Existence of a solution for two phase flow in porous media: The case that the porosity depends on the pressure

Abstract : In this paper we prove the existence of a solution of a coupled system involving a two phase incompressible flow in the ground and the mechanical deformation of the porous medium where the porosity is a function of the global pressure. The model is strongly coupled and involves a nonlinear degenerate parabolic equation. In order to show the existence of a weak solution, we consider a sequence of related uniformly parabolic problems and apply the Schauder fixed point theorem to show that they possess a classical solution. We then prove the relative compactness of sequences of solutions by means of the Frechet-Kolmogorov theorem; this yields the convergence of a subsequence to a weak solution of the parabolic system.
Type de document :
Article dans une revue
Journal of Mathematical Analysis and Applications, Elsevier, 2007, 326 (1), pp.332-351. 〈10.1016/j.jmaa.2006.02.082〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-00693093
Contributeur : Admin Lama <>
Soumis le : lundi 31 juillet 2017 - 14:48:17
Dernière modification le : jeudi 11 janvier 2018 - 06:12:19

Fichier

DEH.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Fatima-Zahra Daim, Robert Eymard, Danielle Hilhorst. Existence of a solution for two phase flow in porous media: The case that the porosity depends on the pressure. Journal of Mathematical Analysis and Applications, Elsevier, 2007, 326 (1), pp.332-351. 〈10.1016/j.jmaa.2006.02.082〉. 〈hal-00693093〉

Partager

Métriques

Consultations de la notice

205

Téléchargements de fichiers

30