T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol.55, issue.5, pp.601-620, 1999.
DOI : 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-150, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

B. Karihaloo and Q. Xiao, Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review, Computers & Structures, vol.81, issue.3, pp.119-129, 2003.
DOI : 10.1016/S0045-7949(02)00431-5

Y. Abdelaziz and A. Hamouine, A survey of the extended finite element, Computers & Structures, vol.86, issue.11-12, pp.1141-1151, 2008.
DOI : 10.1016/j.compstruc.2007.11.001

T. Belytschko, G. R. Ventura, and G. , A review of extended/generalized finite element methods for material modelling, Modelling and Simulation in Materials Science and Engineering, vol.19, p.43001, 2009.

N. Moës and T. Belytschko, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics, vol.69, issue.7, pp.813-833, 2002.
DOI : 10.1016/S0013-7944(01)00128-X

T. Rabczuk, S. Bordas, and G. Zi, On three-dimensional modelling of crack growth using partition of unity methods, Computers & Structures, vol.88, issue.23-24, pp.1391-1411, 2010.
DOI : 10.1016/j.compstruc.2008.08.010

A. Simone, C. Duarte, and E. Van-der-giessen, A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries, International Journal for Numerical Methods in Engineering, vol.190, issue.8, pp.1112-1145, 2006.
DOI : 10.1002/nme.1658

A. Menk and S. Bordas, Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals, International Journal for Numerical Methods in Engineering, vol.76, issue.4, pp.805-828, 2010.
DOI : 10.1002/nme.2858

A. Menk and S. Bordas, Crack growth calculations in solder joints based on microstructural phenomena with X-FEM, Computational Materials Science, vol.50, issue.3, pp.1145-1156, 2011.
DOI : 10.1016/j.commatsci.2010.11.014

S. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Computational Mechanics, vol.20, issue.5, pp.535-554, 2011.
DOI : 10.1007/s00466-010-0562-5

J. Yvonnet, L. Quang, H. He, and Q. , An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Computational Mechanics, vol.71, issue.1, pp.119-131, 2008.
DOI : 10.1007/s00466-008-0241-y

URL : https://hal.archives-ouvertes.fr/hal-00692238

M. Farsad, F. Vernerey, and H. Park, An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials, International Journal for Numerical Methods in Engineering, vol.56, issue.4, pp.1466-1489, 2010.
DOI : 10.1002/nme.2946

Q. Zhu, S. Gu, J. Yvonnet, J. Shao, and Q. He, Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials, International Journal for Numerical Methods in Engineering, vol.31, issue.4, pp.307-328, 2011.
DOI : 10.1002/nme.3175

URL : https://hal.archives-ouvertes.fr/hal-00659383

N. Sukumar and J. Prévost, Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation, International Journal of Solids and Structures, vol.40, issue.26, pp.7513-7537, 2003.
DOI : 10.1016/j.ijsolstr.2003.08.002

S. Bordas, P. Nguyen, C. Dunant, H. Nguyen-dang, and A. Guidoun, An extended finite element library, International Journal for Numerical Methods in Engineering, vol.192, issue.6, pp.1-33, 2006.
DOI : 10.1002/nme.1966

T. Belytschko, N. Moës, and S. Usui, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering, vol.8, issue.4, pp.993-1013, 2001.
DOI : 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

URL : https://hal.archives-ouvertes.fr/hal-01005275

E. Iarve, Mesh independent modelling of cracks by using higher order shape functions, International Journal for Numerical Methods in Engineering, vol.50, issue.6, pp.869-882, 2003.
DOI : 10.1002/nme.596

T. Hettich and E. Ramm, Interface material failure modeled by the extended finite-element method and level sets, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.4753-4767, 2006.
DOI : 10.1016/j.cma.2005.09.022

T. Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering, vol.67, issue.3, pp.503-532, 2008.
DOI : 10.1002/nme.2258

S. Mohammadi, Extended finite element method for fracture analysis of structures, 2008.

N. Moës, N. Cloirec, P. Cartraud, and J. Remacle, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.28-30, pp.3163-3177, 2003.
DOI : 10.1016/S0045-7825(03)00346-3

A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.33-35, pp.3523-3540, 2004.
DOI : 10.1016/j.cma.2003.12.041

A. Pedro, M. Belytschko, and T. , A comment on the article " A finite element method for simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg. Computer Methods in Applied Mechanics and Engineering, vol.193, issue.195, pp.3523-35409, 2004.

S. Mousavi1, E. Grinspun, and N. Sukumar, Higher-order extended finite elements with harmonic enrichment functions for complex crack problems, International Journal for Numerical Methods in Engineering, vol.156, issue.6, pp.560-574, 2011.
DOI : 10.1002/nme.3098

J. Yvonnet, Q. He, Q. Zhu, and J. Shao, A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM, Computational Materials Science, vol.50, issue.4, pp.1220-1224, 2011.
DOI : 10.1016/j.commatsci.2010.02.040

URL : https://hal.archives-ouvertes.fr/hal-00559198

J. Song, P. Areias, and T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, International Journal for Numerical Methods in Engineering, vol.116, issue.6, pp.868-893, 2006.
DOI : 10.1002/nme.1652

T. Rabczuk, G. Zi, A. Gerstenberger, and G. Wall, A new crack tip element for the phantom???node method with arbitrary cohesive cracks, International Journal for Numerical Methods in Engineering, vol.69, issue.10, pp.577-599, 2008.
DOI : 10.1002/nme.2180

J. Olivier, MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS, International Journal for Numerical Methods in Engineering, vol.7, issue.21, pp.3575-3600, 19966.
DOI : 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E

R. Merle and J. Dolbow, Solving thermal and phase change problems with the eXtended finite element method, Computational Mechanics, vol.28, issue.5, pp.339-350, 2002.
DOI : 10.1007/s00466-002-0298-y

H. Ji and J. Dolbow, On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method, International Journal for Numerical Methods in Engineering, vol.190, issue.14, pp.2508-2535, 2004.
DOI : 10.1002/nme.1167

E. Béchet, N. Moës, and M. Tourbier, Imposing Dirichlet boundary conditions in the extended finite element method, International Journal for Numerical Methods in Engineering, vol.67, pp.1641-1669, 2006.

J. Chessa, H. Wang, and T. Belytschko, On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering, vol.60, issue.7, pp.1015-1038, 2003.
DOI : 10.1002/nme.777

J. Tarancón, A. Vercher, E. Giner, and F. Fuenmayor, Enhanced blending elements for XFEM applied to linear elastic fracture mechanics, International Journal for Numerical Methods in Engineering, vol.41, issue.6, pp.126-148, 2009.
DOI : 10.1002/nme.2259

G. Ventura, R. Gracie, and T. Belytschko, Fast integration and weight function blending in the extended finite element method, International Journal for Numerical Methods in Engineering, vol.56, issue.1, pp.1-29, 2009.
DOI : 10.1002/nme.2259

S. Bordas and A. Legay, Enriched finite element short course: class notes In: The Extended finite element method, a new approach to numerical analysis in mechanics: course note. Organized by S. Bordas and A. Legay through the EPFL school of continuing education, 2005.

P. Sharma, S. Ganti, and N. Bathe, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Applied Physics Letters, vol.82, issue.4
DOI : 10.1063/1.1539929

S. Gu and Q. He, Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, Journal of the Mechanics and Physics of Solids, vol.59, issue.7, pp.1413-1426, 2011.
DOI : 10.1016/j.jmps.2011.04.004

URL : https://hal.archives-ouvertes.fr/hal-00692839

S. Natarajan, S. Bordas, R. Mahapatra, and D. , Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, International Journal for Numerical Methods in Engineering, vol.2, issue.2, pp.103-134, 2009.
DOI : 10.1016/j.compstruc.2008.07.006

S. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Computational Mechanics, vol.20, issue.5, pp.535-554, 2011.
DOI : 10.1007/s00466-010-0562-5

Q. Zhu, D. Kondo, and J. Shao, Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks, International Journal for Numerical and Analytical Methods in Geomechanics, vol.331, issue.4, pp.749-772, 2009.
DOI : 10.1002/nag.741

URL : https://hal.archives-ouvertes.fr/hal-00381088

C. Richardson, J. Hegemann, E. Sifakis, J. Hellrung, and J. Teran, An XFEM method for modeling geometrically elaborate crack propagation in brittle materials, International Journal for Numerical Methods in Engineering, vol.78, issue.2, pp.1042-1065, 2011.
DOI : 10.1002/nme.3211