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THE PERIODIC UNFOLDING METHOD IN HOMOGENIZATION
D. CIORANESCU *, A. DAMLAMIAN -, AND G. GRISOS

Abstract.  The periodic unfolding method was introduced in 2002 in [Cioranescu, Damlamian,
and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99...104] (with the basic proofs in [Pro-
ceedings of the Narvik Conference 2004, GAKUTO In ternat. Ser. Math. Sci. Appl. 24, Gakk otosho,
Tokyo, 2006, pp. 119...136]). In the present paper we go into all the details of the method and include
complete proofs, as well as several new extensions and developments. This approach is based on
two distinct ideas, each leading to a new ingredient. The “rst idea is the change of scale, which is
embodied in the unfolding operator. At the expense of doubling the dimension, this allows one to
use standard weak or strong convergence theorems in LP spaces instead of more complicated tools
(such as two-scale convergence, which is shown to be merely the weak convergence of the unfolding;
cf. Remark 2.15). The second idea is the separation of scales, which is implemented as a macro-micro
decomposition of functions and is especially suited for the weakly convergent sequences of Sobolev
spaces. In the framework of this method, the proofs of most periodic homogenization results are
elementary. The unfolding is particularly well-suited for multiscale problems (a simple backward
iteration argument su ces) and for precise corrector results without extra regularity on the data.

A list of the papers where these ideas appeared, at least in some preliminary form, is given with

a discussion of their content. We also give a list of papers published since the publication [Cio-
ranescu, Damlamian, and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99...104], and where
the unfolding method has been successfully applied.

Key words.  homogenization, periodic unfolding, multiscale problems

1. Introduction.  The notion of two-scale convergence was introduced in 1989
by Nguetseng in [58], further developed by Allaire in [1] and by Lukkassen, Nguetseng,
and Wall in [55] with applications to periodic homogenization. It was generalized to
some multiscale problems by Ene and Saint Jean Paulin in [38], Allaire and Briane in
[2], Lions et al. in [52] and Lukkassen, Nguetseng, and Wall in [55].

In 1990, Arbogast, Douglas, and Hornung de“ned a edilationZ operator in [5] to
study homogenization for a periodic medium with double porosity. This technique
was used again in [16], [3], [4], [48], [49], [50], [51], [54], [20], [21], [22], and [23].

In [24], we expanded on this idea and presented a general and quite simple ap-
proach for classical or multiscale periodic homogenization, under the name of eun-
folding method.Z Originally restricted to the case of domains consisting of a union
of -cells, it was extended to general domains (see the survey of Damlamian [34]). In
the present work, we give a complete presentation of this method, including all of the
proofs, as well as several new extensions and developments. The relationship of the
papers listed above with our work is discussed at the end of this introduction.

The periodic unfolding method is essentially based on two ingredients. The “rst
one is the unfolding operatorT (similar to the dilation operator), de“ned in section 2,

* Corresponding author. Laboratoire Jacques-Louis Lions, Universit” e Pierre et Marie Curie, Bo Ste
courrier 187, 4 Place Jussieu, 75252 Paris Cedex 05, France (cioran@ann.jussieu.fr).
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8Corresponding author. Laboratoire Jacques-Louis Lions, Universit e Pierre et Marie Curie, Bo $te
courrier 187, 4 Place Jussieu, 75252 Paris Cedex 05, France (griso@ann.jussieu.fr).



where its properties are investigated. Let be a bounded open set, andy a reference
cell in R". By de*“nition, the operator T associates to any functionv in LP(), a
function T (v) in LP( x Y). An immediate (and interesting) property of T is that
it enables one to transform any integral over in an integral over x Y. Indeed, by
Proposition 2.6 below

(1.1) w(Xx) dx T (W)(x,y)dxdy w L) .

1
|Y| xY

Proposition 2.14 shows that the two-scale convergence in th&P()-sense of a
sequence of functiongv } is equivalent to the weak convergence of the sequence of
unfolded functions {T (v )} in LP( x Y). Thus, the two-scale convergence in
is reduced to a mere weak convergence ibP(  x Y), which conceptually simpli“es
proofs.

In section 2 are also introduced a local average operatdvl and an averaging
operator U , the latter being, in some sense, the inverse of the unfolding operator .

The second ingredient of the periodic unfolding method consists of separating
the characteristic scales by decomposing every function belonging to WP () in
two parts. In section 3 it is achieved by using the local average. In section 4, the
original proof of this scale-splitting, inspired by the “nite element method (FEM), is
given. The confrontation of the two methods of sections 3 and 4 is interesting in itself
(Theorem 3.5 and Proposition 4.8). In both approaches, is writenas = ;+ ,
where ; is a macroscopic part designed not to capture the oscillations of order (if
there are any), while the microscopic part , is designed to do so. The main result
states that, from any bounded sequencéw } in WP (), weakly convergent to some
w, one can always extract a subsequence (still denotedv }) such thatw = w;+ w,,
with

i w, w weakly inWP() ,

i) Tw) w weakly in LP(; WLP(Y)),
(1.2)
(i) T (wy) w weakly inLP(; WLP(Y)),

(iv) T( w) w+ yw weakly inLP( xY),

wherew belongs toLP(; Wy (Y)).

In section 5 we apply the periodic unfolding method to a classical periodic homog-
enization problem. We point out that, in the framework of this method, the proof of
the homogenization result is elementary. It relies essentially on formula (1.1), on the
properties of T , and on convergences (1.2). It applies directly for both homogeneous
Dirichlet or Neumann boundary conditions without hypothesis on the regularity of

For nonhomogenous boundary conditions (or for Robin-type condition), some
regularity of  is required for the problem to make sense, in which case the method
applies also directly (see Remark 5.12).

Section 6 is devoted to a corrector result, which holds without any additional
regularity on the data (contrary to all previous proofs; see [11], [30], and [59]). This
result follows from the use of the averaging operatolJ . The idea of using averages
to improve corrector results “rst appeared in Dal Maso and Defranceschi [33]. We
also give some error estimates and a new corrector result for the case of domains with



a smooth boundary (obtained by Griso in [42], [43], [44], and [45]). These results are
explicitely connected to the unfolding method and improve on known classical ones
(see [11] and [59)).

The periodic unfolding method is particularly well-suited for the case of multiscale
problems. This is shown in section 7 by a simple backward iteration argument. This
problem has a long history; one of the “rst papers on the subject is due to Bruggeman
[19]. Its mathematical treatment by homogenization goes back to the book of Bensous-
san, Lions, and Papanicolaou [11], where for this problem, the method of asymptotic
expansions is used. For more recent references of multiscale homogenization and its
applications, we refer to the books of Braides and Defranceschi [17], Milton [57], and
the articles by Damlamian and Donato [35], Lukkassen and Milton [54], Lukkassen
[53], Braides and Lukkassen [18], Babadjian and B%a [6], and Barchiesi [8].

The “nal section gives a list of papers where the method has been successfully
applied since the publication of [24].

To conclude, let us turn back to the papers quoted at the beginning of this
introduction and point out their relationships with our results. The dilation operation
from Arbogast, Douglas, and Hornung [5] was de“ned in a domain which is an exact
union of Y -cells. It consists in a change of vaables, similar to that used in De“nition
2.1 below. By this operation, any integral on can be written as an integral over

x Y. Some elementary properties of the dilation operator in the spacé.? were also
contained in Lemma 2 of [5].

The same dilation operator was used by Bourgeat, Luckhaus, and Mikelic in [16]
under the name of eperiodic modulation.Z Proposition 4.6 of [16] showed that if a
sequence two-scale converges and its periodic modulation converges weakly, they have
the same limit.

In the context of two-scale convergence, Allaire and Conca [3] de“ned a pair
of extension and projection operators (suited to Bloch decompositions) which are
adjoint of each other. They are similar to our operatorsT and U and the equiv-
alent of property (2.12) and Proposition 2.18(ii) below, are proved in Lemma 4.2
of [3]. These properties were exploited by Allaire, Conca, and Vanninathan in [4]
for a general bounded domain by extending all functions by zero on its comple-
ment.

In [48], Lenczner used the dilation operator (here called stwo-scale transforma-
tionZ) in order to treat the homogenization of discrete electrical networks (by nature,
the domain is a union of -cells). The convergence of the two-scale transform is
called two-scale convergence (this would be confusing except that it was shown to be
equivalent to the original two-scale convergence). As an aside, a convergence similar
to (1.2)(iv) was also treated. In Lenczner and Mercier [49], Lenczner and Senouci-
Bereksi [50], and Lenczner, Kader, and Perrief51], this theory was applied to periodic
electrical networks.

Finally, Casado DSaz and Luna-Laynez [21], Casado &z, Luna-Laynez, and Mar-
tin [22] and [23] used the dilation operator in the case of reticulated structures. In
this framework, they obtained the equivalent of (3.7)(i) of Theorem 3.5 below.

2. Unfolding in  LP-spaces.

2.1. The unfolding operator T . InR", let beanopensetandY areference
cell (e.g., ]Q 1", or more generally, a set having the paving property, with respect to
a basis @, ..., ) de“ning the periods).

By analogy with the notation in the one-dimensional case, foz R", [z]y denotes
the unique integer combination J-“:l kily of the periods such thatz S [z]y belongs



Fig. 1. De“nition of [z]y and {z}y.

to Y, and set
{z}y =zS[zly Y ae.for z R".

Then for eachx R", one has
X = x4 a.e. for x R" (See Figure 1).
Y Y

We use the following notations:

= N, (+Y) :
(2.1) = interior +Y
= \
The set s the largest union of ( + Y) cells ( Z") included in , while is

the subset of containing the parts from +Y cells intersecting the boundary
(see Figure 2).

Definition 2.1. For Lebesgue-measurable on, the unfolding operator T is
de“ned as follows:

X
+y a.e. for (x,y) xY,
T()xy)= Y
0 a.e. for (x,y) xY.

Observe that the function T ( ) is Lebesgue-measurable on x Y and vanishes
for x outside of the set

As in classical periodic homogenizationtwo di erent scales appear in the de“-
nition of T : the macroscopicZ scalex gives the position of a point in the domain
, while the emicroscopicZ scale y (= x/ ) gives the position of a point in the cell
Y. The unfolding operator doubles the dimension of the space and puts all of the
oscillations in the second variable, in this way separating the two scales (see Figures 3,
4 and Figures 5, 6).

The following property of T is a simple consequence of De“nition 2.1 fow and
w Lebesgue-measurable; it will be used extensively:

(2.2) T(vw) =T (v) T (w).



Fig. 2. The domains and

Fig. 3. f (x)= ;sin@ *)+ x;

Fig. 4. T (f ).

[N



Fig.5.f =f({*}v).

Fig. 6. T (f ).

Another simple consequence of De“nition 2.1 is the following result concerning highly
oscillating functions.

Proposition 2.2.  For f measurable onY, extended byY -periodicity to the whole
of R", de“ne the sequencqf } by

(2.3) fo)=f °  aeforx R".
Then

f a.e. for (X, xY,

T ey = Y o)
0 a.e. for (x,y) XY,

If f belongs toLP(Y), p [1,+[ ,andif is bounded,

(2.4) T@E | ) f stronglyinLP( xY).

Remark 2.3. An equivalent way to de“ne f in (2.3) is to take simply f (x) =
f({*}y). For example, with

1 fory 0,%,,

f =
) 2 fory 1,1,

f is the highly oscillating periodic function, with period from Figure 5.



Remark 2.4. Let f in LP(Y), p [1,+ ][, and f be de“ned by (2.3). It is
well-known that {f | } converges weakly inLP() to the mean value of f onY, and
not strongly unlessf is a constant (see Remark 2.11 below).

The next two results, essential in the study of the properties of the unfolding
operator, are also straightforward from De“nition 2.1.

Proposition 2.5. For p [1,+ [ , the operator T is linear and continuous
from LP() to LP( x Y). Forevery inL() andwin LP() ,

(i) |¢| T()xy)dxdy=  (x)dx$S  (x)dx=  (x)dx
xY
il T dxd dx,
@y MOy ]
(iii) ax & 1 T () dxdy | | dx,
Y]y
V) T W o xv)= 1Y ]P Wl o | YIP W e .

Proof. Recalling De“nition 2.2 of , one has

1 1
v xYT()(x,y)dxdy—IYI xYT()(x,y)dxdy

1

v T( ) y) dxdy.

( +Y)xY

Oneach( + Y )xY,byde“nition, T ( )(x,y)= ( + y)isconstantinx. Hence,
each integral in the sum on the right-hand side successively equals

T()Xy)dxdy=1] + Y| ( +y)dy
( +Y)xY Y

= Y] ( +y)dy=]Y| (x) dx.
\4 ( +Y)

By summing over , the right-hand side becomes (x) dx, which gives the
result.

Property (iii) in Proposition 2.5 shows that any integral of a function on is
«almost equivalentZ to the integral of its unfolded on % Y the eintegration defectZ
arises only from the cells intersecting the boundary and is controlled by its integral
over

The next proposition, which we call unfolding criterion for integrals (u.c.i.),
is a very useful tool when treating homogenization problems.

Proposition 2.6 ( u.c.i.). If { } is a sequence inL() satisfying

| [dx 0

then
1

dx S T dxd 0.
Yy )

Based on this result, we introduce the following notation.



Notation. If {w } is a sequence satisfying u.c.i., we write

T 1
w dx T (w ) dxdy.
Y] oy (w ) dxdy
Proposition 2.7. Let {u } be a bounded sequence ibP() , with p ]1,+ ]
andv LP() (l/p +1/p =1), then

(2.5) uvdx T 1 T (u )T (v) dxdy.
Yl xvy

Suppose is bounded. Let{u } be a bounded sequence in°() and{v } a bounded
sequence inLY9() , with /p +1/g < 1, then

(2.6) uvdx 3 T (u)T (v ) dxdy.
YT xv

Proof. Observe that 1 (x) 0 for all x . Consequently, by the Lebesgue
dominated convergence theorem, one gets |v|®P dx 0, and then by the Holder in-
equality, [u vldx 0. This proves (2.5). If is bounded, then one immediately
has| | O when 0, and this implies (2.6).

We now investigate the convergence properties related to the unfolding operator
when 0. For uniformly continuous on , with modulus of continuity m ,itis

easy to see that

sup [T ()xy)S () m ().
X oY

So, as goes to zero, even though ( ) is not continuous, it converges to uniformly
on any open set strongly included in . By density, and making use of Proposition 2.5,
further convergence properties can be expressed using the mean value of a function
de‘nedon x Y.

Definition 2.8. The mean value operatorM vy LP( xY) LP() for p
[1,+ ] ,is de“ned as follows:

1

x,y)dy a.e.for x
v Y( y) dy

(2.7) MO )=
Observe that an immediate consequence of this de“nition is the estimate

M () e | YI®5 Lo «y) forevery  LP( xY).

Proposition 2.9.  Let p belong to[1,+ [ .
() Forw LP() ,

T(w) w strongly in LP( x Y).
(i) Let {w } be a sequence in.P() such that
w w strongly in LP() .
Then

T(w) w stronglyin LP( x Y).



(iii) For every relatively weakly compact sequencgw } in LP() , the correspond-
ing {T (w )} is relatively weakly compact inLP( x Y). Furthermore, if

Tw) w weaklyinLP( xY),
then

w M (w) weakly in LP() .
(iv) If T(w) wweakly inLP( x Y), then
(2.8) WoLs( xy)  liminf [Y]s woie)

(v) Supposep > 1, and let {w } be a bounded sequence ibP() . Then, the
following assertions are equivalent:

@ T(w) w weaklyinLP( xY) and IimsuplerlJ W ey
0
Witr( xY),
(b) T(w) w strongly in LP( xY) and lw |Pdx 0.

Proof. (i) The result is obvious foranyw D (). If w LP(), let D ().
Then, by using (iv) from Proposition 2.5,

T WSW e xy)y= T WS )+ T()S +( SW) s xv)
2|Y|é wS Le() T T ( )g LP( xY)>
hence,

imsup T (W) SW Lo xvy 2Y]P WS 1oy,
0

from which statement (i) follows by density.
(i) The following estimate, a consequence of Proposition 2.5(iv), gives the result

TW)STMW) togxy) | YIP wSwi w LP().

(i) For p ]1,+ [, by Proposition 2.5(iv), boundedness is preserved by T .
Suppose thatT (w) w weakly in LP( x Y), and let LP (). From Proposi-
tion 2.7,

w(x) (x)dx T (w)y)T () y) dxdy.

Y1 xv

In view of (i), one can pass to the limit in the right-hand side to obtain

IimO w (X) (x)dx = w(x,y) dy (x)dx.

1

Y] v
For p = 1, one uses the extra property satis‘ed by weakly convergent sequences
in L1(), in the form of the De La Vall" ee...Poussin criterion (which is equivalent to



relative weak compactness): there exists a continuous convex function R* R*
such that
(9

t Iigp . + and the set |w | (x)dx is bounded.

Unfolding the last integral shows that

T (w)| (x,y)dxdy is bounded,
xY

which completes the proof of weak compactness ¢ (w )} in LY( % Y) in the case
of with “nite measure. For the case where the measure of is not “nite, a similar
argument shows that the equiintegrability at in“nity of the sequence {w } carries over
to {T (w)}.

If T(w) w weaklyinL( xY) let beinD(). For suciently small,
one has

w (x) (x)dx = |$| YT(W ) Y)T () y) dxdy.

In view of (i), one can pass to the limit in the right-hand side to obtain

IimO w (X) (x)dx = w(x,y) dy  (x)dx.
Y

1
Y]
(iv) Inequality (2.8) is a simple consequence of Proposition 2.5(ii).
(v) Proposition 2.5(i) applied to the function |w |P gives

1 p

T (w) vy F lw|Pdx= w P
Y] LeC >Y)

LP() -
This identity implies the required equivalence.

Corollary 2.10. Let f be inLP(Y), p [1,+[ , and {f } be the sequence
de“ned by (2.3). Then

(2.9) fl M (f) weakly in LP() .

Proof. Proposition 2.2 gives the strong (hence weak) convergenge ¢t (f | )}
tof in LP( x Y). Convergence (2.9) follows from Proposition 2.9(iii)!

Remark 2.11. In general, in the case where is not null set (for every ),
the strong (resp. weak) convergence of the sequendd (w )} does not imply the
corresponding convergence for the sequendev }, since it gives no control of the
sequencgw 1 }. If {fw 1 } isboundedinLP()andif {T (w )} converges weakly,
so does{w } by Proposition 2.9(iii). On the other hand, even if {w 1 } converges
strongly to 0 in LP(), the strong convergence of {T (w )} does not imply that of
{w } as it is shown by the sequencdgf | } in Corollary 2.10, unlessf is a constant
ony.

Corollary 2.12. Let p belong to]1,+ [ , let {u } be a sequence in.P() such
that

T(u) u weakly inLP( xY),

INote that the proof of convergence (2.9) is really straightforward when using unfolding!



and let{v } be a sequence in.? () (1/p +1/p =1), with
T(v) v stronglyinLP( xY).

Then, for any in C¢() , one has

u(x)v (x) (x)dx . u(x,y)v(x,y) (x)dxdy.
Yl v
Moreover, if
v [P dx 0,
then, for any in C() , one has
u(xX)v (x) (x)dx 1 u(x,y)v(x,y) (x)dxdy.
YT v

Proof. The result follows from the fact that, in both cases, the sequencgu v }
satis“es the u.c.i. by the Holder inequality.

Remark 2.13. A consequence of (iii) of Proposition 2.9, together with (iv) of
Proposition 2.5, is the following. Suppose the sequencew } converges weakly tow
in LP(). Then the sequence {T (w )} is relatively weakly compact in LP( x Y),
and each of its weak-limit points w satis“es M v (w) = w.

Now recall the following de“nition from Nguetseng [58] and Allaire [1].

Two-scale convergence. Letp ]1,+[ . A bounded sequencdw } in LP()
two-scale converges to som& belonging toLP( X Y), whenever, for every smooth
function on x Y, the following convergence holds:

X 1
w (X) X, dx w(X,y) (X,y)dxdy.
Y] XY

The next result reduces two-scale convergence of a sequence to a mere weak
LP( x Y)-convergence of the unfolded sequence.

Proposition 2.14. Let {w } be a bounded sequence ib() ,withp ]1,+ [ .
The following assertions are equivalent:

() {T (w )} converges weakly tav in LP( x Y),

(i) {w } two-scale converges taw.

Proof. To prove this equivalence, it is enough to check that, for every in a set
of admissible test functions for two-scale convergence (for instanc&( ,L9(Y))), the
sequence{T [ (x,x/ )]} converges strongly to in L9 x Y)). This follows from
the de“nition of T , indeed

X X
T X, (x,y)= LTy

Remark 2.15. Proposition 2.14 shows that the two-scale convergence of a se-
quence inLP() , p ]L,+ [, is equivalent to the weak SLP( x Y) convergence of
the unfolded sequence. Notice that, by de“nition, to check the two-scale convergence,
one has to use special test functions. To check a weak convergence in the space
LP( x Y), one simply makes the use of functions in the dual spacé&P ( x Y).
Moreover, due to density properties, it is su cient to check this convergence only on
smooth functions fromD( X Y).



2.2. The averaging operator U . In this section, we consider the adjointU
of T , which we call averaging operator. In order to do so, letv be inLP( x Y), and
let u be in LP (). We have successively,

1
T (U y) v(xy)dxdy = T (u)(x,y) v(xy) dxdy
Yl v YT v
= U+ y) V() dxdy
1Y ( +Y )x Y
1 N
= u( + y)v( + z,y) " dzdy
Y1l vy
= 1 dz u(x) v - z X dx
Y] v (+Y) Y ’ v
1 X X
= u(x) % + z, dz dx.
|Y| % Y Y

This gives the formula for the averaging operatorU .
Definition 2.16. For pin [1,+ ] , the averaging operatorU : LP( x Y)
LP() is de“ned as

1 X X
+ z, dz a.e. for x ,
uox )= IYl v Y Y
0 a.e. for x
Consequently, for LP() and LP( x YY), one has
1
UQOX ) (x)dx= Y]y ( xy)T ( )xy) dxdy.

As a consequence of the duality (lderes inequality) and of Proposition 2.5(iv),
we get the following.

Proposition 2.17. Let p belong to[1,+ ] . The averaging operator is linear
and continuous fromLP( x Y) to LP() and

S 1
(2.10) UQO g | Y[Se Le( xY)-

The operator U mapsLP( x Y) into the spaceLP(). It allows one to replace
the function x ( x,{*}v), which is meaningless, in general, by a function which
always makes sense. Notice that this implies, in particular, that the largest set of test
functions for two-scale convergence is actually the set) (), with in  LP( xY).

It is immediate from its de“nition that U is almost a left-inverse ofT , since

(2.11) U T() (0= (X) a.e. for x :
0 ae. for x ,
for every in LP(), while
(2.12)
1 X
Y| y + z,y dz a.e.for (X,y) xY,
TUOXY )= Y
0 ae for (x,y) xY,

for every in LP( xY).



Proposition 2.18 (  properties of U ). Suppose thatp is in [1,+ [ .
(i) Let { } be a bounded sequence ibP( x Y) such that weakly in
LP( x Y). Then

1

( -,y)dy weakly inLP() .
Y] v

Uu( ) M, (0=

In particular, for every LP( x YY),

U () M, () weakly in LP() ,

but not strongly, unless is independent ofy.
(i) Let{ } be a sequence such that strongly in LP( x Y). Then

TU( )) strongly in LP( x Y).

(i) Suppose tha{w } is a sequence inLP() . Then, the following assertions are
equivalent:

(@ T(w) w stronglyin LP( xY),
(b) w1l SU (W 0 stronglyin LP() .

(iv) Suppose thaf{w } is a sequence inLP() . Then, the following assertions are
equivalent:

(¢ T(w) w stronglyinLP( xY) and lw |Pdx O,
(d w SU (w) 0 stronglyin LP() .

Proof. (i) This follows from Proposition 2.9(ii) by duality for p > 1. It still holds
for p = 1 in the same way as the proof of Proposition 2.9(ii). Indeed, if the De La
Vall'ee...Poussin criterion is satis“ed by the sequenge 1}, it is also satis“ed by the
sequence{U ( )}, since for F convex and continuous, Jensenes inequality implies
that

FUC D) U (FC NX).

(i) The proof follows the same lines as that of (i)...(ii) of Proposition 2.9.

(iii) The implication (a) (b) follows from (2.10) applied to =w 1l SU (w)
and from (2.11).

As for the converse (b)(a), Proposition 2.9(ii) implies that

T(w1l SU (W) 0 stronglyinLP( xY).

SinceT (w)= T (w 1 ), from (ii) above it converges to w strongly in LP( x Y).

(iv) The implication (c) (d) follows from (iii) and the second condition of (c).

Its converse (d) (c) is a consequence of from (iii): since U (w)1 = 0, (d)
implies (b) and w 1 0in LP().

Remark 2.19. The statement of Proposition 2.18(iii) does not hold with weak
convergences instead of strong ones, contnato an erroneous statement made in [24].
In view of (2.11) and Proposition 2.18(i), if T (w) w weakly in L°P( x Y), then
w 1 SU (w) converges weakly to 0 inLP().



But the converse of this last implication cannot hold. Indeed, choosev with
M (v) = 0. By Proposition 2.18(i), U (v) converges weakly toM (v) = 0. Conse-
quently the weak limitof w 1 SU (w) is also the weak limit ofw 1 SU (w+ V).
If the converse were true, it would imply that T (w ) converges weakly to bothw and
w+ v. Sov = 0. In other words, M v (v) =0 would imply v =0.

Remark 2.20. Assertions (iii)(b) and (iv)(d) are corrector...type results.

Remark 2.21. The condition (iii)(a) is used by some authors to de“ne the notion
of estrong two-scale convergence.Z From the above considerations, condition (c) of
Proposition 2.18(iv) is a better candidate for this de“nition.

2.3. The local average operator M . In this section, we consider the classical
average operator associated to the partition of by -cellsY (setting it to be zero on
the cells intersecting the boundary ).

Definition 2.22. The local average operatorM : LP() LP() , for p
[1,+ ] , is de“ned by

1

N Y| X ()d if X ,

(2.13) M ()X)=
0 if X

Remark 2.23. It turns out that the local average M is connected to the unfolding
operator T . Indeed, by the usual change of variable cell by cell,

M (1)) = TO)Xy)dy=M_ T() (x).

IYI Y

Remark 2.24. Note that, for any in LP(),onehas T(M ( ))= M () on
the set x Y. Moreover,one alsohat) ( )= M ().

Proposition 2.25 ( properties of M ).

(i) Suppose thatpisin [1,+] . Forany any in LP() ,

M () Leg Lp() -

(i) Suppose thatpisin [1,+] . For LP() and LP() ,

(2.14) M () d«= M ()M ()dx= M () dx.
(i) Suppose thapisin [1,+ [ . Let {v } be a sequence such that v strongly
in LP() . Then
M (v) v stronglyin LP() .
In particular, for every LP() ,
(2.15) M () strongly in LP() .

(iv) Suppose thatpisin [1,+ [ . Let {v } be a sequence such that v weakly
in LP() . Then

M (v) v weakly inLP() .

The same holds true for the weak-topology inL () .



Proof. The proofs of (i) and (ii) are straightforward. The proof of (iii) is a simple
consequence of (ii) of Proposition 2.9. For the proof of (iv), let be in LP (), with
p [L+[( p =1), and use (2.14) and (2.15) to obtain

M (v)dx= M ()v dx Vv dx.

For p = 1, in the same way as the proof of Proposition 2.9(ii) and Proposi-
tion 2.18(i), if the De La Vall'ee...Poussin criterion is satis“ed by the sequenge },
it is also satis“ed by the sequence{M (v )}, since for F convex and continuous,
Jensenes inequality implies that

FIM (v ))(x) M (F(v))(x),

which ends the proof.
Corollary 2.26. Suppose thatpisin [1,+ [ . Letw beinLP() and{w } be
a sequence inLP() satisfying T (w) w strongly in LP( x Y). Then,

w 1 w strongly in LP() .

Furthermore, if lw [P O, then, w w strongly in LP() .

Proof. Since w does not depend ony, one hasU (w) = M (w) which, by
Proposition 2.25(iii), converges strongly tow. The conclusion follows from Propo-
sition 2.18(iii), respectively, (iv).

3. Unfolding and gradients. This section is devoted to the properties of the
restriction of the unfolding operator to the space W'P(). Some results require no
extra hypotheses, but many others are sensitive to the boundary conditions and the
regularity of the boundary itself.

Observe that, for w in WP (), one has

(3.1) ST W)= T(w, w W) aefor (xy) xY.

Then, Proposition 2.5(iv) implies that T mapsW?P() into LP(; WLIP(Y)).

For simplicity, we assume that Y =]0, 1[". Nevertheless, the results we prove here
hold true in the case of a generaly’, with minor modi“cations.

Proposition 3.1 ( gradient in the direction of a period). Let k in [1,...,n] and
{w } be a bounded sequence ibP() , with p ]1,+ ] , satisfying

(3.2) W C.
Xk ()

Then, there exist a subsequence (still denoted) and w in LP(  x Y), with y"t in
LP( x Y) such that
(3.3)

Tw) w weaklyinLP( xY),

T Y= Tw) W weakly inLP( x Y), (weakly- for p=+ )

X k Yk Yk

Moreover, the limit function w is 1-periodic, with respect to theyy coordinate.



Proof. Convergences (3.3) are a simple consequence of (3.1) and (3.2). It remains
to prove the periodicity of w. Without loss of generality, assumek = n and write
y=(y,yn), with y inY =]0, 1"t andy, ]0,1].

Let D ( x Y). Convergences (3.3) imply that the sequencdT (w )} is
bounded inLP( x Y ;W?P(0, 1)) so that {T (w Ny .=} is bounded inLP( x Y )
for every s [0,1]. The periodicity with respect to y, results from the following
computation with an obvious change of variable:

T (W)X (y . 1)ST (w)x (y,0) (xy)dxdy

xY

= w0 o+ (y,1) Sw 4 (y,0)  (xy)dxdy
xY Y Y

= w4 .0 (xS eny)$ (xy) dxdy,
xY

y T (W)X (y,0) (xS eny)S (xy) dxdy,

which goes to zero.
Corollary 3.2. Let {w } be in WLP() , with p ]1,+ [ , and assume that
{w } is a bounded sequence ihP() satisfying

w LP() C.
Then, there exist a subsequence (still denoted and w LP(; W?P(Y)) such that

T(w) w weaklyinLP(; WLP(Y)),
T( w) yW weakly inLP( xY).

Moreover, the limit function w is Y -periodic, i.e., belongs toLP(; WP (Y)), where

Wplé‘;’(Y) denotes the Banach space oY -periodic functions in Wli'cp(R”), with the
WLP(Y) norm.

Corollary 3.3. Let pbein]l,+ [ and{w } be a sequence converging weakly
in WLP() to w. Then,

Tw) w  weakly inLP(; WLP(Y)).

Furthermore, if {w } converges strongly towv in LP() , the above convergence is strong
(this is the case if, for example,WP() is compactly embedded irLP() ).
Proof. Using (3.1), since{w } weakly converges, one has the estimates

T W) e xvy G,
y(T(W)) Le¢ xvy G,

so that there exist a subsequence (still denoted) and w in LP(; WYP(Y)) such that

T(w) w weaklyinLP(; WLP(Y)),

(3.4) )
y(T(w)) 0 stronglyin LP( xY),

and yw = 0. Consequently, w does not depend ony, and Proposition 2.9(iii)
immediately givesw = M v (w) = w. Moreover, convergence (3.4) holds for the entire



sequence . Finally, if the sequence{w } converges strongly tow in LP(), so does
the sequencegT (w )}, thanks to Proposition 2.9(ii).

Proposition 3.4. Suppose thatp is in [1,+ [ . Let {w } be a sequence which
converges strongly to somev in W1P() . Then,

i) T( w) w strongly in LP( x Y),
(i) 1 TWwW)SM (w) ye- ow strongly in LP(; WLP(Y)),

where

~ ~

1 1
y¢ = ylsz,...,yns2

Proof. The “rst asssertion follows from Proposition 2.9(i). To prove (i), set
.1 =
Z = TWwW)SM (w) ,

which has mean value zero inY. Since

thanks to assertion (i),
vZ w  strongly in LP( x Y).
Then recall the Poincaré...Wirtinger inequality inY:

(3.5) WP(Y), SM () Loy, C LP(Y)-

Applying it to the function Z Sy°®- w (which is of mean value zero) gives

(3.6) Z SY" W ..y, C yZ S Wuie(xy),

and this concludes the proof.

Theorem 3.5. Suppose thatpisin ]1,+ [ . Let {w } be a sequence converg-
ing weakly to somew in WP() . Up to a subsequence, there exists som& in
LP(; WyeP(Y)) such that

A) T( w) w+ yw  weakly inLP( xY),
(3.7)
(i) 1 TWwW)SM (w) w+y®. w weakly in LP(; WP(Y)).

Moreover, M v (w)=0.
Proof. Following the same lines as in the previous proof, introduce

Z = 1 TWwW)SM (w) ,

which has mean value zero inY. Since yZ = T w , (i) implies (i).



To prove (ii), note that the sequence{ Z } is bounded inLP( x Y). By (3.6),

Z Sy°- w e xyy C

so that there existsw in LP(; WP (Y)) such that, up to a subsequence,
Z Sy¢- w w weaklyin LP(; WLP(Y)).

Since, by construction, M v (y®) vanishes, so doed/ v (w).

It remains to prove the Y -periodicity of w. This is obtained in the same way as
in the proof of Proposition 3.1 by using a test function D( xY). One has
successively,

Z(x(y ,1)SZ (x,(y.0) (xy)dxdy

xY

= 1 w X Y+ (y,1) Sw X Y+ (y ,0) (x,y ) dxdy

xY

= w X Y+ (y ,0) 1 (xS en,y)S (x,y) dxdy,
xY

= T V.01 xS eny)S (xy) dxdy.

By Proposition 2.9(ii), {T (w )} converges strongly tow in LP( x Y), and by (3.7)
(i), it converges weakly to the samew in LP(; WYP(Y)). By the trace theorem in
WLP(Y), the trace of T (w ) on x Y converges weakly tow in LP( x Y ). Hence,
the last integral converges to

(3.8) S w(X) y (x,y ) dxdy .

xY

Similarly, since (y¢- w)y ,1)S (y¢- w)(y ,0)= ;’Vn , We obtain

. (¢ w)y ,1)S (- w)y ,0)] (xy)dxdy

= W (x,y ) dxdy = S w(X) y (x,y ) dxdy .
n

xY Xn x Y
This, together with (3.8) and convergence (3.7)(ii), shows that
y w(x, (y ,1)) Sw(x, (y ,0) (xy)dxdy =0,

so that w is y,-periodic. The same holds in the directions of all of the other

periods.
Theorem 3.5 can be generalized to the case &% P ()-spaces, with k 1 and
p ]1,+[.Inordertodoso,for r=(rg,...,ry) N with |r|=r1+ ---+71, Kk,

introduce the notation D" and D{,:
Dr Ir . Ir|
XX Yooyl yn

Then the following result holds.



Theorem 3.6. Let {w} be a sequence converging weakly WP () to w,
k 1,andp ]1,+ [ . There exist a subsequence (still denoted) and w in the space
LP(; WP (Y)) such that

T(D'w) D 'w weaklyinLP(; W*S"(Y)), || kS1,

(3.9) | ! | : _
T(D'w) D 'w+Dyw weakly inLP( xY), [I]=k.

Furthermore, if {w } converges strongly tow in WkSLP() | the above convergences
are strong in LP(; WkSP(Y)) for |I| kS 1.

Proof. We give a brief proof fork = 2. The same argument generalizes fok > 2.
If || =1, the “rst convergence in (3.9) follows directly from Corollary 3.3. Set

1 < <
W=">TWw)SM (w)Sy*-M w

The sequencdw } is bounded inW 2P (), hence proceeding as in the proof of Propo-
sition 2.25(iii), one obtains

W L, uyy, C

Moreover,

1 .
yW = T w SM (w),

and
Dy W =T D'w , with [I|=2.

This implies that the sequence{W } is bounded inLP(; W?2P(Y)). Therefore, there
exist a subsequence (still denoted) and w  LP(; W?2P(Y)) such that
(3.10)

W w weakly in LP(; WZ2P(Y)),

W 1 w - w w
= T SM weakly in LP(; WLP(Y)).
Yi 2 X i X Yi Y ( ()
Consequently,
(3.11) Dy(W)=T(D'w) D yw weaklyinLP( xY), [I|=2.
Now, apply Theorem 3.5 to each of the derivativesV;i , 1 {1,...,n}. There exist a

subsequence (still denoted ) and w;  LP(; WZLP(Y)) such that M v (wj) 0Oand

per

T U &M oy e Y hw weaklyinLP( x ).

Then (3.10) gives

W w
3.12 [ 1,...,n}, = y°. + w;.
(3.12) { } Vi y X i
Set
széln CYyeSM _(Yeyd) i
2 YEYESMLOPYD)



By construction, the function w belongs toLP(; W?2P(Y)). Furthermore,

w W . w
M_(w)=0, = Sy°. =w;, and M w)=0.
v (W) yi Yi y X ' v (W)

The last equality implies that w belongs toLP(; WpZéE(Y)). Finally from (3.12) one
gets

Dyw=D'w+ Djw, with |[l|=2,

which together with (3.11), proves the last convergence of (3.9).

Corollary 3.7. Let {w } be a sequence converging weakly W?2P() to w,
andp ]1,+ [ . Then, there exist a subsequence (still denoted and w in the space
LP(; WZP(Y)) such that

per

1 “ g : - 2w
, TW)SM (w)Sy*-M w ViYiSM  y) o W
ij =1 S

weakly in LP(; W?P(Y)), where w is such thatM _ (w) =0.

Remark 3.8. For the caseY =]0, 1[", y° was de“ned in Proposition 3.4. For a
generalY, all of the statements of this section hold true, with y¢ = y SM v (y).

4. Macro-micro decomposition: The scale-splitting operators Q
and R . In this section, we give a dierent proof of Theorem 3.5, which was the
one given originally in [24]. It is based on a scale-separation decomposition which is
useful in some speci“c situations, for example, in the statement of general corrector
results (see section 6).

The procedure is based on a splitting of functions in WP () (or in Wol’p())
forp [1,+ ], in the form

=Q()+R (),

where Q ( ) is an approximation of having the same behavior as , while R ( )
Is a remainder of order . Applied to the sequence{w } converging weakly to w
in WLP(), it shows that, while { w1} ,{ (Q (w))} and{T (Q (w))} have the
same weak limit win LP(), respectively,in LP( xY), the sequencel (R (w))
converges weakly inLP( x Y)to yw for somew in LP(; WpléP(Y)).

We will distinguish between the caseWol'p() and the case WYP(). For the
former, any function in W&’p() is extended by zero to the whole of R", and this

extension is denoted by . In the latter case, we suppose that is smooth enough so
that there exists a continuous extension operato : WP () WLP(RM) satisfying

P()wwwy)y C  wiq, WP()

where C is a constant depending onp and  only.

The construction of Q is based on theQ; interpolate of some discrete approx-
imation, as is customary in FEM. The idea of using these types of interpolate was
already present in Griso [40], [41] for the study of truss-like structures. For the pur-
pose of this paper, it is enough to take the average on + Y to construct the discrete
approximations, but the average on + Y , whereY is any “xed open subset ofY,



or any open subset of a manifold of codimension 1 ityY. The only property which is
needed is the Poincae...Wirtinger inequality, which holds in both of these cases.

Definition 4.1. The operator Q : LP(R") WY (R"),forp [1,+] ,is
de“ned as follows:

(4.1) Q() )=M () ) for z",
and for any x R", we set

Q ( )(x) is the Q; interpolate of the values ofQ ( ) at the vertices

(4.2)

of the cell JEY.

In the case of the spaceWy®() , the operator Q : W, () wi () is
de“ned by

Q()=Q()l,

whereQ () is given by (4.1).
In the case of the spaceWP() , the operator Q : WLP() Wt () is
de“ned by

Q()=Q®(N ,

whereQ (P( )) is given by (4.1).

We start with the following estimates.

Proposition 4.2 ( properties ofQ onR"). For in LP(R"),p [1,+] ,there
exists a constant C depending om and Y only, such that

. . C
0 Q () viery C L) (M Q () Lern LP(RYY

C . C
(i) Q (J)v wry o w)y W) Q ()L rR)y oy LR

Furthermore, for any in LP(Y),

(4.3) Q () . C  Lern)  Lp(Y):
Y Le(Rn)
if isin WyeP(Y), then
: C
(4.4) Q () LP(R)  W1p(Y)-

Y  wle(Rn)

Proof. By de“nition, the Q3 interpolate is Lipschitz-continuous and reaches its
maximum at some . So, to estimate theL norm of Q ( ), it su ces to estimate

the Q ( )( ) s. By (4.1),

@5 1) P 1 1 +z)pdz= t

| (x)[P dx.
Y] v "IY] sy

Since

1 1
X)|P dx b,
Y] sy ()] | LR

estimate (iii) follows, with C = lYlll,p :



The spaceQ:(Y) is of dimension 2', hence all of the norms are equivalent. So,
there are constantsc,, ¢, and c; (depending only uponp and Y') such that, for every

Q1(Y),
! #
n
L (v) C g%,
{ 0,1}n i=1
| ’! L
Loeyy G2 g% $
{ 0’1}n j:]_
Loy G ih® 3
{ 0,1}n j=1
Rescaling these inequalities for (y) = Q ( )( + vy), gives
#
C1 " $
Q ()L ( +v) Q () + b,
{ ,1}n J:1
1 | # o# 1p
n
Q ()uv +vy ™" Q()" + s S
{ 0'1}n j:]_
! ! ] # o# 1p
Q ()Lp( fY) C3 npS1" Q().. + Jq$ $
{ O'l}n ]:1
Using (4.5), we have
2nC1
Q ( ) L (R") 1+ nlp |Y|l/p LP(R")»
which gives (iv). Similarly,
p
Q ()Ep( +Y) % | (x)|P dx,
|Y| n + T bty
{ 0,1} j=1
which, by summation on , gives (i), with C = (2|$2|)lxp

—_ (2 Cg)n/p

Estimate (ii), with C M

, follows by a similar computation.
To prove (4.3), observe “rst that the function Q ( ) ({ "}y) belongs toLP(R"),

sinceQ ( )isinL (R")and ({ }v)isin LP(R"). Moreover,

p
Y LP( +Y)
while, by (4.5),
1
Q ( ) E ( +Y) nlY
{ o1n

Using these two estimates and summing on

- N

p
LP(Y)"

| ()P
Y+ g b
2n/p

gives (4.3), with C = M



Estimate (4.4) is obtained in a similar fashion, with C = ©@ n/plgﬁ,p%)n/p

Corollary 4.3. For in LP(R"), p [L1,+ [ , the following convergences hold:
Q () strongly in  LP(R"),
Q () 0 stronglyin (LP(R")".
Definition 4.4.  The remainder R ( ) is given by
R()= SQ () forany W?P() .

The following proposition is well-known from the FEM.
Proposition 4.5 ( properties of Q and R ). For the caseWol’p() , one has

M Q ()wwy C  wieg
(”) R ( ) LP() C Wol'p() )
(i) R () e C Le() -

The constant C depends onY (via its diameter and its Poincare...Wirtinger constant)
only, and depends neither on nor on
Similarly, for the case WP() , one has

(v) Q () ww CP WLP() »
V) R () e CP WP ()
(vi)y R () CP Lp() -

Moreover, in both cases,

Q () C

XiXj e

where C does not depend on.
Proof. We start with in WLP(RM). From Proposition 2.5(i) and inequality
(3.5), we get

(4.6) ey forij  [L....n], i =],

@7 SM () Leey=IYIPP T ()SM () Lerixy) C Lb(R")-

On the other hand, for any WiP(interior(Y (Y +€)), i {1,...,n}, we
have

| M )SM () EIM, (+e)$ () |

Y+ei(
((+e)S () Lecyy C LP(Y (Y+g)) -

By a scaling argument and using De“nition 4.1, this gives

48 IQ() )SQ ()X +ei) C L(C+Y) (+e+Y))

for all AL
Let x +Y ,and setforevery =( 1,..., n) {0,1}",

~

XIS

XI( D — .



If Z", forevery { 0,1}", by de“nition we have

(4.9) Q (X)= Q() + x{P x(n)

{ 013"

and so, for example,

Q() + (1 2,...,a) SQ() + O, 2,..., n) W« 2)
52

Coxn),

and a same expression for the other derivatives. This last formula and (4.7)...(4.9)
imply estimate (i) written in R".
Now, from (4.9), we get

x)8Q (0= xSQ () +  xiP.ox{(,
{ 0,13

and (ii) (in R") follows by using estimate (4.7). Estimate (iii) (again in R") is straight-
forward from the previous ones.

If isin Wol'p( ), let be its extension to the whole ofR". To derive (i)...(iii), it
su ces to write down the estimates in R" obtained above. Similarly, applying them
to P( ) for in WLP() gives (iv)...(vi).

To “nish the proof, it remains to show estimate (4.6) . To do so, it is enough to
take the derivative with respect to any x,, with k =1 in the formula of < {’ above,
and use estimate (4.8).

Remark 4.6. By construction (see explicit formula (4.9)), the function Q ( ) is
separately piecewise linear on each cell. Observe also that, for ary { 1,...,n},

% ) is independent ofx in each cell ~ + Y .
Proposition 4.7. Let {w } be a sequence converging weakly Wol'p() (resp.
W11P() ) to w. Then, the following convergences hold:
) R (w) 0 stronglyin LP() ,
(i) Q(w) w weakly inwWtP() ,
i)y T(Q (w)) w  weakly inLP( x Y).

Proof. Convergence (i) is a direct consequence of estimate (ii) (resp. (v)) of
Proposition 4.5, and it implies convergence (ii). Together with (i), Proposition 2.9(ii)
impliesT (Q (w)) w weakly in LP( x Y). From (4.5),

Q (w)

X | X | fori,j [1,...,n], i =]

LP()
Now, by Proposition 3.1, there exist a subsequence (still denoted) and w;  LP( %
Y), with ;"' LP( x Y) such that, for i =j,
T QX(W )W weaklyinLP( x V),
i
’Q (w) W

XiXj Yi

T weakly in LP( x YY),



where w; is y;-periodic for everyi =j. Moreover, from Remark 4.6, the function w;
does not depend ory;, hence it isY -periodic. But, by Remark 4.6 again, w; is also
piecewise linear, with respect to any variabley;. Consequently,w; is independent of
y. On the other hand, from (ii) above we have

Q w weakly in LP() .
X | X ]
Now Proposition 2.9(iii) gives w; = )‘(’VJ_ , and convergence (iii) holds for the whole
sequence .
Proposition 4.8 ( Theorem 3.5 revisited). Let {w } be a sequence converging
weakly in Wol'p() (resp. in W1P() ) to w. Then, up to a subsequence there exists
somew in the spacelLP(; Wple’E(Y)) such that the following convergences hold:

1T R(w) w weaklyinLP(; WLP(Y)),
T R (w) yW weakly inLP( x YY),
T( w) w+ yw  weakly inLP( xY).

Actually, the connection with the w of Theorem 3.5 is given by
w=w SM , (W)

Proof. Due to estimates of Proposition 4.5, up to a subsequence, there existg
in LP(; WpgP(Y)) such that

1T R (w) w  weakly in LP(; WIP(Y)),

T R (w) yW weakly in LP( x Y).

Combining with convergence (iii) of Proposition 4.7 shows that

T w w+ yw weaklyin LP( xY).

~

So yw yW in LP( x Y). Since M Y(W) = 0, it follows that w = w S
M Y(w).

Remark 4.9. In the previous proppsition, one can actually compute the average
of w. One can check thatM Y(w): SM Y(y) - w, and consequently,

1 TW)SM (W) vy - w+w weakly in LP(; WLP(Y)).

5. Periodic unfolding and the standard homogenization problem.

Definition 5.1. Let |, R, such that0 < < and O be an open subset
of R". Denote by M(, , O) the set of then x n matrices A = (&)1 ij n
(L (0)"" such that, forany ~ R" and a.e. onO,

(GYC D R I P N CO B



_Let A =(a;)1 ij n be asequence of matrices iM (,, ) . Forf givenin
H>1(), consider the Dirichlet problem

Sdiv(A u)=f in,

51
(1) u =0 on

By the Lax...Milgram theorem, there exists a uniquer  Hg() satisfying
(5.2) A u vdx= fv gsiy wig . vV Hg()

which is the variational formulation of (5.1). Moreover, one has the apriori estimate

1
(5.3) U hi() f sy .

Consequently, there existug in H3() and a subsequence, still denoted , such that
(5.4) u u o weaklyinH() .

We are now interested to give a limit problem, the *homogenizedZ problem, sat-
is“ed by ug. This is called standard homogenization, and the answer, for some classes
of A , can be found in many works, starting with the classical book by Bensoussan,
Lions, and Papanicolaou [11] (see, for instance, Cioranescu and Donato [30] and the
references herein). We now recall it.

Theorem 5.2 ( standard periodic homogenization). Let A = (a; )1 ij n belong
toM(,,Y ), wherea; = a; (y) are Y -periodic. Set
(5.5) A (X)= aj X N a.e. on

14 n
Let u be the solution of the corresponding problen{5.1), with f in Hél() . Then
the whole sequencéu } converges to a limit ug, which is the unique solution of the
homogenized problem

2
Sdiv (A% ug) = ay I R
(5.6) ij =1 XiXj

upo=0 on

where the constant matrixA® = (&) )1 i; n is elliptic and given by

% . & % &
57 & =My &S ax ' =My(a)SMy ak !
er Yk =1 Yk
In (5.7), the functions ; (j =1,...,n), often referred to as correctors, are the solu-

tions of the cell systems

n -
é Aik (szj) =0 inY,
k=g Vi Yk
My(j)zo,

i Y-periodic.

(5.8)



As will be seen below, using the periodic unfolding, the proof of this theorem is
elementary! Actually, with the same proof, a more general result can be obtained,
with matrices A .

Theorem 5.3 ( periodic homogenization via unfolding. Let u be the solution
of problem (5.1), with f in H®'() ,and A =(4a; )1 ij n be a sequence of matrices
in M(,, ) . Suppose that there exists a matrixB such that

(5.9) B =T A B strongly in [LY( x Y)]"™*".
Then there existsup Hg() andu L2(; HZ,(Y)) such that
u u o weaklyinHJ() ,

(5.10) T(u) u o weaklyinL?(; H(Y)),
T( u) Up+ yu weakly inL?( xY),

and the pair (up, u) is the unique solution of the problem
Ho() | L2(; Hper (Y)),

(5.11) B(X,y) uo(x)+ yu(xy) (x)+ y(Xxy) dxdy

Yl «y

= Lowsig om0 -

Remark 5.4. System (5.11) is the unfolded formulation of the homogenized limit
problem. It is of standard variational form in the space

H=Hg() xL2(; Hp (Y)/R).

Remark 5.5. Hypothesis (5.9) impliesthatB M (, , xY).
Remark 5.6. If A is of the form (5.5), then B(x,y) = A(y). In the case where
A (X) = Ar(X)A2(*), one has (5.9), withB(X,y) = A1(X)A2(y).

Remark 5.7. Let us point out that every matrix B M(, , x Y) can be
approached by the sequence of matrice& in M (, , ),with A de“ned as follows:
A = U (B) |_n ,
| In

Proof of Theorem 5.3. Convergences (5.10) follow from estimate (5.3), Corol-
lary 3.3, and Proposition 4.7, respectively.

Let us choosev = , with Ha() as test function in (5.2). The integration
formula (2.5) from Proposition 2.7 gives

1 T
(512) |Y| Ly B T u T dXdy f, Hél() ,Hé() .

We are allowed to pass to the limit in (5.12), due to (5.9), (5.10), and Proposi-
tion 2.9(i), to get

(5.13) B(x,y) uo(x)+ yu(x,y) (x)dxdy= f, ysiy w1y -

Y1«



Now, taking in (5.2), as test functionv (x)= ( x) (*), D (), H e (Y),
one has, due to (2.5) and Proposition 2.7,

1
B T wu T dxdy
|Y| xY
1
+ BT u  WT dxdyT f,v wsiy mi -
Yl «v B0

Sincev  0in H}() , we get at the limit

1
Yl v

By the density of the tensor product D()  Hg. (Y) in L2(; Hg (Y)), this holds
forall in L2(; Hp (Y)).

Remark 5.8. As in the two-scale method, (5.11) givesu in terms of up and
yields the standard form of the homogenized equation, i.e., (5.6). In the simple case
where A(x,y) = A(y) =(aj (¥))1 ij n, itis easily seen that

B(X,y) Uo(X)+ yu(x,y) ( x) y (y)dxdy=0.

n
u
(5.14) u= >
=g X

and that the limit B is precisely the matrix A° which was de“ned in Theorem 5.2 by
(5.7) and (5.8).

Proposition 5.9 ( convergence of the energy).Under the hypotheses of Theo-
rem 5.3,

: 1
I|m0 A u udx= B up+ yu upg+ yu dxdy,

(5.15)
lim | u |2dx =0.

Proof. By standard weak lower-semicontinuity, one successively obtains

1
v B ug+ yu ug+ yu dxdy
xY
.1
liminf B T u T u dxdy
0 |Y| xY
: 1
IlmsupIYI B T u T wu dxdy
0 xY

imsup A u u dx=limsup f,u ysi(y Hz(
0 0

1
= fUo psiy Hi = ™ XYB Up+ yU  Up+ yu dxdy,

which gives the “rst convergence in (5.15), as well as

limsup A U u dx=0,
0

which implies the second convergence in (5.15).



Remark 5.10. From the above proof, we also have

1

lim BT uT wu dxd

O] ey )
1

= B up+ yu Up+ yu dxdy.

|Y| xY

Corollary 5.11. The following strong convergence holds:

(5.16) T( u) Up+ yu strongly in L3 x Y).

Proof. We have successively

1 “ - . .
Y] YB T u S uS yuT u S ugS yu dxdy
-1 BT u T u dxdy
|Y| xY
<. 1
S B u+ yuT u dxdy
|Y| xY
- 1
S BT wu Up+ yu dxdy
Yl «v
1
+ B Up+ yuU Up+ yu dxdy.
Yl v

Each term in the right-hand side converges, the “rst one due to Remark 5.10, and the
others due to (5.10) and hypothesis (5.9). So, the right-hand side term converges to
zero. Then convergence (5.16) is a consequence of the ellipticity &f .

Remark 5.12. One can consider problem (5.1) with a homogeneous Neumann
boundary condition on  provided a zero order term is added to the operator. This
problem is variational on the spaceH () without any regularity condition on the
boundary. The exact same method applies and gives the corresponding limit problem.
In order for a nonhomogeneous Neumann boundary condition (or Robin condition)
on to make sense, a well-behaved trace operator is needed fromii1() to L2().

In that case, the same method applies.

6. Some corrector results and error estimates. Under additional regularity
assumptions on the homogenized solutionug and the cell-functions ;, the strong
convergence for the gradient ofug with a corrector is known (cf. [11] Chapter 1,
section 5, [30] Chapter 8, section 3 and references therein). More precisely, suppose
that  ; (L"(Y)",j=1,...,nand u® LS(), with1 rrs< + andsuch
that 1/r +1/s =1/2. Then

uS us$S )ljo v i 0 strongly in L2() .
i

Our next result gives a corrector resultwithout any additional regularity assump-
tion on ;, and its proof reduces to a few lines. We also include a new type of
corrector.

Theorem 6.1. Under the hypotheses of Theoren®.2, one has

(6.1) uS uwSU yu 0 stronglyin L?() .



In the case whereA (x) = A({*}y), the function ug + in=1 Q ( ‘)’(0) i({ "}vy) be-
longs toH () , and one has

n
(6.2) u SugS Q l:(o _ . 0 strongly in HY() .
i=1 !

Proof. From (5.15), (5.16), and Proposition 2.18(iii), one immediately has
uSU u SU yu 0 stronglyin L?() .
But since ug belongs toL?(), Corollary 2.26 implies that
U up ug strongly in L?() ,

whence (6.1). From (4.4) in Proposition 4.2, the functionug+ i”:l Q (; °) i(f "}v)
belongs toH (). From (5.14), we obtain

. (
u+ U ( yu)S ug+ Q ;J(o i
i=1 ! . Y
n ) Uo Uo
=S SM
_ Q X X s Y
i=1 ) *
n
~ Uo
S )
Q X i y

and using estimate (4.2), Proposition 2.25(iii), and Corollary 4.3, one immediately
gets the strong convergence inL?() of the right-hand side in the above equality.
Thanks to (6.1), one has (6.2).

We end this section by recalling the error estimates obtained by Griso in [42],
[44], and [45] for problem (5.1), withf  L2().

Theorem 6.2 ( see [42], [44] Suppose that is of classC't. The solution u
of (5.1) satis“es the following estimates:

. ~ uo . 1/2
usS upS i C f :
0% L0 x v L20) -0
T % &
n
" - - u :
U Sup L2y + usS usS Q x(-) y i C f (2,
i=1 | LzO)
where  for i =1,...,n is de“ned by (5.8) and = (x) is the distance between
X and the boundary . The constant C depends onn, A, and

Corollary 6.3 (  see [44]. Let be an open set strongly included in , then

S u :
uSuws Q _° C f Lo .
i=1 Xi Hi( )
The constant depends om, A, , and

In what follows in this paragraph, we suppose that the open set is a bounded
domain in R", n = 2 or 3, of polygonal (n = 2) or polyhedral (n = 3) boundary. We



assume that is on one side only of its boundary, and that ¢ is the union of some
edges (0 = 2) or some faces 6 = 3) of . Recall that classical regularity results
show that the solution ugy of the homogenized problem (5.6) belongs téd **S() for s
in J1/ 2, 1] (s = 1 if the domain is convex) depending only on , on A°, and satis“es
the estimate

Uo H 1+ s() Cf L2() -

The error estimate for this case is given in the following result.
Theorem 6.4 ( see [45] The solution u of problem (5.1) satis“es the estimate

n
. Uo

usS uwsS Q N ' C o2 2,
i=1 ! 2 n
=L o oo 2
~ « ~ u .
uSup L2 + us ws Q X? v i C°Sf Lo .
=1 | 2o

The constants depend om, A, and
Corollary 6.5 ( see [45] Let be an open set strongly included in , then

SR u :
uSu$ Q ° CSf Lo .
i=1 Xi Hi( )
The constant depends om, A, , and
7. Periodic unfolding and multiscales. As we mentioned in the Introduction,

the periodic unfolding method turns out to be particularly well-adapted to multiscales
problems. As an example, we treat here a problem with two di erent small scales.
Consider two periodicity cells Y and Z, both having the properties introduced
at the beginning of section 2 (each associated to its set of periods). Suppose that
Y is epartitionedZ in two nonempty disjoint open subsets Y; and Y,, i.e., such that
Y1 Yo = andyY = Y1 Yo.
Let A be a matrix “eld de“ned by
A1 X v for X v Y1,
A= P &
A Y for Yo,

where A; isin M(, ,Y 1) and A, in M(, ,Z ) (cf. De"nition 5.1). Here we have
two small scales, namely, and , associated, respectively, to the cellsr and Z (see
Figure 7).

Consider the problem

A u wdx= fwdx w  HO ,

with f in L?(). The Lax...Milgram theorem immediately gives the existence and
uniqueness ofu in H}() satisfying the estimate

1
U Hgo Fiz -



Fig. 7 . A domain with periodic scales  and

So, there is someug such that, up to a subsequence,
u u o weaklyinH3() .
Using the unfolding method for scale , as before we have
Q u u o weaklyin H}() ,

T(u ) u o weaklyin L2(; H(Y)),

LR (u) u weaklyin L2(; H(Y)),

T u Up+ yu in L?( xY).

These convergences do not see the oscillations at the scale. In order to capture
them, one considers the restrictions to the set x Y, de“ned by

1
v (xy)= T R U ) l,.
Obviously,
v uly, weaklyin L2(; H(Yy)).

Now, we apply to v , a similar unfolding operation, denoted T”, for the variable v,
thus adding a new variablez Z.

T(v )xy,z)=V X y , Ttz forx ,y Y andz Z

It is essential to remark that all of the estimates and weak convergence properties
which were shown for the original unfoldingT still hold for T, with x being a mere
parameter. For example, Proposition 4.7 and Theorem 3.5 adapted to this case imply
that

TV v yul ,+ Lu  weaklyinL?( x Yy x Z),

YT u Up+ yu+ ,u weaklyinL?( x Y,x Z).

Under these conditions, the limit functions ug, u, and u are characterized by the
following result.



Theorem 7.1. The functions
1 2 1 2 1
Uo HO() , u L ,Hper(Y)/R)’ u Lo x 2’Hper(z)/R)
are the unique solutions of the variational problem

1

As(z) up+ yu+ u + + dx dy dz
Yzl  y, 2 T ’ i

+ Ai(y) up+ yu +  y  dxdy= f o dx,
Yl v,

Ho() L2(; Hper (Y)/R), L2 x 2,H3 (Z)/R).
The proof uses test functions of the form
X X
(xX)+  1(x) 1 + (X)) 2 , 2 :

where , 1, zareinD(), 1inHg(Y), 2 D (Y2),and » Hy, (2).
Remark 7.2. The same theorem holds true for a generah under the hypotheses
T(A )1y, A; stronglyin[LY( x Yg)]"™*",
TY T(A )1y, A, stronglyin [LY( x Yy, x Z)]"*".
Proposition 5.9 (convergence of the energy) and Corollary 5.11 extend without

any di culty to the multiscale case.
Proposition 7.3.  The convergence for the energy holds true:

Iim0 A u u dx

1
= Az(z) ug+ yu+ U Up+ yU+ u dxdydz
Y Z] v, 2
1
+ Ai(y) ug+ yu Up+ yu dxdy.
YT v,
Corollary 7.4. The following strong convergences hold true:
LR yul , + u strongly in L?( x Yz x Z),
TV T u Up+ yu+ ,u stronglyin L?( x Y, x Z).

Remark 7.5. A corrector result, similar to that of Theorem 6.1, can be obtained.
Remark 7.6. Theorem 7.1 can be extended to the case of any “nite number of
distinct scales by a simple reiteration.

8. Further developments. The unfolding method has some interesting prop-
erties which make it suitable for more general situations than that presented here. In
problems which are set on a domain  which depends on the parameter , it may be
di cult to have a good notion of convergence for the sequence of solutionss . The
traditional way is to extend the solution by O outside ; however, this precludes the
strong convergence of these extended functions in general. For the case of holes of the



size of order distributed -periodically, the unfolded sequence lives on a “xed do-
main. Similarly, for domains with -oscillating boundaries, a partial unfolding yields
a function which is de“ned on a “xed domain.
We conclude by giving a list of publications making use of the unfolding method
in several of these directions (both for linear and nonlinear problems).
. Reiterated homogenization: Meunier and Van Schaftingen [56].
. Electro-magnetism: Banks et al. [7], Bossavit, Griso, and Miara [15].
. Homogenization of thin piezoelectric shells: Ghergu et al. [39].
. Homogenization of di usion deformation media: Griso and Rohan [46].

... Homogenization of the Stokes problem in porous media: Cioranescu, Damlamian,
and Griso [25].

... Homogenization in perforated domains with Robin boundary conditions: Cio-
ranescu, Donato and Zaki [31], [32].

... Homogenization in domains with oscillating boundaries: Damlamian and Pet-
tersson [36].

... Homogenization of nonlinear integrals of the calculus of variations: Cioranescu,
Damlamian, and De Arcangelis [27], [28], and [29].

Homogenization of multivalued monotone operators of Leray...Lions type:
Damlamian, Meunier, and Van Schaftingen [37].

... Thin junctions in linear elasticity: Blanchard, Gaudiello, and Griso [12], [13],
Blanchard and Griso [14].

... Thin domains and free boundary problems arising in lubrication theory:
Bayada, Martin, and Vazquez [9], [10].

... Elasticity problems in perforated domains: Griso and Sanchez-Rua [47].

... Neumann sieve and Dirichlet shield problems: Onofrei [60], Cioranescu et al.
[26]. This last paper treats the case of domains with -periodically distributed every
smallZ holes (their size being a power of) on the boundary of which a homogeneous
Dirichlet condition is prescribed. This requires the introduction of a rescaled unfolding
operator (which originally appeared in the framework of the two-scale convergence in
Casado-D5az [20]).

Aknowledgments.  We thank Petru Mironescu and Riccardo De Arcangelis for
helpful comments and corrections.
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