be
reader to Soize (1986, 1993), to Chaptérof Ohayon the internal bounded domain filled with a dissipative
and Soize (1998) for a synthesis, and to Fernandez etaaloustic fluid (gas or liquid) as described in Section 4.
(2009) for extension of the theory to uncertain complekhe boundan® of Q2 is ' U T'z. The outward unit
vibroacoustic system with fuzzy interface modelingiormal tod2 is denoted as = (n1, n2, n3) and we have
Consequently, the so-called "master structure” will be = —n® on 02 (see Fig. 2). Parf'; of the boundary
simply called here "structure”. has acoustical properties modeled by a wall acoustic
impedanceZ(x,w) satisfying the hypotheses defined
The structure at equilibrium occupies the threén Section 4.2. We denote the pressure field(inas
dimensional bounded domals with a boundan®s p(x,w) and the velocity field as(x, w). We assume that
which is made up of a paif z which is the coupling there is no Dirichlet boundary condition on any part of
interface between the structure and the external aco@$}. An acoustic source densify(x, w) is given inside.
tic fluid, a partI” which is a coupling interface between
the structure and the internal acoustic fluid and finally, External inviscid acoustic fluid Qg. The structure
the partI'z which is another part of the coupling in-is surrounded by an external inviscid acoustic fluid (gas
terface between the structure and the internal acousiicliquid) as described in Section 10. The fluid occupies
fluid with acoustical properties. The structure is ashe infinite three-dimensional domaihy whose bound-
sumed to be free (free-free structurél. not fixed arydQpg isT'g. We introduce the bounded open domain
on any part of boundargQ2s. The outward unit nor- €2; defined by; = R3\ (2 UT' ). Note that, in general,
mal to 90Qs is denoted amn® = (nf,n5,n3) (see Q; does not coincide with the internal acoustic cavity
Fig. 2). The displacement field ifs is denoted by The boundary?; of ; is thenI'g. The outward unit
u(x,w) = (u1(X,w), ua(X,w), us(X,w)). A surface force normal tods2; is n® defined above (see Fig. 2). We de-
field G(x,w) = (G1(X,w), G2(X,w), G3(X,w)) is given note the pressure field g aspp(X,w). We assume
on 9 and a body force field(x,w) = (g1(X,w), thatthere is no Dirichlet boundary condition on any part
g2(X,w), gs(X,w)) is given inQg. The structure is a dis-of I'g. An acoustic source density (X, w) is given in
sipative medium whose viscoelastic constitutive equatiéhs. This acoustic source density induces a pressure field

is defined in Section 5.2. pgven(w) oNT'g defined in Section 10. For the sake of
brevity, we do not consider here the case of an incident
Q. Q(X-®) " plane wave and we refer the reader to Ohayon and Soize
nS r Q/ (1998) for this case.

3. External Inviscid Acoustic Fluid Equations

An inviscid acoustic fluid occupies the infinite do-
main Qg and is described by the acoustic pressure field
pe(X,w) at pointx of Qg and at circular frequency.

Let pe be the constant mass density of the external acous-
tic fluid at equilibrium. Letce be the constant speed of
sound in the external acoustic fluid at equilibrium and let
k = w/ce be the wave number at frequengy The pres-
sure is then solution of the classical exterior Neumann
problem related to the Helmholtz equation with a source
term,

Figure 1: Configuration of the system.



modifying the conservative part. The second one is

Ve +kpp=—iwQp in Qp, (5) the dissipation generated inside the “wall viscothermal
P boundary layer” of the cavity and is neglected here.
8].;]; =w?pgu-n® on I'g, (6) We then consider only the acoustic mode (irrotational
n motion) predominant in the volume. The vorticity and
OpE 1 entropy modes which mainly play a role in the “wall
= — +ikp — 7 .
[P ' Tikpe O(RQ) ) viscothermal boundary layer” are not modeled. For

additional details concerning dissipation in acoustic
fluids, we refer the reader to Lighthill (1978); Pierce
(1989); Landau and Lifchitz (1992); Bruneau (2006).

with R = ||X|| = 400, whered/dR is the derivative in
the radial direction and whene - n® is the normal dis-
placement field ol g induced by the deformation of the
structure. Equation (7) corresponds to the outward Som-.
merfeld radiation condition at infinity. In Section 10, it is
proven that the valugg|.. = of the pressure fiellz onthe
external fluid-structure interfadeg is related tcpgiven|FE

and tou by Eq. (141),

The dissipation due to thermal conduction is neglected
and the motions are assumed to be irrotational.dgdie

the mass density ang be the constant speed of sound in
the fluid at equilibrium in the reference configuratidn

We have (see the details in Ohayon and Soize (1998)),

PElr, (W) = Pgivenlr., (W) + iw Zr , (W) {u(w) -n}, (8) iwp=—pochg V-V+c5Q, (©)
in which the different quantities are defined in Section 10 iwpoV+ Vp =1VQ —iwTVp, (10)
which is a self-contained section describing the compirwhich  is given by
tational modeling of the external inviscid acoustic fluid 1 4
by an appropriate boundary element method. It should T = ( n+ C) (11)
be noted that, in Eq. (8), the pressure figld|. (w) Pocs \3

is related to the value of the normal dlsplacement fielthe constany is the dynamic viscosityy = n/p, is the
u(w) - n® on the external fluid-structure interfade; kinematic viscosity and is the second viscosity which
through the operatd r,, (w). can depend ow. Therefore; can depend on frequency
w. To simplify the notation, we write instead ofr(w).
Eliminatingv between Egs. (9) and (10), then dividing by
po, Yield the Helmholtz equation with a dissipative term

4.1. Internal dissipative acoustic fluid equations in th'EzanI a source term,

frequency domain

4. Internal Dissipative Acoustic Fluid Equations

2

Y 5P — tw— V2 L —V?

The fluid is assumed to be homogeneous, compressible pocs Po Po
and dissipative. In the reference configuration, the fluid (wQ —73V2Q) in Q. (12)
is at rest. The fluid is either a gas or a liquid and gravity
effects are neglected (see Andrianarison and Ohayon
(2006) to take into account both gravity and compres$aking s = 0 and @ = 0 in Eqg. (12) yields the
ibility effects for an inviscid internal fluid). Such a fluidusual Helmholtz equation for wave propagation in invis-
is called adissipative acoustic fluid Generally, there cid acoustic fluid.
are two main physical dissipations. The first one is an
internal acoustic dissipation inside the cavity due to tfe2. Boundary conditions in the frequency domain
viscosity and the thermal conduction of the fluid. These (i) Neumann boundary condition dh Using Eq. (10)
dissipation mechanisms are assumed to be small. In @V - n = iwu - nonT, yields the following Neumann
model proposed, we consider only the dissipation due houndary condition ,
the viscosity. This correction introduces an additional ap 0Q
dissipative term in the Helmholtz equation without (1 +iwT) n = w? poU - N +TC§% on I'. (13)

6



(i) Neumann boundary condition @h; with wall acous- onI'y is given by Eq. (13), off' z is given by Eq. (15) and,
tic impedance The partI'; of the boundaryo? neglecting gravity effects, the following Dirichlet condi-
has acoustical properties modeled bywall acoustic tion is written on the free surface,

impedanceZ(x,w) defined forx € T'z, with complex

values. The wall impedance boundary conditioionis p=0 on Ty. (16)
written as

(X w) = Z(%w) {V(X,w) - n —iwu(x,w)-n}. (14) S Structure Equations

Wall acoustic impedancg(x, w) must satisfy appropriate 5.1. Structure equations in the frequency domain
conditions in order to ensure that the problem is correctly The equation of the structure occupying dom@Qig is
stated (see Ohayon and Soize (1998) for a general formtitten as

lation and see Del et al. (2008) for a simplified model

of the Voigt type with an internal inviscid fluid). Using —w?psu; —0y5(U) =g; in Qg, (17)
Eqg. (10),v-n =iwu-nand Eq. (14) o, yields the fol-

lowing Neumann boundary condition with wall acoustiin which ps(x) is the mass density of the structure. The

impedance, constitutive equation (linear viscoelastic model, see Sec-
5 tion 5.2, Eq. (31)) is such that the symmetric stress tensor
(1+iwT) a_i —wpou-n o;; IS written as
—uupo% +7 g—g on Iy, (15) 0ij(U) = (aijkn (W) + iw bijrn (w)) exn(u),  (18)

in which the symmetric strain tenseg, (u) is such that

Ekh(u) = %(uk,h(x,w) + uh}k(x,w)) , (19)

and where the tensots x, (w) andb;jx, (w) depend on
w (see Section 5.2). The boundary condition on the fluid-
structure external interfadeg is such that
- S _ . S
oij(Unj = Gi —pgl.,n; on TI'rg, (20)

inwhichpg|.._ is given by Eg. (8) and yields

oij(u) nf: Gi - pgiven|pE n;‘g
—iwZry(W){u-n}nd on T'p. (21)

Figure 2: Configuration of the structural-acoustic system for a liquid

with free surface. Sincen® = —n, the boundary condition off U T 7 is
written as
Cavity Q is partially filled with a liquid (dissipative
acoustic fluid) occupying the domaf,. It is assumed oij(Un; =G;+pn; on TUTz. (22)

that the complementary paf\ Q2 ;, is a vacuum domain.

The boundary)$);, of Q, is constituted of three bound-

aries,I'z, 'y corresponding to the free surface of the ligin which p is the internal acoustic pressure field defined
uid and a parf';, of I". The Neumann boundary conditiorin Section 4.



5.2. Viscoelastic constitutive equation The tensoiG ;i (o0), called theequilibrium modulusat

. X, mmetri itiv finite an rr nds to th
In dynamics, the structure must always be modeléd S symmetric, positive definite and corresponds to the

SN ; : usual elasticity coefficients of the elastic material for a
as a dissipative continuum. For the conservative part . . . P
. - . static deformation. In effect, the static equilibrium state
the structure, we use the linear elasticity theory whic

allows the structural modes to be introduced. This Wé%obta|ned for tends to infinity.

justified by the fact that, in the low-frequency range,dFor all x fixed in 2, we introduce the real functions
the conservative part of the structure can be model 0, Jimn (%, 1), denoted ag,n (), such that
as an elastic continuum. In this section, we introduce = 9%\ %) Gijkn(t),

damping models for the structure based on the general gijkn(t)=0ift <0,
linear theory of viscoelasticity presented in Truesdell .
(1973) (see also Bland (1960); Fung (1968)). Comple- Gijkh () =Gijrn(t) ift >0. (26)

mentary developments are presented with respect to
viscoelastic constitutive equation detailed in Ohayon an
Soize (1998).

ﬂcegijkh(t) = 0fort¢ < 0, we deduce thaj; ;. (t) is @
usal function.

. , o , , Using Eq. (26), Eg. (23) can be rewritten as
In this sectionx is fixed in€2, and we rewrite the stress

tensoro;;(X,t) as o;;(t), the strain tensoe;;(x,t) as 0i;(t) = Gijkn(0) exn(t)
€;5(t) and its time derivative;; (X, t) asé;; (t). +o0
+/ Gijkh (T)Ekh (t—T)dT7 (27)

Constitutive equation in the time domaihe stress

tensoro;; (¢) is written as
It should be noted that Eq. (27) corresponds to the

0ij(t) = Gijin(0) exn (t) most general formulation in the time domain within the
oo framework of the linear theory of viscoelasticity. The
+ Gijkn (T)epn (t—T)dT , (23) usual approach which consists in modeling the consti-

0 tutive equation in time domain by a linear differential

equation ino(t) and (t) (see for instance Truesdell
whereo;;(t) = 0 ande(t) = 0 fort < 0. The real (1973); Dautray and Lions (1992)), corresponds to a
functions Gk, (X, t), denoted asi;;xy(t), are called particular case which is an approximation of the general
the relaxation functions The tensorG;x,(t) (and Ed. (27). An alternative approximation of Eq. (27) con-
thus G (t)) has the usual property of symmetry andiSts in representing the integral operator by a differential
Gy;xr(0), which is called thenitial elasticity tensoy is OPerator acting on additional hidden variables. This
positive definite. The relaxation functions are defined dipe of approximation can efficiently be described using
[0, +00], are differentiable with respect toon |0 , 4|, frac'tional derivative operators (sqe for instance Deul and
their derivatives are denoted &5, (t) and are assumedMatignon (2010); Bagley and Torvik (1983)).
to be integrable off0 , +oo[. FunctionsG ;x (t) can be

written as Constitutive equation in the frequency domaifhe
general constitutive equation in the frequency domain is
t .
. written as
Gijkh (t) = Gijk’h (O) —I—/ Gijkh (7‘) dr . (24)
0 0ij(w) = 0¥w) +iwsi™Mw),  (28)
Therefore, the limit of7 ;.. (¢), denoted as?;xn (00), is in which
finite ast tends to+oo,
oo o¥3w) = asjien (W) en(w), (29)
Gign(00) = Gigen(0) + | G (7). (25) sty @) = bigkn (@) exn(w) (30)



Equation (28) can then be rewritten as From Egs. (37), (39) and (40) yields

i (W) = (aijrn(w) +iwbijen(w)) exn(w).  (31) lwllij}roo aijen(w) = Gijen(0) (41)
Tensorsy;jxn (w) andb; ., (w) must satisfy the symmetry lim W bijen(w) = 0. (42)
properties lwi—too

From Egs. (31), (41) and (42), we deduce that
@ijih (W) = ajikh (W) = aijne (W) = arnij (W), (32) as- (31). (41) “2)

bijkn(w) = bjikn (W) = bijak(w) = brnij(w), (33) 0ij(00) = Gijkn (0) €xn(00) . (43)
and the positive-definiteness propertigse., for all Ed. (43) shows that viscoelastic materials behave elasti-
second-order real symmetric tensofs;, cally at high frequencies with elasticity coefficients de-
fined by the initial elasticity tens@¥, ;1 (0) which differs
@ijih (W) Xgn Xij > cq(w) Xij Xij, (34) from the equilibrium modulus tens@¥ ;. (co) written,
bijin (W) Xin Xij > co(w) Xij Xij (35) Uusing Egs. (25) and (38), as
— G ok
in which the positive constants, (w) ande,(w) are such Gijin(00) = Gijin (0) + Fijin (0) - (44)
thatc, (w) = co > 0 andey(w) > co > Owhereco iS@ ag pointed out before, the positive-definite tensor

positive real constant independent.of G'ijkn (00) corresponds to the usual elasticity coefficients

of a linear elastic material for a static deformation pro-

Sinceg;;ki (t) is an integrable function of-oo , +00f,  cess. More specifically, fas = 0, using Egs. (38) to (40)

its Fourier transforng; ;.. (w), defined by and Eq. (31) yield
+oo
Gijkn(w) = / e gijin (t) dt ok (0) = aigin (0) €131 0) - (45)

foo in which 051, (0) = {oijkn(w)}tw=o ande;jzn(0) =
= / e~ wt Gijkh (t) dt , (36) {Eijkh (w)}wzo, and where
0

_ , o _ i7kh (0) = Gijen(0) + Gy, (0) = Gy . (46
is a complex function which is continuous pRoo , +o00] aijin (0) g1 (0) + Gijin (0) shn(0e). - (46)

and such that The reader should be aware of the fact that the constitutive
) N equation of an elastic material in a static deformation pro-
wﬁfm |ijrn(w)] =0. (37) cessis defined bg;; (c0) and not by the initial elastic-

ity tensorG;xx (0). Referring to Coleman (1964); Trues-
The real parjf,, (w) = Re{Gien(w)} and the imagi- dell (1973), it has been proven th@;x, (0) — Gijkn(o0)
nary parg?,,, («) = Sm{gijn(w)} of gijun (w) are even 1S a positive-definite tensor and consequeiffy,, (0) =

and odd functions, that is to sayft,, (—w) = g%, (w) Gijin (00) — Gigrn(0) is a negative-definite tensor.
7 e J J Sinceg;in (t) is a causal function, the real pgrf,, (w)
andg;.,, (—w) = —g; ., (w). We can then deduce that . .
J J and the imaginary pa Ukh( w) of its Fourier transform

Gl (0) =0 (38) gijkn(w) are related by the following relations involving
Jiskh ' the Hilbert transform (see Papoulis (1977); Hahn (1996)),
We can now take the Fourier transform of Eq. (27) and oo L ()
using Eq. (31) yield the relations, g”kh = —p / g”kh o./7 47)
aijkn(W) = Gijen(0) + @?kh (w), (39) . oo G ()
W bijkn (W) = Gijpn (W) - (40) /giljkh(w) = —EP-V/ 72% " dw’, (48)



in which p.v denotes the Cauchy principal value defined

as
+oo —n V4
. — . (49
py[ =, tm () e[y e

The relations defined by Eqgs. (47) and (48) are also called
the Kramers and Kronig relations for functi@n;xx (t)
(see Kronig (1926); Kramers (1927)).

LF-range constitutive equation approximatiom the
low-frequency range and in most cases, the coefficients
a;jkh(w) given by the linear viscoelastic model defined
by Eq. (39) are almost frequency independent. In such a
case, they can be approximateddsy, (w) =~ a;jin(0)
which is independent af (but which depends or). It
should be noted that this approximation can only be made

a(u)n® = G — pgivenl,.,, N°
—iwZry(w){u-n°}n on Tg, (51)

o(un®=G+pn on TUTIy. (52)
2
1
—w—zp—iwlvzp——vzp
PoCo Po Po

:pl(m@—mgv?c)) in Q. (53)

. Op oQ
on a finite interval corresponding to the low-frequency (1 + iw ) n w?pou-n+7 an On I'. (54)

range and cannot be used in all the frequency domain be-
cause Egs. (47) and (48) are not satisfied and integrability
property is lost.

MF range constitutive equation. In the medium-
frequency range, the previous LF-range constitutive
equation approximation is generally not valid and the full

(1+iw7)%:w2pou-n
. 0
—zwpo% —l—Tcga—ﬁ on I'y. (55)

linear viscoelastic theory defined by Eq. (31) must he case of a free surface in the internal acoustic cavity (see
used. Section 4.3, we must add the following boundary condi-

tion

Bibliographical comments concerning expressions of
frequency-dependent coefficienome algebraic repre-

p=0 on Ty. (56)

sentations of functions; ;. (w) andb;x, (w) have been Comments

proposed in the literature (see for instance Bland (1960);.
Truesdell (1973); Bagley and Torvik (1983); Golla and
Hughes (1985); Lesieutre and Mingori (1990); Dautray
and Lions (1992); Mc Tavish and Hughes (1993); Dovs-
tam (1995); Ohayon and Soize (1998); Lesieutre (2010)).
Concerning linear hysteretic damping correctly written in
the present context, we refer the reader to Inaudi and Kelly,

(1995); Makris (1997).

6. Boundary Value Problem in Terms of{u, p}

The boundary value problem in terms{af, p} is writ-
ten as follows. For all reab and for givenG(w), g(w),
Pgiven|r,, (w) andQ(w), find u(w) andp(w), such that

—w?psu—dive(u)=g in Qg, (50)

10

We are interested in studying the linear vibrations of
the coupled system around a static equilibrium which
is consider as a natural state at rest (then the external
solid and acoustic forces are assumed to be in equi-
librium).

Eq. (50) corresponds to the structure equation (see
Egs. (17)and (28)), in whicfdivo(u)}; = ;5 ; (u).

Egs. (51) and (52) are the boundary conditions for
the structure (see Egs. (21) and (22)).

Eq. (53) corresponds to the internal dissipative
acoustic fluid equation (see Eq. (12)).

Finally, Egs. (54) and (55) are the boundary condi-
tions for the acoustic cavity (see Egs. (13) and (15)).



e Itis important to note that the external acoustic pres: which the complex matrikAgs(w)] is defined by
sure fieldpg has been eliminated as a function of

u using the acoustic impedance boundary operator[ [A% ()] — w?[Agem(w/ce)] [C] (58)
Zr, (w) while the internal acoustic pressure figld w? [C]T [A(w)]+[A%(w)] ]
is kept.

In Eq. (58), the symmetri¢ns x ng) complex matrix
[AS(w)] is defined by

7. Computational Model A5 (@)] = —? M) + i [DS(@)] + [K5(w)]. (59)

The computational model is constructed using the finitg | hich [M5], [DS(w)] and [K5(w)] are symmetric
element discretization of the boundary value problem. V\/%S « ng) real matrices which represent the mass ma-
consider a finite element mesh of structirg and a finite iy the damping matrix and the stiffness matrix of the
element mesh of internal acoustic flid We assume that g, ctyre. MatriqM?] is positive and invertible (positive
the two finite elgment meshes are compatible on mterfa&gﬁnite) and matricefD® (w)] and [K5 (w)] are positive
["UTz. The finite element mesh of surfage; is the 54 not invertible (positive semidefinite) due to the pres-
trace of the mesh dizs (see Fig. 3). We classically usnce of six rigid body motions since the structure has been

considered as a free-free structure. The symmetricn)
Qg complex matrixA(w)] is defined by

[Aw)] = —w?[M] +iw [D(w)] + [K],  (60)

in which [M], [D(w)] and [K] are symmetric(n x n)
real matrices. Matri¥M] is positive and invertible and
matrices[D(w)] and [K] are positive and not invertible
with rankn — 1. From Eq. (53), it can easily be de-
duced thafD(w)] = 7(w) [K] in which 7(w) is defined
by Eq. (11). The internal fluid-structure coupling matrix
Figure 3: Example of structure and internal fluid finite element meshgg.]' related to the coupling between the structure and the
internal fluid on the internal fluid-structure interface, is a
the finite element method to construct the discretizati¢ngs x n) real matrix which is only related to the values
of the variational formulation of the boundary value probef U andP on the internal fluid-structure interface. The
lem defined by Egs. (50) to (55), with additional boundanyall acoustic impedance matrjt Z(w)] is a symmetric
condition defined by Eq. (56) in case of a free surface fon x n) complex matrix depending on the wall acoustic
an internal liquid. For the details concerning the practicahpedanceZ (x,w) on 'z and which is only related to
construction of the finite element matrices, we refer thie values of® on boundary’ 7. The boundary element
reader to Ohayon and Soize (1998). L&tv) be the com- matrix [Agew(w/ce)], which depends ow/ce, is a sym-
plex vector of then s degrees-of-freedom (DOFs) whichmetric (ns x ng) complex matrix which is only related
are the values ofi(w) at the nodes of the finite elemento the values obJ on the external fluid-structure interface
mesh of domaif2s. For the internal acoustic fluid, letT'5. This matrix is written as
P(w) be the complex vectors of theDOFs which are the
values ofp(w) at the nodes of the finite element mesh of  [Agem(w/ce)] = —pe [N]T [Br, (w/ce)] [N],  (61)
domain(2. The finite element method yields the following

Comp|ex matrix equation, in which [BFE (w/cE)] is the full symmetric(nE X nE)
complex matrix defined in Section 10.7 and whi¥gis

U(w) F¥(w) asparséng xng) real matrix related to the finite element
[Arsi(w)] Pw)| ~ | Flw)| (57) " discretization.
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8. Reduced-Order Computational Model One has the classical orthogonality properties,

The strategy used for constructing the reduced-order (U)T M5 [U] = [M7], (65)
computational model consists in using the projection ba-
sis constituted of: [U)T [K5(0)] [U] = [K°(0)], (66)

¢ the undamped elastic structural modes of the strug-which [M ] is a diagonal matrix of positive real num-
ture in vacuo for which the constitutive equation copers and wheréK 3(0)] is the diagonal matrix of the

responds to elastic materials (see Eq. (45)), and c@igenvalues such thak ° (0)]as = A\ 645 (the eigen-
sequently, the stiffness matrix has to be taken f@rrequencies are’S — \/)\—5)_
w = 0. “ “

e the undamped acoustic modes of the acoustic cd2. Computation of the acoustic modes

ity with fixed boundary and without vyall acpusuc This step concerns the finite element calculation of the
impedance. Two cases must be considered: one fy,mpneqd acoustic modes of a closed (sealed wall) or an
which the internal pressure varies with a variation Qfjm st closed (non sealed wall) acoustic caitySetting
the volume of the cavity (a cavity with a sealedwall _ 2> \\a then have the following classicab x n)

called a closed cavity) and the other one for Whic&eneralized symmetric real eigenvalue problem
the internal pressure does not vary with the varia-

tion of the volume of the cavity (a cavity with a non [K]P = A[M]P. (67)
sealed wall called an almost closed cavity).
It can be shown that there is a zero eigenvalue with multi-
8.1. Computation of the elastic structural modes p||C|ty 1, denoted as\ (Corresponding to constant eigen_
This step concerns the finite element calculation g&ctor denoted aB) and that there is an increasing se-
the undamped elastic structural modes of strucfugen quence of — 1 strictly positive eigenvalues (correspond-
vacuo for which the constitutive equation corresponds teg to the acoustic modes), each positive eigenvalue can
elastic materials. Setting® = w?, we then have the fol- be multiple (case of an acoustic cavity with symmetries),
lowing classical(ns x ng) generalized symmetric real

eigenvalue problem O<M<...< A <. (68)
[KS(0)]U = A5 [M®]U. (62) Let Py,...,P,,... be the eigenvectors (the acoustic
modes) associated withy, ..., A,, .. ..

It can be shown that there is a zero eigenvalue with multi-

plicity 6 (corresponding to the six rigid body motions) and e Closed (sealed wall) acoustic cavityLet be0 <

that there is an increasing sequence gf- 6 strictly pos- N < n. We introduce thén x N) real matrix of
itive eigenvalues (corresponding to the elastic structural the constant eigenvectByp and of theN — 1 acous-
modes), each positive eigenvalue can be multiple (case of tic modesP,, associated with the firgt — 1 strictly

a structure with symmetries), positive eigenvalues,
0<A <...<AJ<.... (63) [P]=[Po,P1...Pq...Py_1].  (69)
LetUy,...,U,, ... be the eigenvectors (the elastic struc-

Let0 < e Almost closed (non sealed wall) acoustic cavitgt
be0 < N < n — 1. We introduce thén x N) real
matrix of the N acoustic mode®,, associated with
the firstV strictly positive eigenvalues,

tural modes) associated witky, ..., A3 .. ..
Ns < ng — 6. We introduce théng x Ng) real matrix
of the Ng elastic structural mod€s,, associated with the
first Ng strictly positive eigenvalues,

(U] =[U;...Uy...Ung]. (64) [P]=[Py...Py...Pn]. (70)
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One has the classical orthogonality properties, positive and not invertible with rank — 1, while for
an almost closed (non sealed wall) acoustic cavity, ma-

[P M][P] = [M], (71) trix [K] is positive and invertible. ThéNg x N) real

- matrix [C] is written as[C] = [U]T [C][P]. The sym-

[PI7IK][P] = [K], (72) metric (N x N) complex matrix[AZ(w)] is such that

in which[M] is a diagonal matrix of positive real numbersA” (w)] = [P]" [A%(w)] [P] and finally, the symmet-

and wherg K] is the diagonal matrix of the eigenvaluesic (Ns x Ng) complex matrix[Agew(w/ce)] is given
such that{ K], = A das (for non zero eigenvalue, theby [Aseu(w/ce)] = [U]" [Agen(w/ce)] [U]. The given

eigenfrequencies ate, = v/Aq). forces are written a$® (w) = [U]T F°(w) andf(w) =
[PI" F(w).
8.3. Construction of the reduced-order computational
model

) 9. Uncertainty Quantification
The reduced-order computational model, of order

Ngs < ngandN < n, is obtained by projecting Eq. (57)9.1. Short overview on uncertainty quantification

as follows, In this section, we summarize the fundamental con-

_ S
U(w) =Ua’(w), (73) cepts related to uncertainties and their stochastic mod-
P(w) = [P]q(w) . (74) eling in computational structural-acoustic models (ex-

. . tracted f i 2012a,b)).
The complex vectorg S (w) andq(w) of dimensionNs racted from Soize (2012a,b))

and N are the solution of the following equation 9.1.1. Uncertainty and variability

9 (w) 5 (w) The designed structural-acoustic systeis used to
[Arsi(w)] [ } = [ } J (75 manufacture theeal systemand to construct the nomi-

q(w) f(w) .
nal computational model (also called theean compu-
in which the complex matrikAes)(w)] is defined by tational modelor sometimes, the mean model) using a
mathematical-mechanical modeling process for which the
[A% (w)] — w?[Agem(w/ce)] [C] (76) main objective is the prediction of the responses of the
w?[C]" [A(w)]+[A% (w)] ]~ real system. The real system can exhibit a variability in its

) . responses due to fluctuations in the manufacturing process

In SEq- (76), the symmetri¢Ns x Ng) complex matrix ang due to small variations of the configuration around
[A% (w)] is defined by a nominal configuration associated with the designed
g L 2iasST L g g structural-acoustic system. The mean computational

(A7 (W)] = —w M) +iw [D (@) + [K7(W)], (77) model which results from a mathematical-mechanical
in which [M5], [D(w)] and [KS(w)] are positive- modeling process of the designed structural-acoustic sys-

definite symmetric(Ng x Ng) real matrices such tem, has parameters (_S,UCh as geometry, mechanic_al prop-
that [DS(w)] = [U]T [DS(w)] U] and [KS(w)] = erties, boundary conditions) which can be uncertgln (for
U]T [KS (w)] [4]. The symmetri¢N' x N') complex ma- examp]e, pgrameters related 'to. the structure, thg internal
trix [A(w)] is defined by acoustic fluid, the wall acoustic impedance). In this case,
there areuncertainties on the computational model pa-
[A(w)] = —w?[M] + iw [D(w)] + [K], (78) rameters In the other hand, the modeling process induces
some modeling errors defined as thedel uncertainties
in which [M], [D(w)] and[K] are symmetrid N x N) Fig 4 summarizes the two types of uncertainties in a com-
real matrices. Matrix[M] is positive and invertible. putational model and the variabilities of a real system. It
The diagonal N x N) real matrix[D(w)] is written as is important to take into account both the uncertainties on
[D(w)] = 7(w) [K] in whichT(w) is defined by Eg. (11). the computational model parameters and the model uncer-
For a closed (sealed wall) acoustic cavity, maffi{ is tainties to improve the predictions in order to use such a

13



Designed
mechanical

il lathematical—-mechanical MOdeIIn I - I 1 - 1 I
Manstacurng | ity [N\ e oo | Srors 9 _ () Oqtput predlctlon_error method It consists in
introducing a stochastic model of the system output

, [ Fedmecharica Nominal e which is the difference between the real system output

ex| exp exp, | as the predictive . —_ .

£ e VP T ot e | (4P g"‘,ﬁgﬁieter and the computational model output. If there are no
F— uncertainties| experimental data, then this method cannot really be used

Uncertain system due because th_e_re is generally no _|nform§t|0r_1 concerning

to its variabilities the probability model of the noise which is added to

the computational model output. If experiments are
Figure 4: Variabilities and types of uncertainties in computational str@vailable, the observed prediction error is then the
tural acoustics and fluid-structure interaction difference between the measured real system output and
the computational model output. A posterior probability
Jpodel can then be constructed (Beck and Katafygiotis,

computational model to carry out robust optimization, r i _ )
bust design and robust updating with respect to uncerta )98; Beck and Au 2002) using the Bayesian method
§pa||, 2003; Kaipio and Somersalo, 2005). Such an

ties. Today, it is well understood that, as soon as the pr X < X :
roach is efficient but requires experimental data. In

ability theory can be used, then the stochastic appro : - .
of uncertainties is the most powerful, efficient and effedS case, the posterior probability model of the uncertain

tive tool for modeling and for solving direct problem and)arameters of the computational mode| strongly depends

inverse problem related to the identification. The develo%‘ the probability model of the noise which is added

ments presented below are carried out within the fram _th_e model output and Wh'_Ch is often unknown. In
addition, for many problems, it can be necessary to take

into account the modeling errors at the operators level
of the mean computational model. For instance, such an
9.1.2. Types of approach for stochastic modeling of Ugpproach seems to be necessary to take into account the
certainties modeling errors on the mass and the stiffness operators of
The parametric probabilistic approachconsists in a computational dynamical model in order to analyze the
modeling theuncertain parameters of the computationageneralized eigenvalue problem. It is also the case for the
model by random variables and then, in constructingbbust design optimization performed with an uncertain
the stochastic model of these random variables usisgmputational model for which the design parameters of
the available information. Such an approach is vetfie computational model are not fixed but vary inside an
well adapted and very efficient to take into account thedmissible set of values.
uncertainties in the computational model parameters.
Many works have been published and a state-of-the-arfii) Nonparametric probabilistic approacbf model
can be found, for instance, in Ghanem and Spangscertainties induced by modeling errors. This approach,
(1991, 2003); Mace et al. (2005); Schueller (2005, 200f)toposed in Soize (2000) as an alternative method to the
Deodatis and Spanos (2008). previous output-prediction-error method, allows model-
ing errors to be taken into account at the operators level by
Concerningmodel uncertaintieinduced bymodeling introducing random operators and not at the model out-
errors, it is well understood that the prior and posterigput level by introducing an additive noise. It should be
probability models of the uncertain parameters of theted that this second approach allows a prior probabil-
computational model are not sufficient and do not ha#y model of model uncertainties to be constructed even
the capability to take into account model uncertainties ifino experimental data are available. This nonparametric
the context of computational mechanics as explained, fmobabilistic approach is based on the use of a reduced-
instance, in Beck and Katafygiotis (1998) and in Soizerder model and the random matrix theory. It consists
(2000, 2001, 2005b). Two main methods can be useditodirectly constructing the stochastic modeling of the
take into account model uncertainties (modeling errorsperators of the mean computational model. The ran-

work of the probability theory.
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dom matrix theory (Mehta, 1991) and its developmentsin nonlinear geometrical effects (Mignolet and Soize,
the context of dynamics, vibration and acoustics (Soize, 2008b; Capiez-Lernout et al., 2012).

2000, 2001, 2005b, 2010b; Wright and Weaver, 2010) 50ncerning the coupling of the parametric probabilistic

e e b gRpro2h of Uneran computatonl model prameters,
mean computational modgl This prior rok[))abilit distri\-Ni h the nonparametric probabilistic approach of model

an comp - priorp y .uncertainties induced by modeling errors, a methodology
bution is constructed by using the maximum entropy prin-

ciple (Jaynes, 1957), in the context of Information Theorglas recently been proposed (Soize, 2010a; Batou et al,

(Shannon, 1948), for which the constraints are defin?gll)' Thisgeneralized probabilistic approadf uncer-

. . . . ainties in computational dynamics uses the random ma-
by the available information (Soize, 2000, 2001, 2003 : .
2005a,b, 2010b). Since the basic paper Soize (200 x theory. The proposed approach allows the prior prob

many works have been published in order: ility model of each type of uncertainties (uncertainties
y P ' on the computational model parameters and model uncer-

e to validate, using experimental results, the nonparginties) to be separately constructed and identified.
metric probabilistic approach of both the computd=Oncerning robust updating or robust design optimization
tional model-parameter uncertainties and the mod#&[lich consists in updating a computational model or in
uncertainties induced by modeling errors (Chebgpt|m|zmg the design of a mechanical system with a com-

and Soize. 2004: Soize. 2005b: Chen et al.. 200utational model, in taking into account the uncertainties

Duchereau and Soize. 2006: Soize et al.. 2008a: Ij[]'_the computational model parameters and the modeling
rand et al., 2008; Fernandez et al., 2009, 2010) uncertainties. An overview of the computational methods

in optimization considering uncertainties can be found in
e to extend the applicability of the theory to other arSchueller and Jensen (2008). Robust updating and robust
eas (Soize, 2003b; Soize and Chebli, 2003; Capigiesign developments with uncertainties in the computa-
Lernout and Soize, 2004; Desceliers et al., 2009onal model parameters are developed in Papadimitriou
Capiez-Lernout et al., 2005; Cottereau et al., 200t al. (2001); Taflanidis and Beck (2008); Goller et al.
Soize, 2008; Das and Ghanem, 2009; Kassem et &.009) while robust updating and robust design optimiza-
2009), tion with modeling uncertainties can be found in Capiez-
Lernout and Soize (2008b,a,c); Soize et al. (2008b); Ritto
¢ to extend the theory to new ensembles of positivet al. (2010).
definite random matrices yielding a more flexible
description of the dispersion levels (Mignolet an@.2. Uncertainties and stochastic reduced-order compu-
Soize, 2008a), tational structural-acoustic model
This section is devoted to the construction of the
* to apply the theory for the analysis of complex dystochastic model of both computational model-parameters
namical systems in the medium-frequency range, ifincertainties and modeling errors using the nonpara-
cluding structural-acoustic systems, (Ghanem apgetric probabilistic approach and random matrix theory
Sarkar, 2003; Soize, 2003b; Chebli and Soize, 2004y the details, see Durand et al. (2008); Soize (2010b,
Capiez-Lernout et al., 2006; Duchereau and SOiZ@ﬁ)lza,b))_ We apply this methodology to the reduced-
2006; Arnst et al., 2006; Durand et al., 2008; Pebrder computational structural acoustic model defined by
lissetti et al., 2008, Desceliers et a.l., 2009, FernaE'qS. (73) to (78) It is assumed that there is no uncer-
dez et al., 2009, 2010; Kassem et al., 2011; Soizginties in the boundary element matfigey (w/ce)] and
2012a), in the wall acoustic impedance matrid?(w)]. Con-

sequently, for fixed valuevg and N, the stochastic

* 0 aqalyze nonlinear dynam!cal systems (i) with IOC%duced-order computational structural-acoustic model of
nonlinear elements (Desceliers et al., 2004; Samp RlerN g and N is written as

and Soize, 2007a,b; Batou and Soize, 2009b,a; Ritto
et al., 2009, 2010; Wang et al., 2011) and (ii) with Uw) = U] Q% (w), (79)
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P(w) = [P] Q(w), (80) and the generators of independent realizations of such
random matrices are constructed using random matrix
theory (Mehta, 1991) and the maximum entropy principle
(Jaynes, 1957; Soize, 2008) from Information Theory
(Shannon, 1948), in which Shannon introduced the
Qs(w) £5 w) notion of entropy as a measure of the level of uncer-

[Arsi(w)] [ Q(w)} = [f(w)} ; (81) tainties for a probability distribution. For instance, if

px (z) is a probability density function on a real random

and where the complex random matfies(w)] is writ-  Variable X, the entropy&(px) of px is defined by

in which, for all fixedw, the complex random vectors
Q%(w) andQ(w) of dimensionNg and N are the solu-
tion of the following equation

ten as Elpx) = — fjooj px(z) log(px(z)) dz. The maximum
s entropy principle consists in maximizing the entropy,
[A” (w)]— w?[Agem(w/ce)] [C] that is to say, maximizing the uncertainties, under the
21T z - (82) : : . . :
w*[C] (A(w)]+[A% (w)] constraints defined by the available information. Conse-

quently, it is important to define the algebraic properties
of the random matrices for which the probability distribu-
tions have to be constructed. LEtbe the mathematical
expectation. For instanc&{X} = ff;o xpx(x)de.
Consequently, we havé(px) = —E{log(px(X))}.

in which the positive-definite symmetri&Vs x Ns) real In order to construct the probability distributions of the
matricesM s] [Ds(w)] and [Ks(w)] are random matri- random matrices introduced in Section 9.2, we need to

ces whose probability distributions are constructed in S&t£fine a basic ensemble of random matrices.
tions 9.4 and 9.5. The symmetii&/ x N) complex ran-

The symmetric(Ng x Ng) complex random matrix
[A® ()] is defined by

[A®(@)] = ~w’[M®] +iw[D* ()] + [K*(w)], (83)

dom matrix[A(w)] is written as It is well known that a real Gaussian random variable
can take negative values. Consequently, the Gaussian or-
A(w)] = —w?[M] + iw [D(w)] + [K], (84) thogonal ensemble (GOE) of random matrices (Mehta,

1991), which is the generalization for the matrix case
in which [M], [D(w)] and [K] are symmetriq N x N) of the Gaussian random variable, cannot be used when
real random matrices. Random matii&] is positive def- positiveness property of the random matrix is required.
inite. The diagona(N x N) real random matriXD(w)] Therefore, new ensembles of random matrices are re-
is written as quired to implement the nonparametric probabilistic ap-

[D(w)] = 7(w) [K], (85) proach of uncertainties. Below, we summarize the con-

. . . . . struction (Soize, 2000, 2001) of an ensemble of positive-
in which 7(w) is deterministic and defined by Eq. (11).definite 33(/mmetri¢m % m) re)al random matrices.p

For a closed (sealed wall) acoustic cavity, random matrixX
[K] is positive and not invertible with rank — 1, while

for an almost closed (non sealed wall) acoustic cavity, ra@3.1. Definition of the available information

dom matrix[K] is positiv_e definite. The probability distri- o the probabilistic construction using the maximum
butions of random matrice®!], [K] and of the{N's x N') - gntropy principle, the available information corresponds
real random matriXC] are constructed in Sections 9.6 tqq t\o constraints. The first one is the mean value which
9.8. is given and equal to the identity matrix. The second

o . ) one is an integrability condition which has to be imposed
9.3. Preliminary results for the stochastic modeling of thg order to ensure the decreasing of the probability den-

random matrices for the stochastic reduced-ord&jity function around the origin. These two constraints are
computational structural-acoustic model written as

In the framework of the nonparametric probabilistic
approach of uncertainties, the probability distributions E{[Go|} = [I,,] , FE{log(det[Go])} =x, (86)
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in which || is finite and whergl,,, | is the(m x m) iden- e for j < j’, the real-valued random variable] ;-

tity matrix. is written as[L];;; = onUj;» in which o,,, =
§(m+1)~'/2 and wherdJ;: is a real-valued Gaus-
9.3.2. Probability density function sian random variable with zero mean and variance

The value of the probability density function of the ran-  equal tol;
dom matrix[Go] for the matrix[G | is notedp(g,j([G])

N -/ N _ .
and satisfies the usual normalization condition, e for j = j', the positive-valued random variable
[L1];; is written as[L];; = om+/2V; in which V;
Ty is a positive-valued Gamma random variable with
/ P ([G]) dG =1, &7 probability density functior’(a, 1) in whicha; =
m+l | 1=j
+ 4
262 2

in which the integration is carried out on the set of all
the positive-definite symmetritm x m) real matrices
and where it can be shown that the volume elemigiis
written asdG = 2m(m71)/4 ngjgkgm dek-

9.3.4. Ensemble SGof random matrices

Let0 < ¢ <« 1 be a positive number (for instanesgan
be chosen as0~°). We then define the ensemble SG
of all the random matrices such that

- 1
C14e

Let é be the positive real number defined by

1 1/2 [G] {[GO] +e [Im]} ’ (90)

s={Zeilie -} . e
in which [G] is a random matrix whose probability den-

which will allow the dispersion of the probability modelsity functionis defined in Section 9.3.2 and whose genera-
of random matri¥G] to be controlled and wheifeM || - tor of independent realizations is defined in Section 9.3.3.
is the Frobenius matrix norm of the matfix1] such that
| M||% = tr{[M]T[M]}. Foré suchthad < § < (m+ 9.3.5. Cases of several random matrices
1)!/2(m +5)~1/%, the use of the maximum entropy prin- |t can be proven (Soize, 2005b) that, if there are sev-
ciple under the two constraints defined by Eq. (86) angtal random matrices for which there is no available infor-
the normalization condition defined by Eq. (87), yieldsnation concerning their statistical dependencies, then the
for all positive-definite symmetri¢m x m) real matrix use of the maximum entropy principle yields that the best
G, model which maximizes the entropy (the uncertainties) is

o a stochastic model for which all these random matrices
Pieo) ([G]) = co(det [G])™ exp{—c2tr[G]},  (89) gre independent.

in which the positive constant of normalizatiep, the

constants, — (m + 1)(1 — 62)/(26%) and the constant 24 Stochastic modeling of random matjfi -]

c2 = (m +1)/(26%) depend onn ands. Since there is no available information concerning the
statistical dependency @1 °] with the other random ma-
9.3.3. Generator of independent realizations trices of the problem, then random matfM ] is inde-

The generator of independent realizations (which Rendent of all the other random matrices. The determinis-
required to solve the random equations with the Monfi§ matrix /%] iz positive d(;finite and consequently, can
Carlo method) is constructed using the following algde written agM ] = [Lys]" [Lygs] in which [Lyys] is
braic representation. Using the Cholesky decompositigi) upper triangular real matrix. Using the nonparamet-
random matriG] is written agGo] = [L]7 [L]in which ric probabilistic approach of uncertainties, the stochastic

[L] is an upper triangulafm x m) random matrix such model of the positive-definite symmetric random matrix
that: [M ] is then defined by

e random variable§|L ],;/,j < j'} are independent; M®] = [Lass]T [Gars] [Lass] (91)
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where[G,;s] is a(Ng x Ng) random matrix belongingto o
ensemble SG defined in Section 9.3.4 and whose prob-
ability distribution and generator of independent realiza-
tions depend only on dimensidyig and on the dispersion
parameteb s.

9.5. Stochastic modeling of the family of random matri-
ces[D”(w)] and [K® (w)]

Since there is no available information concern-
ing the statistical dependency of the random matrices
{[D® ()], [K¥(w)]} with the other random matrices of
the problem, thed[D® (w)], [K® (w)]} are independent of
all the other random matrices. But we will see below
that[D® (w)] and[K ®(w)] are statistically dependent ran-
dom matrices. For stochastic modeling[Bf° (w)] and
[K(w)] related to the linear viscoelastic structure, we
propose to use the new extension presented in Soize and
Poloskov (2012) which is based on the Hilbert transform
Papoulis (1977) in the frequency domain to express the
causality properties (similarly to the transforms used in
Section 5.2). The nonparametric probabilistic approach
of uncertainties then consists in modeling the positive-
definite symmetri¢ Ns x Ng) real matrice$D*(w)] and

[K®(w)] by random matricefD® (w)] and[K ®(w)] such

that, °
B{D (@)} =[D%(w)], B{K (@)} =[K*w)], (92)
[D%(~w)] = [DCw)], [K(-w)] = K¥(w)]. (93)

Forw > 0, the construction of the stochastic model of the
family of random matricefD® (w)] and[K *(w)] is carried
out as follows.

e Constructing the familyD* (w)] of random matrices
such thatD%(w)] = [Lps(w)]” [Gps][Lps(w)],
where [Lps(w)] is such that [D%(w)]

. LR .
Constructing the familyN  (w)] of random matrices
using the equation

R 2 Foo
N"(w))=2pv /

w2 — W

2
W'

5 [D% (W) dw’, (94)

or equivalently, using the two following equations
which are useful for computation:

Ko =2 [T pena, o9
0
and, forw > 0,
[NR(w)] = %p.v/{;oo % w [D¥(wu)] du,
) ) 1—n +oo
- 2 [ +/1+n}' (96)

Defining the famlly[ﬁ( )] of random matrices such

that [N(w)] = [N"(w)] +i [N' ()]
Constructing the random matriXK*(0)] =
[LKS(O)]T [GKS(O)] [LKS(O)] WhEI’E[LKS(O)] is such
that [K5(0)] = [Lgs()]” [Lxs@)) and where
[Gks(o) is a(Ns x Ng) random matrix belong-
ing to ensemble S defined in Section 9.3.4 and
whose probability distribution and generator of inde-
pendent realizations depend only on dimensiog
and on the dispersion paramefegfs ) which allows
the level of uncertainties to be controlled. It should
be noted that random matri s )] is independent
of random matriXG ps].

[Lps(w)]" [Lps(w)] and where [Gps] is a n

(Ns x Ng) random matrix belonging to ensemble e Computing the random matrip "] = —[N" (0)] =
SG!, defined in Section 9.3.4. Its probability 2 0+°°[D5(w)] dw.

distribution and its generator of independent real-

izations depend only on dimensiagvis and on the Defining the random matril 51 = [K (0 D+
dispersion parametér,s which allows the level of * g W] = K7+ D7)
uncertainties to be controlled. e Constructing the random matrjK *(w)] = [K5] +

e Defining the family[NI(w)] of random matrices such
that[N' (w)] = w D5 (w)].
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9.6. Stochastic modeling of random matjfi] [Lk]T [Lk] in which [Lg] is an upper triangu-
Since there is no available information concerning the 1ar (IV, V) real matrix. Using the nonparametric

statistical dependency @] with the other random ma-  Probabilistic approach of uncertainties, the stochas-
trices of the problem, then random matj#]| is indepen- tic model of this positive symmetric random matrix
dent of all the other random matrices. The deterministic  Yields

matrix [M], is positive definite and consequently, can be K] = [Lk]" [Gk] [Lk], (99)

written as|M| = [Ls]” [Las] in which [L /] is an upper
triangular real matrix. Using the nonparametric proba-

bilistic approach of uncertainties, the stochastic model of to ense'mble. SQS dgfined in Section 9'3’. and whose
the positive-definite symmetric random maiti] is then probability distribution and generator of independent
defined by realizations depend only on dimensidhand on the

dispersion parametéi .

where[G k] is a(IN x N) random matrix belonging

M] = [Lu]" [Gar] [L ] 97)

where[G )] is a (N x N) random matrix belonging to 9:8. Stochastic modeling of random mage}
ensemble SG defined in Section 9.3.4 and whose prob- Since there is no available information concerning the
ability distribution and generator of independent realizatatistical dependency ¢€] with the other random matri-
tions depend only on dimensiav and on the dispersion ces of the problem, then random mafi®} is independent

paramete ;. of all the other random matrices. We use the construc-
_ . _ tion proposed in (Soize, 2005b) in the context of the non-
9.7. Stochastic modeling of random mat¥ parametric probabilistic approach. Let us assumed that

Since there is no available information concerning th¥s > NN and that th§ Ns x N) real matrix[C] is such
statistical dependency & with the other random ma-that[C]q = 0 impliesq = 0. If N > Ng, the fol-
trices of the problem, then random matfi] is indepen- lowing construction must be applied {6']” instead of
dent of all the other random matrices. For the stochastic]. Using the singular value decomposition of rectangu-
modeling of[K], two cases have to be considered. lar matrix [C], one can writ§C] = [R] [T'] in which the

_ _ (Ng x N) real matrix|[R] is such thafR]” [R] = [Iy]

e Closed (sealgd Wa]l) acoustic cavityn such a case, gnd where the symmetric square maffi} is a positive-
the symmetric positive matrijg<] is of rankN' — 1 gefinite symmetric(N x N) real matrix. Using the
and can then be written 4% = [Lx|" [Lxk] N cholesky decomposition, we then hd# = [L1]T [L7]
which L] is a rectangulatN, N — 1) real ma- iy which[Lz] is an upper triangular matrix. TH& g x N)
trix. Using the nonparametric probabilistic approacha| random matrifC] is then written as
of uncertainties, the stochastic model of the positive
symmetric random matri§] of rank N — 1 is then Cl=[R|[T] . [T]=[Lr]"[Gc][Lr] ., (100)

defined (Soize, 2005b) by
where[G¢] is a (N x N) random matrix belonging to
K] = [Lx]" [Gx] L], (98) ensem[ble] SG d(efined ir? Section 9.3.4 and whose prob-
where[G x| is a((N — 1) x (N — 1)) random ma- ability distribution and generator of independent realiza-

trix belonging to ensemble SGdefined in Sec- tions depend only on dimensid¥ig, N and on the disper-

tion 9.3.4 and whose probability distribution and'"" parametefc.
generator of independent realizations depend only on
dimensionV —1 and on the dispersion parameigr. 9.9. Comments about the stochastic model parameters of

) ) uncertainties and the stochastic solver
e Almost closed (non sealed wall) acoustic cavity

The matrix[K] is positive definite and thus invert- The dispersion parameté&iof each random matrijG]
ible. Consequently, it can be written #&] = allows its level of dispersion (statistical fluctuations) to
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be controlled. The dispersion parameters of random m3. Symmetric Boundary Element Method Without

trices[Gyys], [Gps], [Grs (], [Gum], [Gk] and[Gc] is Spurious Frequencies for the External Acoustic
represented by a vectérsuch that Fluid
0 = (dys , dps, 6gs(o)> Om, 0k, 0c¢) ,  (101) The inviscid acoustic fluid occupies the infinite

three-dimensional domaif2g whose boundarydQ g
which belongs to an admissible s&f and which allows is I';.  This section is devoted to the construction
the level of uncertainties to be controlled for each typsf the frequency-dependent impedance boundary op-
of operators introduced in the stochastic reduced-ordgator Zr-_(w), for the external acoustic problem.
computational structural-acoustic model. Consequentlye recall that the operatoZr,(w) is such that
if no experimental data are available, thérhas to be pg|r, (w) = Zr,(w)v(w) which relates the pressure
used to analyze the robustness of the solution of theld px|r, (w) exerted by the external fluid dhg to the
structural-acoustic problem with respect to uncertaintie®rmal velocity fieldv(w) induced by the deformation of
by varyingé in Cs. this boundary” .

For a given value ob, there are two major classes of Many methods can be found in literature for solv-
methods for solving the stochastic reduced-order compng this problem: the boundary element methods, the
tational structural-acoustic model defined by Eqgs. (79) tstificial boundary conditions and the local/nonlocal
(85). The first one belongs to the category of the spegen-reflecting boundary condition (NRBC) to take into
tral stochastic methods (see Ghanem and Spanos (12&tount the Sommerfeld radiation condition at infinity,
2003); LeMaitre and Knio (2010)). The second one behe Dirichlet-to-Neumann (DtN) boundary condition
longs to the class of the stochastic sampling techniquesated to a nonlocal artificial boundary condition which
for which the Monte Carlo method is the most populamatch analytical and numerical solutions, the infinite
Such a method is often called non-intrusive since it oflement method, the doubly asymptotic approximation
fers the advantage of only requiring the availability ofnethod, the finite element method in unbounded domain
classical deterministic codes. It should be noted that thed relateda posteriori error estimation and, finally,
Monte Carlo numerical simulation method (see for irthe wave based method for unbounded domain, see for
stance (Fishman, 1996; Rubinstein and Kroese, 2008]ristance Geers and Felippa (1983); Givoli (1992); Harari
a very effective and efficient one because it as the fogr al. (1996); Astley (2000); Farhat et al. (2003, 2004);
following advantages, Oden et al. (2005); Bergen et al. (2010). This section

is devoted to the presentation on the boundary element

e itis a non-intrusive method, methods.

e itis adapted to massively parallel computation with-

out any software developments, The frequency-dependent impedance boundary opera-

tor Zr . (w) can be constructed, either in time domain and
e it is such that its convergence can be controlled ddp_en, taking the Fourie_r transform, or.directly construct.ed
ing the computation, in the frequepcy QOma}ln. One techryque for construptmg
Zr,(w) consists in using boundary integral formulations

« the speed of convergence is independent of the @flones, 1974; Costabel and Stephan, 1985; Jones, 1986;
mension. Kress, 1989; Colton and Kress, 1992; Dautray and Lions,
1992; Bonnet, 1999; Nedelec, 2001; Hsiao and Wend-
If experimental data are available, there are several podaird, 2008). In the time domain, it uses the so-called
ble methodologies (whose one is the maximum likelihod€irchhoff retarded potential formula (see for instance
method) to identify the optimal values éf(for sake of Baker and Copson (1949); Lee et al. (2009)). It should be
brevity, these aspects are not considered in this paper ated that the formulations in the frequency domain can

we refer the reader to Soize (2012a)). easily be implemented in massively parallel computers.
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10.1. Exterior Neumann problem related to the
Helmholtz equation

The finite element discretization of the boundary The geometry is defined in Fig. 5. The inviscid fluid

integral equations yields the Boundary Element Method
(Brebbia and Dominguez, 1992; Chen and Zhou, 1992; Q
Hackbusch, 1995; Ohayon and Soize, 1998; Gaul et al.,
2003). Furthermore, most of those formulations yield
unsymmetric fully populated complex matrices. The
computational cost can then be reduced using the fast
multipole methods (Greengard and Rokhlin, 1987;
Gumerov and Duraiswami, 2004; Schanz and Steinbach,
2007; Bonnet et al., 2009; Brunner et al., 2009).

A major drawback of the classical boundary integral
formulations for the exterior Neumann problem related
to the Helmholtz equation is related to the uniqueness
problem although the boundary value problem has a

unique solution for all real frequencies (Sanchez-Hubej¢cupies the infinite domaifl ;. For practical computa-
and Sanchez-Palencia, 1989; Dautray and Lions, 19929nal considerations, the exterior Neumann problem re-
Precisely, there is not a unique solution of the phydated to the Helmholtz equation (see Egs. (5) to (7)) is
cal problem for a sequence of real frequencies calleglvritten in terms of a velocity potentiab(x,w). Let
spurious or irregular frequencies also calledJones v(x,w) = V(x,w) be the velocity field of the fluid. The

eigenfrequencie@Burton and Miller, 1971; Jones, 1983;acoustic pressung(x, w) is related tay(x, w) by the fol-
Colton and Kress, 1992; Luke and Martin, 1995; Jents@wing equation,

and Natroshvili, 1999). Various methods are proposed _ _

in the literature to overcome this mathematical difficulty p(X,w) = —iwpeP(X,w) N Qp, (102)
arising in the boundary element method (Panich, 1965. : . .
Schenck, 1968: Burton and Miller, 1971: Angelini an herepe is the constant mass density of the external fluid

. i ) S : at equilibrium. Letce be the constant speed of sound
Hutin, 1983; Vethews, 1986 Amint afggg)a”'s* 19904, the external fluid at equilibrium and lét = w/ce be
" ' y ' ' the wave number at frequency The exterior Neumann

problem is written as
In this section, we present a method, initially devel-
oped in Angelini and Hutin (1983), yielding an appro-

Figure 5: Geometry of the external infinite domain.

V2(x,w) + k2 Y(X,w) =0 in Qp, (103)

priate symmetric boundary element method valid for all oP(y,w)

real values of the frequency which is numerically stable Tny =v(y) on I'p, (104)
and very efficient. This method is detailed in Ohayon 1 9 1

and Soize (1998) and does not require introducing ad- |y | = O(=) ‘ - +¢k¢‘ =0(+5), (105)
ditional degrees of freedom in the numerical discretiza- R OR R

tion for treatment of irregular frequencies. This methodith R = ||x|| — +o0, whered/OR is the derivative in
has been extended to the Maxwell equations (Angelitie radial direction and whergy) is the prescribed nor-
et al., 1993). In the case of an external liquid domaimal velocity field orl" g. Equation (103) is the Helmholtz
with a zero-pressure free surface (which is not presenteguation in the external acoustic fluid, Eqg. (104) is the
here for sake of brevity) the method presented below cBleumann condition on external fluid-structure interface
be adapted using the image method (for the details, deg and Eq. (105) corresponds to the outward Sommer-
Ohayon and Soize (1998)). feld radiation condition at infinity.
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10.2. Pressure field iRz and onl' g 10.4. Positivity of the real part of the acoustic impedance

For arbitrary reakw # 0, it can be shown that the boundary operator
boundary value problem defined by Egs. (103) to (105) OperatoriwZr, (w) can be written as
admits a unique solution denotetf® which depends
linearly of the normal velocity (Sanchez-Hubert and iwZr, (w) = —w? My, (w/cg) + iwDr, (w/ce), (114)
Sanchez-Palencia, 1989; Dautray and Lions, 1992). Let
wSO' be the value 0f)%® onT'x. For allx in Qp, let us N WhichMr (w/ce) andDr, (w/ce) are two linear op-

introduce the linear operat&®(x, w/cg) such that erators such that
wSOI(X, w) _ R(X, w/cE) V. (106) w MFE (w/cE) = Qm ZFE (w) s (115)

We also introduce the linear boundary operator Dry(w/ce) = ReZr(w) . (116)

Br (w/ce) such that It can be shown (Ohayon and Soize, 1998) the follow-
¢§ol = Br, (w/ce)v. (107) ing positivity property of the real paBr, (w/cg) of the
B acoustic impedance boundary operator, which is due to
Using Eq. (102), for alk in 2 &z, the pressure fielg(x, w) the Sommerfeld radiation condition at infinity.

is written as
10.5. Construction of the acoustic impedance boundary

p(X,w) = Zrag(X,w) v, (108) operator for all real value of the frequency
in which Z a4(X, w) is called theradiation impedance op- We present here the appropriate symmetric boundary
erator which can then be written as element method without spurious frequencies, for which
details can be found in Ohayon and Soize (1998). This
Ziad(X,w) = —iw pe R(X, w/ce) . (109) formulation simultaneously uses two boundary singular

integral equations o' . The first one is based on the
use of a single- and double-layer potentialsion. The
p|FE(w) =Zr,(w)v, (110) second integral equation is obtained by a normal deriva-
tive onT" g of the first one. We then obtained the following
inwhichZr, (w) is called theacoustic impedance bound-system relatmgpso' to v which then allowsr, (w/ce) to

Similarly, the pressure fielgl . _(w) onI'g is written as

ary operatorand which can then be written as be defined using Eq (107),
Z = —1 B . 111
FE(w) 1W Pe FE(W/CE) ( ) OI _ —ST(M/CE) %t| —tSD(w/cE) wFE
Note thatZ - (w) is nonlocal operator. vy L] —Sp(w/ce)  Ss(w/ce) v |’
(117)
10.3. Symmetry property of the acoustic impedang@e linear boundary integral operatorSs(w/ce),
boundary operator Sp(w/ce) andSr(w/ce) are defined by

The transpose of operat@r,, (w/cg) is denoted by
‘Br, (w/ce). It canthen be proven (see Ohayon and Soize <Ss(w/ce)v,6v>=

(1998)) the following symmetry property, / G(x — ) vly) Sv(x) dsy dsx, (118)
I'e JTE

"Br,(w/ce) = Br,(w/ce), (112)
and from Eq. (111), we deduce that
tZFE(w) _ ZFE(UJ) ) (113) <SD(w/CE) ¢FE75U>=
IG(x—y)
It should be noted that these complex operators are sym- A e Yr () 6v(X) dsy dsx, (119)

metric but not hermitian.
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< Sr(w/cE)er, oy >= 10.6. Construction of the radiation impedance operator

The solution{:*°(x,w),x € Qg} of Egs. (103) to
2 ) )
—k /FE FS’(X—y) Ny Ny ¥r, () 0%y, (X) dsy dsx(105) can be calculated using the following integral equa-

tion
* /F T G(X—Y) sol
{ny x Vyz/;FE(y)} ~{ny x dez/)FE(X)} dsy dsx (120) VTow) = e (G =y)vly)

IG(x )
n

TR W) T sy (123)

whereG(x—y) is the Green function which is written as

G(x—y) =g(|x —y|)) = —(4r) " te k7, (121) ForallxfixedinQp, we define the linear integral opera-
torsRs(X, w/ce) andRp (X, w/ce) by
in whichr = ||[x—y/|. In Egs. (118) to (120), the brackets

correspond to bilinear forms which allow the operators  Rg(x,w/cg) v = G(x —y)v(y) dsy, (124)

to be defined and the functiois andéwFE are associ- I'g

ated with functions andwFE . Considering Eqg. (117), let aG(x —y)

H(w/ce) be the operator defined by Ro(X,w/ce) vy = /F e, (V) = dsy - (125)
E y

[ =Sr(w/ce) 2t —'Sp(w/ce) Using Eq. (107), Eg. (123) can be rewritten as
H(w/ce) = % | SD(w/cE)2 Ss(w/ce) . (122)
(%, w) = {Rs(x, w/ce)

It can be proven that operatét(w/ce) has the sym- —Rp(X,w/ce) Br, (w/ce)} v. (126)
metric property,’H(w/ce) = H(w/cg). In Eq. (117),

the first equation can be rewritten 8s(w/cg) Y =

(31 — 'Sp(w/ce)) v. This classical boundary equatiorFrom Eq. (106), we deduce that, for alfixed in(2 g,

which allows the velocity potential to be calculated for a

given normal velocity, has a unique solution for all real R(X,w/ce) = Rs(X,w/ce)

w which does not belong to the set of frequencies for —Rp(X,w/ce) Br (w/ce), (127)
which Sr(w/cg) has a null space which is not reduced to

{0}. This set of frequencies is called the set of #peI-

rious or irregular frequencies. Consequently, as provegind the radiation impedance operaZggg(x, w) is calcu-

in Ohayon and Soize (1998), for a spurious frequenqyted using Eqgs. (109) and (127),

wFE is the sum of solutiorwﬁg' with an arbitrary ele-

ment belonging to the null space of operaSa(w/ce). Zad(X,w) = —iw pe {Rs(X, w/cg)

The originality of the proposed method (Angelini and —Rp(X,w/ce) Bry (w/ce)} . (128)
Hutin, 1983; Ohayon and Soize, 1998) (extended to the

Maxwell equations in Angelini et al. (1993)), then con-

sists in using the second equation which is written 8§ 7 Symmetric boundary element method without spu-
U = (31 = So(w/ce)) ¥r, + Ss(w/ce) v, and which rious frequencies

yields 50'““"”@: for all realw, because the elements e yse the finite element method to discretize the
belonging to the null space are filtered wheris a spu- boundary integral operatorSs(w/ce), Sp(w/ce) and
rious frequency. Concerning the practical construction & (w/ce) (corresponding to a boundary element method).
1/)?2', for all real values ofv, using Eq. (117), a particular et us consider a finite element mesh of boundagy Let
elimination procedure will be described in Section 10.7V = (V4,...,V,..) and\IlFE = (\I/FEJ, cee \I/FE,nE) be
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the complex vectors of the p degrees-of-freedom con-row numbersig —n, + 1, ..., ng are automatically sat-

stituted of the values of and Yr @t the nodes of theisfied. From Eq. (111), we deduce that theg x ng)

mesh. LefSs(w/ce)], [Sp(w/ce)] and[St(w/ce)] be the complex symmetric matrikZr , (w)] of operatoiZr, (w)

full complex matrices corresponding to the discretizatidf such that

of the operators defined in Egs. (118) to (120). The com- .

plex matrices Ss(w/ce)] and[St(w/ce)] are symmetric. [Zrp(@)] = —iw pe[Bry (w/ce)] (132)

The finite element discretization of Eq. (117) yields Finally, the finite element discretization of the acous-
tic radiation impedance operat@hq(X,w) defined by

[\1120'1 — [H(w/e0) [\P\;E] ’ (129) Eq. (129) is written as
) [Zrad(xa W)} = —iWpPE {[RS(Xv w/CE)]
in which the symmetric complex matr{# (w/cg)] is the ~[Ro(x,w/ce)] [Brg(w/ce)l} . (133)
matrix
—[St(w/ce)] $[E]T — [So(w/ce)]” (130) 10.8. Acoustic response to prescribed wall displacement
$[E] - [Sp(w/ce)] [Ss(w/ce)] ' field and acoustic source density

We now consider the acoustic response of the infinite

In Eq. (129),‘I’§Z' is the complex vector of the nodal unexternal acoustic fluid submitted to a prescribed external
knowns corresponding to the finite element discretizati@goustic excitation, namely an acoustic soupge(X, w),
of ¢°'. The matrix[ E] is the non-diagonaln z x ng) and to a prescribed normal velocity field éh; which
E . . . . . . . H _ S i S i
real matrix corresponding to the discretization of identity Written asv = iwu(w) - n” in which n” is the unit

operatorl. The elimination of . in Eq. (129) yields ngrmal tol' g, e?<ternal to structur@ g, gnd wherey i's the
N displacement field of the external fluid-structure interface

. B ; I'g. This response is formulated using the results related
the symmetridnp x ng) complex matrix|Br, (w/ce)] to the exterior Neumann problem for the Helmholtz
which corresponds to the finite element discretization gfyation which have been presented in Sections 10.1 to
boundary integral operat@r, (w/ce). We thenhave 10,7 and using the linearity of the problem.

a linear equation betweeﬂlio' and V which defines

sol __
‘I'FE = [Brp(w/ce)] V. (131)  pressure iMz. At any pointx fixed in Qz, the resul-

) o i ) tant pressure g (X, w) is written as
The particular elimination procedure discussed in Sec-

tion 10.5, which avoids the spurious frequencies, is de-  Pe(X,w) = Prad(X, w) + Pgiven(X, w) , (134)

fined below. vectordr,, i eliminated using a Gaussm which prad(X, w) is the field radiated by the boundary

elimination with a partial row pivoting algorithm (GolubFE submitted to the prescribed velocity fialénd written
and Van Loan, 1989). It does not belong to the set of the(see Eq. (108)) as

spurious frequencies, théfit (w/cg)] is invertible and the
elimination in Eq. (129) is performed up to row number  prad(X, w) = iw Zrag(X, w){u(w) - n%} . (135)
ng. If w coincides with a spurious frequeney, that is to
sayw = wg, then[St(w, /ce)] is notinvertible and its null
space is a real subspace®@f” of dimensiom, < ng. Minc,0

In this case, the elimination in Eq. (129) is performed up”given(xaw) = Pinc,o(X, w) = Zrad(X, w){ onS }. (136)
to row numbermg — n,. In practice,n, is unknown.
During the Gauss elimination with a partial row pivot
ing algorithm, the elimination process is stopped when
“zero” pivot is encountered. It should be noted that when o o / /

the elimination is stopped, the equations corresponding tg'”C‘Q(X’w) W Ko Gx=X) QX w)dx’, (137)

The pressur@given(X, w) is such that

wherepinc,q(X, w) is the pressure in the free space induced
bg( the acoustic soura@ g and which is written as
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in which the Green functioid is defined by Eq. (121) Qg, we define the linear integral operat®g° (X, w/ce)
and wheredyinc.o/0n is deduced from Egs. (137)andRy’(x,w/ce) by

and (102). The second term in the right-hand side of

Eqg. (136) corresponds to the scattering of the incidengoo _ L —wR/ee [ N d 143
wave (induced by the external acoustic source) by the ° (wjee)v = ge s W) ely)dsy, (143)
boundar” i considered as rigid and fixed.

Pressure ol'z. The resultant pressure dhy is then Rp” (%, w/ce) Yr,
written as w1l R/
= Lot [ e Ny, () dsy.
pE|1~E(w) = prad|1~E(w) + pgiven|pE(w) ) (138) o
in which predl,._ (=) is written as in which Ne(y) is defined by
1 .
Pradly (W) = iw Zr, (W) {u(w) - ny, (139) Nely) = i exp(ieyw/ce). (144)

and the pressure fiejgjiven|,., (w) onI'g is such that Asymptotic formula for radiation impedance operator
9 Zag(X, w). We have the following asymptotic formulas
inc,Q

Pyivenlr ,(w) = Pinc@lr () = Zrp (W){ = 5~} - (140)

Rlim Rs(Re,w/ce) = RS (Rew/ce), (145)
Substituting Eqg. (139) in (138) yields e

lim Rp(Rew/ce) =Ry (Rew/ce). (146)

PE|r (@) =Dgiven|r., (W) +iw Zr, (w){u(w) -n°}. (141) R--+oo
For details, we refer the reader to Chapter 12 of Ohay6#°M Ed. (127), we deduce the asymptotic formula for the
and Soize (1998). radiation impedance operator
10.9. Asymptotic formula for the radiated pressure far ) , -
field lim Zid(Re w) = —iwpe{ RS’ (Re, w/ce)
R— 400
At point x in the external domaif) gz, the radiated —R3(Re,w/ce) Br (wee)} (147)

pressurep(x,w) is given (see Eq. (108)) by(x,w) =
Zrad(X,w) v. Let R ande be such that (see Fig. 6.)
x=Re with R=|x]. (142) 11. conclusion
. . o
Definition of integral operatorsRg®(x,w/ce) and We have presented an advanced computational for-
mulation for dissipative structural-acoustics systems and
fluid-structure interaction which is adapted for develop-
ing new generation of software. An efficient stochastic
reduced-order model in the frequency domain is proposed
to analyze low- and medium-frequency ranges. All the re-
quired modeling aspects for the analysis of the medium-
frequency domain have been introduced namely, a vis-
coelastic behavior for the structure, an appropriate dissi-
Figure 6: Geometrical configuration. pative model for the internal acoustic fluid including wall
acoustic impedance and a model of uncertainty in partic-
R’ (X,w/ce). Forallx = Refixed in external domain ular for modeling errors.
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