N
N

N

HAL

open science

Efficient vectorized finite-difference method to solve the
incompressible navier-stokes equations for 3-D

mixed-convection flows in high-aspect-ratio channels

Abderrahmane Benzaoui, Xavier Nicolas, Shihe Xin

» To cite this version:

Abderrahmane Benzaoui, Xavier Nicolas, Shihe Xin.
to solve the incompressible navier-stokes equations for 3-D mixed-convection flows in high-aspect-
ratio channels. Numerical Heat Transfer, Part B Fundamentals, 2005, 48 (3), pp.277-302.

10.1080/10407790590959825 . hal-00694583

HAL Id: hal-00694583
https://hal.science/hal-00694583

Submitted on 4 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Efficient vectorized finite-difference method


https://hal.science/hal-00694583
https://hal.archives-ouvertes.fr

Efficient vectorized finite difference method to solve the incompressible

Navier-Stokes equations for 3D mixed convection flows in high aspect ratio

channels

Abderrahmane BENZAOUT*, Xavier NICOLAS*, Shihe XIN°

* LETEM, Université de Marne-La-Vallée, 77454 Marne-La-Vallée Cedex 2, France.

° LIMSI-CNRS, UPR 3251, BP 133, 91403 Orsay Cedex, France.

Corresponding author :
Xavier NICOLAS
Mailing address for proof :

Université de Marne-La-Vallée, LETEM, Bat. Lavoisier, 77454 Marne-La-Vallée Cedex 2,
France.

Abbreviated title for running head :
Vectorized finite differences for incompressible flows

Abstract

A very efficient vectorized code is tailored to solve 3D incompressible Navier-Stokes
equations for mixed convection flows in high streamwise aspect ratio channels. It is based
on Goda’s algorithm, second order finite differences, incremental factorization method of
ADI type, spectral decomposition of the 1D Laplace operators and TDMA algorithm. It
is shown to be of second order both in space and time by a general method determining
code convergence orders and to have good performance on NEC-SX5 super computer. It
is validated through experiments of various Poiseuille-Rayleigh-Bénard flows with steady

longitudinal, unsteady transverse and convectively unstable wavy rolls.



Nomenclature

A A, axial aspect ratios of the channel and of the unheated entrance zone, L/H, L./H
ADI Alternating Direction Implicit

B transversal aspect ratio of the channel, [/H

c dimensionless phase velocity of the transversal or wavy rolls, Af/Upnean

f transversal or wavy roll frequency, s~

f variable replacing a set of variables verifying the same mathematical relation
fpert frequency of the agitator sinusoidal excitation, s~

g gravitational acceleration, m/s?

H channel height, m

i, k axial and upward vertical unit vectors

l channel width, m

L, L, lengths of the channel and of the unheated entrance of the channel, m

N total number of mesh cells, N, x N, x N,

Ny total number of time steps

Nzyy/z cell number in the x, y or z directions

P dimensionless deviation of pressure from hydrostatic pressure

Pr Prandtl number, v/«

PRB Poiseuille-Rayleigh-Bénard

Ra Rayleigh number, g3(T}, — T.)H?/(va)

Ra? / linear critical Rayleigh number of the PRB flow vis-a-vis the longitudinal rolls
Ra’, same as Raj / but for the transversal rolls

Re Reynolds number, UyeqnH /v

Sy source term of the conservation equation for variable f

t dimensionless time

topy—tot total CPU time for one simulation, s

topu—unit  CPU time per time step and per grid node, s

T température, K

T.,Th top cold wall and bottom hot wall temperatures of the channel, K
TDMA Tri-Diagonal Matrix Algorithm

U, V, W dimensionless streamwise, spanwise and vertical velocity components

UVv,w streamwise, spanwise and vertical velocity components, m/s



Unnean mean velocity of a flow in a rectangular channel, m/s
Upois Poiseuille velocity profile in a rectangular channel (function of x and y), m/s
7,V dimensionless and dimensional velocity vectors, (u,v,w), (U, V, W)

Unaz—pert ~ dimensionless velocity excitation amplitude of the inlet agitator

V. transversal roll phase velocity, A\f, m/s

W saturation amplitude of the vertical velocity, m/s

T,Y, 2 dimensionless axial, spanwise and vertical coordinates
XY Z dimensional axial, spanwise and vertical coordinates, m

Greek letters
« thermal diffusivity, m?/s

thermal expansion coefficient, K !
At dimensionless time step

Ax, Ay, Az dimensionless space step in x-, y- and z-directions

€f space or time relative error for variable f
o increment of pressure, p" ! — p”

Ypert agitator tilting angle, deg

A transversal or wavy roll wave length, m
v kinematic viscosity, m?/s

P mass per volume unit, kg/m?

0 reduced temperature, (T'—T. )Ty, —T.)
Subscripts

av average

en envelop or maximum amplitude

1,7,k space indices in Cartesian space

pert quantities relative to the inlet agitator

st,unst steady and unsteady field

tot total

0 analytical field

//, L, ~ relative to longitudinal, transversal or wavy rolls

Superscripts

n time step number

* relative to the non-divergence-free velocity field or to a critical value



1 Introduction

Poiseuille-Rayleigh-Bénard (PRB) flows are mixed convection flows in horizontal rectangular
channels heated from below. They have been studied since the twenties, in the context of
meteorology first and, since the sixties, to analyze theoretically [1-3] and experimentally [4—
7] the stability of the numerous thermoconvective flow patterns that are liable to appear in
these flows (see below). Since the eighties, PRB flows have enjoyed increasing attention of
the fluid and thermal science community because of industrial applications, mainly in the
processes of chemical vapor deposition (CVD) using cold wall rectangular thermal reactors
to make depositions of thin solid films on substrates [8] and also in the context of the cooling of
electronic equipments. A comprehensive and recent review on PRB flows can be found in [9].

In PRB flows, at relatively low Reynolds and Rayleigh numbers, the combination of Rayleigh-
Bénard cells with a Poiseuille flow gives rise to very complex flow structures ranging from
time-dependent transverse rolls to steady longitudinal rolls, time-dependent mixed rolls (super-
imposition of the two preceding ones) [6,10,11], time-dependent oscillating rolls (wavy, snaking
or varicose) [1,12-15], etc. Time-dependent transversal rolls, with axis perpendicular to the
Poiseuille flow direction, occur at very low Reynolds numbers. Since they are space and time
periodic and quasi two-dimensional (2D) in the streamwise vertical planes, transversal rolls
have been extensively studied by 2D numerical simulations ( [2,16,17] among others) and more
rarely by three-dimensional (3D) simulations [6, 11, 18-20]. Furthermore, as transversal roll
flows formulate an open boundary problem with the transport of thermoconvective vortices out
of the computational domain, they have been used as a test case to compare open boundary
conditions. A benchmark was proposed by Sani and Gresho in 1989 [21] and several contribu-
tions have followed [22-24]. They have shown that Orlanski type open boundary conditions [25]
are well suited to simulate the outlet conditions for 2D transversal roll flows.

3D numerical simulations of PRB flows are relatively recent and still not numerous because
computations of such flows necessitate high aspect ratio channels and therefore large meshes
and high computational costs. However the number of these simulations keeps growing be-
cause of the increasing capacities of the new generation computers. Before 1993, in the CVD
context, 3D computations were limited to stationary problems or to parabolic simulations (the
streamwise diffusions were neglected and solutions were computed by a marching technique in

the flow direction). Therefore, only the steady transversal rolls at the entrance of the channels



and the steady longitudinal rolls were able to be simulated [26-30]. Hosokawa et al. [31] and
Chen and Lavine [20] have proposed unsteady and elliptic 3D simulations of PRB flows, but
with periodic boundary conditions in the streamwise direction. The space development of the
thermoconvective patterns has not been able to be taken into account.

To our knowledge, only Schréoder and Biihler [19], Nobile and Onesti [12] and Lin et
al. ( [6,11,14,32] among others), with the Boussinesq model, and Evans and Greif [18, 33],
Spall [13,34] and Wang et al. [35], with non-Boussinesq models, have performed complete 3D
numerical investigations of PRB flows, by taking into account the streamwise thermal and
viscous diffusions and the space and time evolutions of the thermoconvective rolls. All these
authors have simulated flows at Pr ~ 0.7 (except [19] at Pr = 530), for moderate Reynolds
numbers Re <50 (except in [33] for Re =100 and 250) and for Rayleigh numbers Ra < 30000
with Boussinesq models and till Ra=130700 and a temperature ratio rp= (1}, — T¢.)/T. =2.33
with non-Boussinesq models [13,33-35]. The discretization method is a finite difference or a
finite volume method in all cases. The streamwise aspect ratio of the computational domain
A=L/H is smaller than 30 in all cases and the spanwise aspect ratio B =1/H is between 2
and 12, but generally less than 5. In all papers, the total number of computational nodes is
less than N =2 x 10°, except for a few computations, when the sensibility of the solution to the
mesh size is tested: then IV reaches 3 x 10° or even 5 x 10° recently [35]. Two main methods are
used to treat the velocity-pressure coupling: the iterative methods derived from the SIMPLE
algorithm proposed by Patankar [36] (SIMPLER in [18,33,35] and SIMPLEC in [13,34]) and
projection methods [6,11,12,14,32]. In some papers, the time integration is first or second order
explicit [6,11,14,19,32]. In the others, it is implicit or semi-implicit with, generally, a standard
iterative method to compute the solution: SOR, line by line or ADI methods.

In the present paper, we present a numerical procedure which computes the solutions of
the 3D unsteady Boussinesq equations, discretized by a finite difference method on uniform or
non-uniform structured grids, in high aspect ratio computational domains (say 100 < A < 250,
B =~ 10), with high spatial resolution (say 2 x 106 < N <4 x 10%, where N is the total number
of mesh cells), for reasonable time costs (less than 3 to 4 hours of CPU time on a vectorized
supercomputer) and with second order space and time accuracies.

The development of a such procedure has been motivated by the fact that understanding,

manipulating and controlling the thermoconvective patterns of PRB flows can become an im-



portant research subject. In CVD rectangular reactors, for instance, operating conditions can
result in steady longitudinal rolls which prevent from a uniform deposit [26-28|. To avoid the
appearance of longitudinal rolls or, besides, other thermoconvective flows in these reactors, one
solution is to strongly reduce the pressure below atmospheric pressure [8|, which is an expensive
operation. It has been shown that the transversal rolls, the longitudinal rolls and the wavy rolls
are or can be convective instabilities depending on the flow parameters [2,3,15], which means
that they are very sensitive to external perturbations. An other solution to get more uniform
depositions could be to control the steady longitudinal rolls and their secondary instabilities
(the time periodic wavy and varicose rolls for instance) by introducing adequate perturbations
(or excitations) in CVD reactors. However, the space growing rate of such thermoconvective
rolls being relatively small, long streamwise aspect ratio channels, on the order of one or two
hundred times the channel height, are necessary to get fully-developed patterns [15].

When we were seeking numerical methods able to solve the Boussinesq model on long
computational domains and large grids for reasonable computational time cost, two main ideas
oriented our choice. First, we have decided to only use direct algorithms, instead of iterative
algorithms, to treat the velocity-pressure coupling and the time integration on the one hand
and to compute the solutions of the different linear systems appearing in the procedure on
the other hand. Second, in order to get high performances on vectorial super computers,
we have decided to systematically use the highly vectorizable Thomas-Cholesky (or TDMA)
algorithm in the different solvers. The different methods used are relatively classic but they
are adapted and gathered here to provide an efficient code of second order space and time
accuracies. The velocity-pressure coupling is handled by a two step projection method: the
Goda’s algorithm [37]. In a first “predictive” step, a second order time approximation of the
velocity field is computed by solving a Helmholtz equation (the momentum equation) by an
incremental factorization method of ADI type adapted from Hirsch (1989) [38]. In a second
“projection” step, a Poisson equation is solved to get the increment of pressure by a direct
matrix decomposition of the mono-dimensional (1D) Laplace operators into their eigen spaces
(adapted from [39]). Then the approximate velocity field is explicitly corrected to ensure a
strict mass conservation.

In the following, we first give the mathematical formulation of the treated problem: the

Navier-Stokes equations under the Boussinesq approximation and the boundary conditions for



the tested PRB configurations. We then detail the different steps of the numerical procedure.
The validation of the numerical code is made in two steps. First, we verify that the space
and time convergence orders of the computed solutions are actually of second order. A general
method to determine the convergence orders of any Navier-Stokes solver is presented. We then
validate the code through comparisons with experimental measurements, since, there is not any
benchmark solution for 3D incompressible mixed convection flows in channels. The two first
experimental works, based on laser-Doppler anemometry measurements, are those of Chiu and
Rosenberger (1987) [4] and Ouazzani et al. (1990) [5] : the former concerns steady longitudinal
rolls in nitrogen (Pr = 0.7) and the latter both unsteady transverse and steady longitudinal rolls
in water (Pr = 6.4). The third experimental work is the very recent work of Pabiou and his co-
authors [7,15,40,41], on PRB air flows (Pr = 0.7), who, for the first time, have experimentally
observed and analyzed the convectively unstable wavy rolls brought out by Clever and Busse
(1991) [1] with a linear stability analysis. The aspect ratios of the experimental channel being
A =200 and B = 10.38, a large scale computation is necessary to reproduce this experiment.
The global performances of the code are analyzed in the last section and the code efficiency is

particularly enlightened through the last example.

2 Mathematical equations and boundary conditions

We are interested in computing PRB flows in horizontal channels of height H, width W and
length L, heated from below. As illustrated in Figure 1, the top horizontal wall is maintained
at a uniform cold temperature 7, and the bottom wall is heated at a higher temperature T}
(> T.) either totally or partially. In the latter case there is an entrance length L. over which
T, is imposed. The origin of the reference frame being placed at the beginning of the heated
plate, the computational domain is defined by (z,y,2) € [-Ae, A — A¢] x [0, B] x [0,1] in non-
dimensional Cartesian coordinates, where A, = L./H is the streamwise entrance aspect ratio.
The vertical lateral walls are adiabatic. A pressure-driven Poiseuille flow is imposed at the
channel entrance and the incoming fluid can be either cold (at T;) or hot (at 7},). Note that the

velocity profile Upy;s(y, z) for “3D” Poiseuille flow, i.e. in a 3D finite lateral extension channel,



has been solved analytically in [42]. The dimensional velocity profile Upy;s(y, ) is given by:

Upois(y, 2) 6201 z)+§ 2. (=1)"* cosh[(2n + 1)n(y — B/2)] cos[(2n + 1)m(z — 1/2)] 1)
ve 7T3n:0 (2n 4 1)3 cosh[(2n + 1)7B/2]
where U° = —%g—ﬁ? is the dimensional average velocity of the “2D” Poiseuille flow, i.e. in a

2D channel or between two infinite plates.

To simulate the PRB flows, we consider that the working fluid is Newtonian and incompress-
ible, and that flows are governed by the 3D unsteady Navier-Stokes equations under the Boussi-
nesq assumption. Giving the following reference quantities H, Umnean, pUZean a0d H/Upean

for lengths, velocities, pressure and time, respectively, and defining the reduced temperature

0 = (T —1T.)/(Th — T¢.), the non-dimensional governing equations are then:

Vo =0

ov SN 1 g Ra —
— .V = -V —V 0k 2
ot ;:9(2; ) 1p+Re v+P7"Re2 @

— +U.VO = %0

ot R PrReV

0? 0? 0?
where v = (u,v,w) is the velocity vector, V2 is the 3D Laplace operator (@ + a7 + @),

¥ is the upward unit vector, Pr is Prandtl number (= v/a), Re is Reynolds number (=
UmeanH/v), and Ra is Rayleigh number (= g3(T}, — T.)H?/(va)). The boundary conditions

for the dimensionless velocity and temperature fields are the following:

) atz:O,W:W;forxe[—Ae,O],G:OOrland,fora;E[O,A—Ae],Hzl;
. atzzl,?zﬁandé?:o;
. atyanndB,?z?and@H/@yzO;

e at x = —A., u=Upois(¥,2)/Unean, v =w=0and § =0 or 1;

o at t = A — A, an Orlanski type non-reflective boundary condition [22,25] is used for u,

v, w and 6. If f represents u, v, w and 6, this condition writes: df /0t + df/0x = 0.



3 Numerical methods

3.1 Time discretization

Egs. (2) are discretized in time by the second-order Adams-Bashforth scheme whose main

o n+1 3fntl_gfn n—1
characteristics are: a backward differencing for time derivatives ( (—f) = / 2Aft +f

ot
O(At?)), a fully implicit scheme for diffusion terms ((V2f)"*!) and an explicit treatment of

nonlinear terms ((v -V f)"™ =2(V - Vf)"— (0 -Vf)" L +O(At?)), where n is the time step

number and f represents u, v, w and 6. This time scheme yields:

3 1,
- 9n+1 n+1
<2At Pr Re > 5
3 1 2 ) —n+l on+l n+1 Ra n+177
(a3~ ™) 7 = W gl ®
V- ?nJrl 0

4 fn _ fn—l
2At
The boundary conditions do not require to be discretized in time, except the Orlanski con-

_
where S5 = (Sy, Sy, Sy) and S = 2V -V + (v -V

dition at the channel outlet. In this boundary condition, the transport term is treated explicitly
in time, in the same way as for the nonlinear convective terms because, an implicit treatment,
combined with a second-order scheme in space, would have resulted in non-tridiagonal linear

systems and would have not improved the stability of the time scheme.

3.2 Incremental factorization method for solving Helmholtz equations

Egs. (3) are discretized in space on staggered grids by a second-order central scheme, for
both the convective and diffusive terms. Uniform and non-uniform grids can be used but,
only uniform grids are used here. Note that there is no stability problems linked with the
use of this central scheme because, in the PRB flows considered here, the Reynolds or Péclet
numbers are always small. The four first scalar equations of system (3) can be written in the
form (I — kV?2)fntt = Sy, where I is the identity operator, k is a constant and S; stands
here for the whole source term. Therefore, they are 3D Helmholtz equations. As for a 1D
Helmholtz equation, central differencing results in a tridiagonal linear system, the numerical

method proposed here consists in factorizing the 3D Helmholtz operator into three 1D Helmholtz



operators, in order to take advantage of Thomas-Cholesky algorithm (or TDMA algorithm).

The first Helmholtz equation for temperature in (3) can be written:

2At 2At
T — 2 0n+1 — _Sn-i-l O At3 4
< 3Pr Rev ) 3 70 +O(ar) @
20t o)\ . . . .
where | I — V* | is the Helmholtz operator, which can be factorized into:
3Pr Re

20 o\ g1 2At 92 2At 2 20t 0%\ 1 5
(I_?)PrRev )9 _<I_3PT‘R6(9$2 I_3PrRe(9y2 I_3P7‘Reaz2 0+ O(Ar) (5)

This factorization introduces an error of O(At?) since the first neglected terms in Eq. (5)
I

9Pr2Re? 0x? 0y?

second-order scheme in time into a first-order scheme. In order to make use of Thomas-Cholesky

are of the form 1. When this factorization is used in (4), it reduces the
algorithm and to keep a second-order accuracy at the same time, the idea of the incremental
factorization method proposed here is to work with the increment of 8, 56 = 67+ — 4™, and to

factorize Helmholtz equation of 66 instead of 6. Indeed, 60 = 0"+ — 6™ is O(At) and the term
4A2 9% 02
9Pr2Re? 0x2 Oy?

<1 _ 24t v2> 60 = ( 288 _Ga [> 0" + %Atsg“ + O(AL?) (6)

560 is O(At3). The modified temperature equation reads then:

3Pr Re 3Pr Re
and can be put into the form:
2 2 2
o 28t 0T\ (o 28t 07N (0 24t 07N o
3Pr Re Ox? 3Pr Re 0y? 3Pr Re 022

2AL .20t
<3Pr ReV2 - [) 0" + T59“ +O(At?) (7)

without increasing the order of the time discretizing error. Equation (7) can be solved again
by applying three successive Thomas-Cholesky algorithms.
3.3 Goda’s algorithm for velocity-pressure coupling

In system (3), time integration and velocity and pressure coupling are computed by Goda’s
algorithm [37]. This algorithm is a projection method which consists in two main steps: predic-

tion and projection. In the prediction step, after having obtained the temperature field, 671,

10



an approximated non-divergence-free velocity field, ©'*, is computed by solving the following

momentum equation obtained by replacing p"*! by p” in second Eq. (3):

3 1 * _>n V3 Ra’ n -
(———v2>? = Suf—vp + 5 Rl g (8)

The boundary conditions for o'* are those of v o], = v ! ! 5 As the components
of Eq. (8) are Helmholtz equations, they are transformed into their incremental form and solved
by using the incremental factorization method described in section 3.2.

In the projection step, the non-divergence-free velocity field v'* is projected into a divergence-

free subspace to get v "*!. This projection is done by solving:
g

3 (T = )

AT 9)

7n+1 . W‘BQ —

AR

where ¢ = p"t! —p" is the increment of pressure, 70 is the unit vector normal to the boundaries
0 and the first equation is obtained by subtracting the Eq. (8) from the momentum equation
in (3), considering that V?v* ~ V27"l To get v"*! from ©'*, we first compute ¢ by
taking the divergence of the first equation of system (9) and homogeneous Neumann boundary

conditions for ¢, i.e. by solving:

(10)

— —
Once v* and ¢ are known, v "H!

2At
T = — TV(b. The pressure field is updated by p"t! = p" + ¢.

is explicitly computed from the first equation of (9) by:

3.4 Partial diagonalization of the Laplace operator for solving Poisson equation

After spatial discretization by finite differences, the Poisson Eq. (10), with homogeneous

Neumann boundary conditions, is solved by a direct method based on reducing the 3D Laplace
2 82

operator into 1D operators through the decomposition of discrete 902 and 9.2 into their
Y z

eigenspaces. Thanks to these changes of bases, the matrix associated with the discrete Poisson

equation becomes tridiagonal and can be inverted by Thomas-Cholesky’s algorithm.

11



Indeed, after having been discretized by a second order central difference scheme on a
Cartesian grid of size N, x N, x N, where N,, N, and N, are the total numbers of meshes in
the directions z, y and z respectively, the Poisson Eq. (10), discretized on the node (i, 7, k) of

coordinates (x;,y;,2), can be written:

i 1Pi-1jk + Qi i®ijk + Qiit1Pit15k +  bjj1@ij-1k + 0jiPijk +bjit10i 416 +

Chk—1Pi j k—1 + ChkPijk + Chkt1Pijk+1 = Sijik (11)

with

3

Sijk = m(v CU )ik (12)

where ¢; jx = (25, Yj, 2), Sijk = S(xi,yj, z1) and where the coefficients a, 4, b, 4 and ¢, 4 are
the components of the three discrete operators A, B and C of second derivatives in the z,y
and z directions respectively. A, B and C' are tridiagonal matrices of sizes N, x Ny, Ny x N,
and N, x N, respectively. Using a tensorial notation and the Einstein contracted notation, Eq.

(11) also writes:

i1 @15k + bjmPim e + ChnPijn = Sijk (13)

As the matrices B and C are diagonalizable, they can be written B = PBAP (PB )_1 and

_ pCAC (pCy~1 B _ (\B C _ (O :
C = P%A (P ) , where A” = ()‘P,q)lgp,quy and A~ = (Apvq)lgp,quz are the diagonal
matrices containing the eigenvalues of B and C and where PP = (pfq)l <pg<N. and P¢ =
k] SP,gsS Ny

(pg,q)1 <pg<n. AT€ the associated base change matrices. Therefore, Eq. (13) may be written:

-1 -1
ai bk + PEoAny ((pB) ) . Gim k +p?,qA§q <(pc) ) . Gijn = Sijk (14)

p, q

As, for instance, PP (PB)f1 = Idn,xnN,, which implies pfp ((pB) > =0, =1 (where

)

d;,; is the Kronecker symbol), by multiplying Eq. (14) by <(pB)_1> ‘ <(pc)_1> o e get:
pj q

)

(097) on + AL (0D7) (097
(697, iin = (6M7)

L
ok ¢z,m,k

(0697), , i (15)

,

12



which can also write:

aivl‘ghpvq + )‘ﬁpgi,p,q + qu@,p,q = (aivl + (Agp + )‘gq) 5i,l) ‘glvpvq = Sipa (16)

where &l,p,q = ((pB)A) ' ((pC)A)q’k ¢1.5.% and §Z~7p7q = ((pB)A)p’j ((pC)A)q’k Si j k- Since

p7]

the matrix A+ ()\ﬁp + )\gq) Idn,«N, = (au + ()\gp + )\gq) 51-71) is tridiagonal, the com-

1<i,I< N
putation of ggl,p,q knowing §i,p,q necessitates to solve N, x N, tridiagonal linear systems of size
N,.. The computation of the eigen values and eigen vectors of matrices A®, A®, PP and P¢ is
made once in the preprocessing by using the vectorized Blas and Lapack routines.

To sum up, at each time step, Egs. (3) are solved in three steps : in the first one, we calculate
S(?H and the right-hand-side of the factorized Helmholtz Eq. (7) for 6. This equation is solved
by the incremental factorization method and §"*! is recovered. In the second step, to get the
approximated non-divergence-free velocity field v*, we compute S?!, S+ Sn+l and solve
momentum Eq. (8), by using incremental factorization method once again. In the third and

final step, V-0 is calculated, the Poisson Eq. (10) for ¢ is solved by the just described method

and vt and p"*! are explicitely updated.

4 Validation of the numerical procedure

4.1 Determination of the space and time convergence orders

As mentioned before, second order finite difference schemes in space and in time are used in
the discretization of the model equations. The boundary conditions are also discretized using
second order schemes. This signifies that the consistency orders of the discretized equations
are of second order. Here, we are going to show that the convergence orders of the computed
solutions, at the end of the whole numerical procedure, are effectively of second order. Generally,
the numerical solution should be compared to an exact analytical solution of a simplified problem
in which some terms of the Navier-Stokes equations are dropped. Here, the method used to
determine the convergence orders is more general, in the sense that it can be easily adapted to
any type of partial differential equations. It consists in introducing an appropriate forcing term
in the equation whose convergence order has to be determined, so that the solution computed
with this forcing term converges to a given analytical field (vg,po,60). The convergence order

is obtained by comparing the computed solution and the analytical field.

13



More precisely, in the case of the equations of the present paper, we first construct an
analytical field (vg, po, 0o) satisfying the mass conservation equation and a set of given boundary
conditions in a given computational domain. Here, the convergence orders are calculated in a
differentially-heated cubic computational domain (A=B=1), with uniform meshes in all space

directions (Azxz = Ay = Az), with no-slip boundary conditions and conducting walls:

V(0,y,2)=7(1,y,2) =0 (2,0,2) =0 (x,1,2) =" (2,9,0) =0 (z, y, 1):6>
0(x,y,0)=1; 0(z,y,1)=0; 6(0,y,2)=0(1,y,2)=0(x,0,z)=60(x,1,2)=1 — z (17)

0 0 0 0 0 0
B(0,y,2)= 2 (Ly,2)= L(2,0,2)= L (e, 1,2)= L(2,y,0) = L(2,4,1)=0

Note that the boundary conditions for pressure have been chosen in accordance with the bound-
ary conditions of Poisson Eq. (10) in the velocity-pressure decoupling algorithm. Then, using
the same methods and algorithms as those of section 3, we compute the solution of Egs. (2) in

—
which appropriate forcing terms F,,, and Fy, are added , i.e. the following equations are solved:

V.o =0
ov SN 1 9 Ra — —
_ _ _ e, - F 18
5 + (v.V)w —i—VpaaReV v PrReQHk o (18)
- B 2 _
T + V.V PrRev 0 Fy,

The forcing terms are constructed such that the solution converges to the chosen analytical

fields, i.e. the forcing terms are equal to the left-hand-side of Eqs. (18) for (vg, po,fo):

Fyy = ﬂ—i—(v V)ug + Vp —LV% — Y 9ok

v (?975 0 0 1 07 Re 0" PrRe?”? (19)
F, — _60 MVl — — V2

o ot vo- Vo Pr Re bo

To determine the error only due to the space discretization, steady analytical fields (vo—st (2, v, 2),

po—st(,Y, 2), Bo—st(z,y, z)) are chosen so as to the time error is vanished. Here, the following
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steady fields, satisfying the boundary conditions (17) and the continuity equation, are used:

(
ug—st = 2(1 — cos(2mz))sin(27y) sin(272)

vo—st = sin(2mx)(cos(2my) — 1) sin(27z)
wo—st = sin(27x)sin(27y)(cos(2mz) — 1) (20)

Oo_st = 1—2z4+22(1—2)%y%(1 —y)%2(1 — 2)

Po—se = sin(ze + §)sin(ry + §)sin(rz + 3)

Then, we can define the relative space errors €7 between the computed fields f (where

f =u,v,w,0 or p) and the analytical fields fo:

Max; j.k)e[1;Nz]x [1;Ny] x [1;N] ’f(Zhj? k) - fO(Lj? k)|

— 21
MaX(; j k)e[1;No] x [N, ] x[1:N5] [ fo (4, 7, k)] (21)

Ef:

These errors are drawn on Figure 2(a) as function of the space step Az (the meshes correspond
to Ny X Ny x N, = 203,302,403, 60% and 80%), after a sufficiently long integration time to be
able to consider that the flow is steady. As a maximum discrepancy of only 1% exists between
the values of €,, €, and €,, an average value €, ,, is drawn on Figure 2(a). The slopes of the
curves log(ef) = f(log(Ax)) being equal to 2, the space convergence order of the computed
fields is then equal to the space consistency order of the discretized equations: €5 ~ O(Ax?).
To determine the time convergence order, the way of proceeding is the same as for the space
convergence order. The same computational domain is kept, but the boundary conditions and

the analytical fields become unsteady. They are defined by:

BCunst = BCy x h(t)

fOfunst = fOfst X h(t)

(22)

where BC,,s+ and BCy; means “unsteady” and “steady boundary conditions”, where BC; rep-
resents all the boundary conditions given by Egs. (17), where f stands for u, v, w, 6 and p and
the time function h(t) equals exp(%) or sin(Z).

Using a uniform mesh with N, x N, x N, = 303 and starting from the initial condition
given by Egs. (22) at time ¢ = 0, the errors €; computed at the fixed time ¢ = 4 are drawn as a

function of At, for the two functions h(t), on Figure 2(b). Note that, to only get the time error,

the space differential operators of the source terms (19) are computed using their finite difference
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discrete form (the same as the one used to discretize the left-hand-side of Eqs. (18)) instead
of their continuous form which is used for the determination of the space convergence order.
This permits to make the space error vanished so that only the time error is evaluated. The
computation of the errors €, €, and ¢, is of course made using the final velocity field, ot

and not the intermediate one, v'*. Figure 2(b) permits to conclude that the time convergence

order of the present code is of second order like the space convergence order: €5 ~ O(Axz?, At?).

4.2 Comparisons with experimental results

In order to validate our numerical code, in a first step, we have carried out quantitative
comparisons with the experiments of Chiu and Rosenberger (1987) [4] and Ouazzani et al.
(1990) [5]. The comparisons only concern the velocity components since these experiments are
only based on LDA measurements of velocity profiles and signals. In a second step, we have
performed a large scale computation to reproduce one of the experiments of Pabiou (2003) [7]
(see also [41]) about the measurement of the frequency, the wave length and the phase velocity
of the wavy rolls obtained by introducing a sinusoidal excitation, at the entrance of the channel,

in a longitudinal roll flow.

4.2.1 Test case 1: Chiu and Rosenberger’s experiments

The first test case, extracted from Chiu and Rosenberger’s experiments [4], concerns the
space development of steady longitudinal rolls from the beginning of the heated zone, in a
nitrogen PRB flow. The dimensions of the heated zone are (L — L.) x W x H = 87.5 cm X
15.24 ¢m x 1.58 em. This zone is preceded by an isothermal zone at T, of same section and of
length L. = 67.5 cm. For this test case, the flow enters the channel at 7.. Non-dimensional
flow parameters, calculated at the average temperature (Tj, + 1..)/2, are Re = 42, Ra = 4878
and Pr = 0.71. Spanwise profiles of the longitudinal velocity component U are measured by a
commercial LDA system at Z = 0.2H and Z = 0.5H, for several X positions. These profiles
are presented on Figures 3. They are compared with our numerical results and those of Nobile
and Onesti (1996) [12]. Nobile and Onesti (1996) [12] used a computational domain of size
A x B = 30 x 9.65 with a mesh of size N, x N, x N, = 126 x 62 x 30. Our results are
calculated in a computational domain whose dimensions are A = 40, A, = 10 and B = 9.65

with a uniform mesh of size N, x Ny x N, = 480 x 120 x 32. The time step is At = 0.005
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and the total integration time is 50. The boundary conditions are the same as those given in
section 2, with # =0 at x = —A..

Figure 3 shows that our results situate between the experimental profiles and the numer-
ical profiles of Nobile and Onesti (1996) [12]. Calculations agree well with the experiments,
particularly at Z = 0.5H (see the three graphs at the top of Figure 3). At Z = 0.2H (see
the three graphs at the bottom of Figure 3), a larger discrepancy between experiments and
calculations appears at X = 10 and 20 mm. This discrepancy might be attributed to conjugate
heat transfer effects not taken into account in the numerical studies, but it might also be due
to a slight uncertainty in the positioning of the laser in the experiments since, at Z = 0.2H,
the U-velocity vertical gradient is maximum. Indeed, we have verified that the experimental
profiles at X = 10 and 20 mm are numerically recovered by plotting U-velocity at Z = 0.22H,
instead of Z = 0.2H. The difference of 0.02H = 0.316 mm would represent a positioning error,

given the fact that the thickness of a laser sheet is approximately of 0.3 mm.

4.2.2 Test case 2: Quazzani et al.’s experiments

The second test case, extracted from Ouazzani et al.’s experiments [5], concerns fully-
established steady longitudinal rolls and fully-established unsteady periodic transversal rolls,
in water PRB flows (Pr = 6.4). The channel height H, width W and length L are respectively
equal to 4.15 £+ 0.05 mm, 15.05 4+ 0.05 mm and ~ 115 mm. The bottom wall is totally heated
at temperature 7} and the incoming water is also heated at T}. Space profiles and temporal
signals of vertical velocity are measured through a LDA system. The boundary conditions are
the same as those given in section 2, with A, = 0 and with § = 1 at ©+ = —A,.. Note that,
in spite of the likely existence of small conjugate heat transfers in the experiments due to the
use of glass walls and water flows, the vertical lateral walls are considered as adiabatic in the
numerical computations. Indeed, we have verified that adiabatic side walls are much more
appropriate to reproduce the results of Quazzani et al.’s experiments [5] than conductive side
walls (f =1 —z at y =0 and B).

On Figure 4, we compare the computed and experimentally measured spanwise profiles of
the vertical velocity component W, at x = 15.7 and z = 0.5, in a flow made of four longitudinal
rolls, at Re = 1.02, Pr = 6.4 and at different Rayleigh numbers. A computational domain
of size A x B = 40 x 3.63, with a mesh of size N, x Ny x N, = 480 x 90 x 32, and a
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time step At = 0.005 with a total integration time of 30 are used for these simulations. The
amplitude of the W profiles increases with Rayleigh number. The agreement between the
experimental and computed results is very good at the two higher Rayleigh numbers Ra = 3494
and 4724. It is slightly less good at Ra = 2429. This may be due to the uncertainty in the
experimental measurement of the Rayleigh number because it induces a non negligible error on
the experimental measurement of . Indeed, following the analysis of Dubois and Bergé (1978)
[43] on the vertical velocity amplitude in the case of Rayleigh-Bénard flows, the amplitude of W
in a longitudinal roll flow can be considered as being proportional to (M};T};j%)l/ 2 at moderate
Rayleigh and Reynolds numbers (where Raj / is the critical Rayleigh number for the appearance
of the longitudinal rolls determined by linear stability analysis). Therefore, only taking into
account the experimental uncertainties on H and AT and knowing that Raj, = 1849 [9], it
can be shown that the discrepancy between the experimental and theoretical values of W is
approximately 9% at Ra = 2429, 4% at Ra = 3494 and 3% at Ra = 4724.

The following comparisons concern transversal roll flows. The simulations are performed for
a computational domain of size Ax B =27x3.63 with a mesh of size N, x N, x N, =400x60x30.
The dimensionless time step is At = 2x 1072 and the total integration time is 40. Once a
fully-established transversal roll flow is obtained, the extrema W,,q,(X) and Wy, (X) of the

time signals W (X, t) are computed at each axial position X, at (Y,Z) = ({/2,H/2). The

amplitude (or envelop) of W, defined by We,(X) = Winas (X );W’”""(X), and its average value

Wa(X) = Winas (X );W"”'" (X) can then be calculated. On Figure 5, we present W (X) at a fixed

time, W, (X) and Wy, (X), at Ra=4700 and Re=0.21. Three zones appear in the channel: (1)
an inlet zone where the average vertical velocity Wy, is not equal to zero; (2) a central zone with
a fully-established space and time periodic transversal roll flow characterized by a zero average
vertical velocity W, and a constant value of the vertical velocity envelop We,; (3) an outlet
zone, with the envelop W, slightly perturbed by the Orlanski outlet boundary conditions. In
the following, the constant envelop W, in zone (2) is called the saturation vertical velocity
and is noted Ws. On Figure 6, we compare the experimentally measured and computed values
of W2 at Re=0.21, for different Ra. The experimental error bars on the determination of Ra
are also given by taking into account the uncertainties on the measure of H and AT. Once

again, a good agreement is observed between the experimental and numerical values of W. The
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numerical results of Figure 6 can be correlated with a precision of 3%, for 1800 < Ra <4700, by:

Ra — 1725\ %47
W, = 455.87 <GJ1T5) (um/s) (23)

Following the weakly non linear theory of Miiller et al. [2], the value 1725 in the above corre-
lation should correspond to the linear critical Rayleigh number Ra’ for the appearance of the
transversal rolls. At Re =0 and B = 3.63, the linear stability theory gives Ra’ = 1730 [42].
In zone (2) of Figure 5, the curve W = f(X) permits to determine the wave length A of
the transversal rolls, while a signal W = f(t) at point X =65 mm~L/2, (Y,Z) = (I/2,H/2)
permits to determine the frequency f of the transversal rolls. The phase velocity V. of the
transversal rolls is then equal to the product Af. It is well known that the dimensionless phase
velocity ¢; = V7 /Upean linearly decreases with Ra and is independent of Re (for a review on
this subject, see [9]). On Figure 7, we compare the experimental curve ¢; = f(Ra) obtained
by Ouazzani et al. (1990) [5] to those obtained by 2D numerical simulations by Nicolas et al.
(1997) [17] and by the present 3D numerical simulations. In the case of the 3D computations,
the error bars on ¢, , which are principally due to an uncertainty of 3% on the determination of
A in zone (2) (see Figure 5), are drawn on Figure 7. Only the 3D simulations recover the strong
decrease of ¢ | with respect to Ra observed in the experiments, proving that this behavior is due
to the lateral confinement. It can also be noted that the 2D and 3D numerical results perfectly
agree with the linear stability theory [9] since, at Pr=6.4, it gives a critical phase velocity ¢ *

equal to 1.28 when B — o0 and equal to 1.5 at B=3.6.

4.2.3 Test case 3: Pabiou et al.’s experiments

Using a temporal linear stability analysis, Clever and Busse (1991) [1] have theoretically
shown that the longitudinal rolls are unstable vis-a-vis oscillating or wavy rolls, in PRB flows
between two infinite plates. In the case of air flows (Pr = 0.7), for instance, they show that the
longitudinal rolls become linearly unstable vis-a-vis the wavy rolls, approximately for Re > 80
and for Ra > 2500. To observe these rolls, Pabiou et al. (2003) [7,15] set up a PRB experiment
in an air channel of size L x W x H = 2800 x 150 x 14.45 mm? for the following parameters:
Pr =0.7, Ra > 3000 and Re > 120. Unfortunately the wavy rolls were not observed: in fact, in

a rectangular channel of finite longitudinal and transversal extensions, Nicolas et al. (2003) [40]
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and Pabiou et al. (2003) [7,15] have numerically and experimentally shown that the wavy rolls
are a convective instability of the longitudinal rolls. This have permitted to explain why the
wavy rolls had never been experimentally and numerically observed before. Indeed, to make the
wavy rolls appear in a PRB flow, it is necessary to continuously excite the longitudinal rolls:
a white noise is added to the inlet Poiseuille profile in the numerical simulations of Nicolas et
al. (2003) [40] and Pabiou et al. (2003) [15], while an agitator oscillates in the channel core,
upstream the bottom heated plate, in the experiments of Pabiou et al. (2003) [7,15,41].

We propose here to numerically reproduce one of these experiments for Ra = 6300, Re =
162, A =250, A, = 2, B = 10.38 and adiabatic vertical lateral walls. The mesh size used
is Ny x Nyx N, =1250x 120 x 30 and the time step is At = 0.02. We performed numerical
simulations of the space and time development of wavy roll flows by introducing, at the channel
inlet, excitations describing the agitator action. As the mathematical translating of this action
is hard to precisely write, a rough approximation permits to consider that the agitator creates a

sinusoidal perturbation of the vertical and streamwise velocity components of the form [7,15,41]:

. . H . - —
Upert (xperta Y, Zperh t) = Umaa:—pert s <2ﬂ—fpertt> (Sln 'Ypert t +cos PYpert k ) (24-)

mean

where Zpert and zpere correspond to the agitator dimensionless location, vpqz—pert is the di-
mensionless amplitude of the velocity excitation, fyer¢ is the forcing frequency in Hertz and
Ypert is the tilting angle of the arms that support the stirring rod and that are connected to a
driving motor. Note that Eq. (24) does not take into account the influence of the movement
of these arms that are placed in the boundary layer of the vertical wall. For the above flow
parameters, Pabiou and Mergui [7,41] find that the inlet excitation frequency for which the
space growth rate of the wavy instabilities is maximum is fpe,e = 3 Hz. More precisely, the
agitator characteristics corresponding to this excitation are [7,44]|: Zpert = —2, zpert = 0.286,
Umaz—pert = 0.37, fpert = 3H 2z and ypery = 46deg. To try to reproduce this agitator numerically,
the time dependent velocity vector given by Eq. (24) is introduced in the Poiseuille profile of
the inlet boundary condition placed at © = —A. = —2 (see section 2): this Poiseuille profile
is kept, except along the two horizontal mesh lines in the neighborhood of z = zp.,s where the
velocity vectors are given by Eq. (24). Furthermore, a flow rate correction is ensured at each

time step, in order to keep the average velocity wmeqn at inlet.
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In Figure 8, we present two numerical results obtained with two different amplitudes of
excitations at the channel inlet. The excitation of Figure 8(a) corresponds (in theory) to the
experimental one (Unqz—pert = 0.37) and the excitation of Figure 8(b) is for a ten times higher
dimensionless amplitude: Vpaz—pert = 3.7. In both simulations, at time ¢ = 0 (not shown in
Figure 8(b)), the initial condition is the same fully established ten longitudinal roll flow. This
steady longitudinal roll flow has been obtained for the flow parameters given above, without
introducing any excitation in the channel, starting from a Poiseuille flow at the cold temperature
0 = 0 and by integrating during 350 dimensionless time units, with the bottom plate uniformly
heated at temperature § = 1 (refer to [15] to see the space and time development of these
steady longitudinal rolls). In Figure 8, for ¢ > 0 and during all the simulation, the excitation
described above is imposed at channel inlet. The resulting disturbances propagate downstream
in growing. Wavy rolls can be observed from time ¢ = 160 in Figure 8(a) for the excitation
of smallest amplitude and, as soon as time ¢ = 80, in Figure 8(b), for the excitation of higher
amplitude. In both cases, the wavy roll flows can be considered as fully-developed for ¢ > 250.
These fully-developed wavy roll flows are shown at time ¢ = 400 in Figures 8(a) and 8(b).

Two main differences appear between these two cases. The first one concerns the wavy
roll growth length: as it could have been expected because of the factor ten between the two
excitation amplitudes, this growth length is much longer in the first case (around 200H) than
in the second one (around 50H). Note that, like in the simulation of Figure 8(a), in the
corresponding experiment of Pabiou and Mergui [7,44], the wavy rolls also appear close to the
channel end and are not completely fully-developed. The second difference between the two
simulations of Figure 8 concerns the number of wavy rolls. In the first case, as expected, ten
wavy rolls develop, while, in the second case, the amplitude of the velocity excitation at inlet
(equal to 3.7 times the average flow velocity) breaks the ten longitudinal rolls of the basic flow
and, in an unexpected way, twelve wavy rolls develop. Finally, one can also note that there is
no roll oscillation on the channel axes of Figures 8(a) and 8(b). This behavior is due to the
axial symmetry of all the boundary conditions (even the inlet excitation) in these simulations.
Indeed, we have verified that, as soon as this symmetry is broken, wavy rolls develop on the
channel axis, as it is observed in the experiments [7].

Despite the just described differences, the frequency fx, the axial wave length Ar and the

dimensionless phase velocity cx, = Ax fa/Umean Of the fully-established wavy rolls of Figures 8(a)
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and 8(b) (see time ¢ = 400) are nearly equal. Indeed, whatever the inlet excitation amplitude
is, the Fourier spectra of time signal (T'(¢),U(t),V(¢) or W(t)), at any point in the channel
downstream, have a fundamental frequency at 3 Hz and harmonics of very small amplitude
at 6 Hz and sometimes at 9 Hz. Therefore, as expected (since the convectively unstable
instabilities behave like noise amplifier [45]), the fundamental frequency fx~ of the wavy rolls
is equal to the forcing frequency fper+ = 3 Hz. Experimentally, Pabiou and Mergui [7,41]
obtain the same behavior: fx = fpert = 3 Hz. The average axial wave length Ay is numerically
measured from the space profiles T'(x), U(z), V(x) or W(x), at (Y, Z) = (I/2, H/2), for 200H <
X < 250H, when the inlet excitation amplitude is vp,qz—pert = 0.37, and for 100H < X < 250H,
when vUyaz—pert = 3.7 (see the space profiles of W (x) shown on Figure 9). In the first case (for
Umaz—pert = 0.37), we measure Ax = 4.60H + 0.04H and thus cx = 1.13 +0.01. In the second
case (for Umaz—pert = 3.7), we measure A\x = 4.68H +0.02H and thus cx = 1.15+0.005. These
values agree with the experiments since Pabiou and Mergui (2003) [7,44] have measured a phase

velocity ¢ = 1.1 £0.08 and A\, = 4.5H + 0.3H.

5 Code performance analysis

Our code has been developed and optimized on vectorial computers. All the computations
of the present paper were carried out on the NEC-SX5 vectorial super computer of CNRS (the
French Scientific Research National Center): IDRIS, Orsay, France. This computer has got 8
vectorial registers of 256 words, that is to say that the maximum vectorization length is of 256
words of 64 bits, and its crest power (its maximum power when an addition and a multiplication
are simultaneously done) is 8 G flops (8 x 10° floating point operations per second). In this
section, we analyze the global performance of this code, taking into account all the steps of the
computation (initialization, preprocessing phase, solversolvinging and computing and writing
of the output data) in order to show its efficiency.

For all the grids used and all the computations performed, the G flops number varies between
5.4 and 6.2, when the average vectorization length varies between 233 and 254 words, and
the unit CPU time per time step and per node, tcpy—unit, varies between 1.45 x 10~7s and
1.85 x 10~ 7s. Note that this time is almost independent of the time step and grid size since
all the solving methods are direct methods. Thus, the total CPU time, tcpy—_iot, to integrate

the discretized equations on a N node grid, during N; time steps, is equal to: topy_tor =
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N Nitopy—unit- This time is given in Table 1 for the different test cases presented in subsection
4.2. To be more precise, for the simulations presented on Figure 8, carried out with a grid of 4.5
million nodes and with a dimensionless total integration time ¢t = 400, the code performances
are: 6 Gflops, a vectorization length of 244 words, tcpy—_unit = 1.67 x 10™7s and topy—tor =
4 h 10. Therefore, the results in Table 1 clearly show that the present code permits to solve
unsteady 3D incompressible mixed convection flows, in high aspect ratio channels, for very

reasonable time costs.

6 Summary and conclusion

In the present work, we have presented and validated an efficient vectorized finite difference
code to solve the 3D incompressible Navier-Stokes equations, under the Boussinesq approxima-
tion, for mixed convection flows in high aspect ratio channels. Even though the methods used to
solve these equations are relatively classic (Goda’s algorithm, incremental factorization method
of ADI type to solve the Helmholtz equations and diagonalization of the 1D Laplace operators
to solve the Poisson equation), they are rarely used to compute incompressible mixed convec-
tion flows, as it is attested by literature on the subject. We have chosen such methods because
they are all direct methods and because the resulting linear systems decompose into tridiagonal
linear systems and can therefore be solved by the highly vectorizable TDMA algorithm.

The space and time convergence orders of the present code have been shown to be both of
second order. A method consisting in imposing any analytical solution to the model-equations,
by means of the source terms, and in comparing this analytical solution to the computed one
has been developed to determine the space and time convergence orders.

The code is validated through comparisons with experiments on PRB flows. They concern
steady longitudinal rolls, unsteady transverse rolls and, for the first time, wavy rolls. It is
indeed the first time that wavy rolls, controlled by introducing sinusoidal excitations at channel
inlet, are numerically obtained. All the experimental results are quantitatively reproduced by
the numerical simulations when the experimental and numerical uncertainties are taken into
account. It is particularly proved that the “strong” decrease, with the Rayleigh number, of the
dimensionless phase velocity of the transversal rolls, observed in the experiments of Ouazzani
et al. (1990) [5], is due to the lateral confinement (B = 3.63 in these experiments). However,

it has been sometimes very difficult to finely reproduce the experimental results because the
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experimental operating conditions, particularly the thermal boundary conditions, are not well
known. It is also difficult to well evaluate the experimental and numerical uncertainties on
the measured quantities. This highlights the difficulties encountered when validating numerical
codes with experimental results and the real lack of benchmark solutions for 3D incompressible
mixed convection flows in channel. It is therefore useful and necessary that the community
involved in numerical simulations of mixed convection flows fills this gap.

The whole code has been shown to be highly vectorizable and small time consuming since
it is able to operate 6 G flops on average (for a possible maximum of 8 G flops), at a CPU time
per node and per time step topy—unit = 1.6 x 10~7s, on a NEC-SX5 vectorial super-computer.
More precisely, the proposed code is able to compute unsteady mixed convection flows in very
long channels, say with 200 or 300 streamwise aspect ratios, for about 4 hours total CPU
time on grids of 4 million computational nodes. Thus, the numerical simulation of the space
development of convectively unstable thermoconvective patterns, under the action of external
excitations, will be able to be considered now. Note finally that, if the code presented in this
paper has been specially tailored to study 3D PRB flows in long channels, it could easily be

extended to other types of incompressible flows in channels or ducts too.
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test case | rolls | A B Ny, | Ny | N, N At Ny tePU—tot
1(§42.1) | // | 40 | 9.65 | 480 | 120 | 32 | 1.85 x 10° | 5 x 103 | 10000 | 45 min
2(84.2.2) | // | 40 | 3.63 | 480 | 90 | 32 | 1.38 x 10% | 5x 1073 | 6000 | 20 min
2(§84.22) | L | 27 | 3.63 | 400 | 60 | 30 | 0.72 x 105 | 2 x 1073 | 20000 | 40 min
3(84.2.3) | ~ |250|10.38 | 1250 | 120 | 30 | 4.5 x 10 | 2x 1072 | 20000 | 4 h 10

Table 1: Parameters of the space and time discretizations for the simulations of the different test
cases presented in subsection 4.2 and total CPU time tcpy_sor necessary for their computing.
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Figure captions

Figure 1: Geometry and top and bottom thermal boundary conditions (the vertical lateral
walls at Y = 0 and W are adiabatic).

Figure 2: Relative errors €7 between the analytical and computed fields (a) as a function
of Az for a steady flow and (b) as a function of At for an unsteady flow. The space and time
convergence orders are respectively given by the slopes of the curves log(es) = f(log(Az)) and
log(ef) = f(log(At)). Two lines whose slope is equal to 2 are drawn for comparison.

Figure 3: Spanwise profiles of the axial velocity component U, at 3 different axial coordi-
nates, at Z = 0.5H (top) and at Z = 0.2H (bottom), numerically computed by the present
code (lines) and compared with the experimental results [4] (crosses) and with the numerical
results [12] (dashed lines), in a longitudinal roll flow (Re=42, Ra=4878, Pr=0.71).

Figure 4: Comparison of spanwise profiles of the vertical velocity component W, at (z,2)=
(15.7,0.5), in a longitudinal roll flow at different Rayleigh numbers (Re = 1.02, Pr = 6.4).
Numerical results are in lines and the experimental results [5] are in symbols.

Figure 5: Instantaneous vertical velocity, W, vertical velocity envelop, W,,, and average
vertical velocity, Wy, at (Y, Z)=(1/2, H/2), as a function of X (Ra=4700, Re=0.21, Pr=6.4).

Figure 6: Square of the saturation vertical velocity, W2, as a function of Ra, measured at

)
Y =1/2 and Z = H/2 in a transversal roll flow, at Re = 0.21 and Pr = 6.4. Comparison of
the present numerical results with the experimental results of Ouazzani et al. (1990) [5].

Figure 7: Transversal roll phase velocity, ¢, , as a function of the Rayleigh number (Pr=6.4,
B =3.63). Comparison of the experimental results of Ouazzani et al. (1990) [5], with the 2D
numerical results of Nicolas et al. (1997) [17] and the present 3D numerical results.

Figure 8: Top view of computed temperature fields, 6, in the plane z = 0.5, at different
times, during the development of wavy rolls, obtained by introducing a 3 Hz inlet sinusoidal
excitation on the velocity profile for ¢ > 0 in a steady longitudinal roll flow (Pr=0.7, Ra=6300,
Re=162, A=250, A,=2, B=10.38). The darker lines correspond to both the hotter and colder
temperatures and therefore to upward and downward flows: there is thus one roll between two
dark lines. (a) Development of 10 wavy rolls for an excitation of amplitude vy,qz—pert = 0.37.
(b) Development of 12 wavy rolls for an excitation of amplitude vVpaz—pert =3.7.

Figure 9: Axial profiles of the vertical velocity W (x), along the line (Y, Z) = (I/2, H/2),

for the two fully-established wavy roll flows presented on Figure 8 at time ¢ = 400.
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Figure 1: Geometry and top and bottom thermal boundary conditions (the vertical lateral walls

at Y =0 and W are adiabatic).
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Figure 2: Relative errors e; between the analytical and computed fields (a) as a function of
Az for a steady flow and (b) as a function of At for an unsteady flow. The space and time
convergence orders are respectively given by the slopes of the curves log(es) = f(log(Az)) and

log(er) = f(log(At)). Two lines whose slope is equal to 2 are drawn for comparison.
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Figure 3: Spanwise profiles of the axial velocity component U, at 3 different axial coordinates, at
Z =0.5H (top) and at Z = 0.2H (bottom), numerically computed by the present code (lines)
and compared with the experimental results [4] (crosses) and with the numerical results [12]

(dashed lines), in a longitudinal roll flow (Re=42, Ra=4878, Pr=0.71).
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Figure 4: Comparison of spanwise profiles of the vertical velocity component W, at (z,z) =

(15.7,0.5), in a longitudinal roll flow at different Rayleigh numbers (Re = 1.02, Pr = 6.4).

Numerical results are in lines and the experimental results [5] are in symbols.
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Figure 5: Instantaneous vertical velocity, W, vertical velocity envelop, We,,, and average vertical

velocity, We,, at (Y, Z)=(1/2, H/2), as a function of X (Ra=4700, Re=0.21, Pr=6.4).
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Figure 6: Square of the saturation vertical velocity, W2,

Y =1/2 and Z = H/2 in a transversal roll flow, at Re = 0.21 and Pr = 6.4. Comparison of

as a function of Ra, measured at

the present numerical results with the experimental results of Ouazzani et al. (1990) [5].
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Figure 7: Transversal roll phase velocity, ¢, as a function of the Rayleigh number (Pr=6.4,
B =3.63). Comparison of the experimental results of Ouazzani et al. (1990) [5], with the 2D

numerical results of Nicolas et al. (1997) [17] and the present 3D numerical results.
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Figure 8: Top view of computed temperature fields, 0, in the plane z = 0.5, at different times,
during the development of wavy rolls, obtained by introducing a 3 H z inlet sinusoidal excitation
on the velocity profile for ¢ > 0 in a steady longitudinal roll flow (Pr=0.7, Ra=6300, Re=162,
A =250, Ac =2, B =10.38). The darker lines correspond to both the hotter and colder
temperatures and therefore to upward and downward flows: there is thus one roll between two
dark lines. (a) Development of 10 wavy rolls for an excitation of amplitude vpqz—pert = 0.37.

(b) Development of 12 wavy rolls for an excitation of amplitude vimaz—pert =3.7.
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Figure 9: Axial profiles of the vertical velocity W (z), along the line (Y, Z) = (I/2, H/2), for

the two fully-established wavy roll flows presented on Figure 8 at time ¢ = 400.
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