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THE�� PERIODIC�� UNFOLDING�� METHOD�� IN�� HOMOGENIZATION

D.��CIORANESCU • , A. DAMLAMIAN ‚ ,��AND�� G.��GRISO §

Abstract. The periodic unfolding method was introduced in 2002 in [Cioranescu, Damlamian,
and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99…104] (with the basic proofs in [Pro-
ceedings of the Narvik Conference 2004, GAKUTO In ternat. Ser. Math. Sci. Appl. 24, Gakk¯ otosho,
Tokyo, 2006, pp. 119…136]). In the present paper we go into all the details of the method and include
complete proofs, as well as several new extensions and developments. This approach is based on
two distinct ideas, each leading to a new ingredient. The “rst idea is the change of scale, which is
embodied in the unfolding operator. At the expense of doubling the dimension, this allows one to
use standard weak or strong convergence theorems in L p spaces instead of more complicated tools
(such as two-scale convergence, which is shown to be merely the weak convergence of the unfolding;
cf. Remark 2.15). The second idea is the separation of scales, which is implemented as a macro-micro
decomposition of functions and is especially suited for the weakly convergent sequences of Sobolev
spaces. In the framework of this method, the proofs of most periodic homogenization results are
elementary. The unfolding is particularly well-suited for multiscale problems (a simple backward
iteration argument su�ces) and for precise corrector results without extra regularity on the data.
A list of the papers where these ideas appeared, at least in some preliminary form, is given with
a discussion of their content. We also give a list of papers published since the publication [Cio-
ranescu, Damlamian, and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99…104], and where
the unfolding method has been successfully applied.

Key words. homogenization, periodic unfolding, multiscale problems

1. Introduction. The notion of two-scale convergence was introduced in 1989
by Nguetseng in [58], further developed by Allaire in [1] and by Lukkassen, Nguetseng,
and Wall in [55] with applications to periodic homogenization. It was generalized to
some multiscale problems by Ene and Saint Jean Paulin in [38], Allaire and Briane in
[2], Lions et al. in [52] and Lukkassen, Nguetseng, and Wall in [55].

In 1990, Arbogast, Douglas, and Hornung de“ned a •dilationŽ operator in [5] to
study homogenization for a periodic medium with double porosity. This technique
was used again in [16], [3], [4], [48], [49], [50], [51], [54], [20], [21], [22], and [23].

In [24], we expanded on this idea and presented a general and quite simple ap-
proach for classical or multiscale periodic homogenization, under the name of •un-
folding method.Ž Originally restricted to the case of domains consisting of a union
of � -cells, it was extended to general domains (see the survey of Damlamian [34]). In
the present work, we give a complete presentation of this method, including all of the
proofs, as well as several new extensions and developments. The relationship of the
papers listed above with our work is discussed at the end of this introduction.

The periodic unfolding method is essentially based on two ingredients. The “rst
one is the unfolding operatorT� (similar to the dilation operator), de“ned in section 2,

• Corresponding author. Laboratoire Jacques-Louis Lions, Universit´ e Pierre et Marie Curie, Bo� šte
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where its properties are investigated. Let � be a bounded open set, andY a reference
cell in Rn . By de“nition, the operator T� associates to any functionv in L p(�), a
function T� (v) in L p(� × Y). An immediate (and interesting) property of T� is that
it enables one to transform any integral over � in an integral over � × Y . Indeed, by
Proposition 2.6 below

(1.1)
�

�
w(x) dx �

1
|Y |

�

� × Y
T� (w)(x, y ) dx dy � w � L 1(�) .

Proposition 2.14 shows that the two-scale convergence in theL p(�)-sense of a
sequence of functions{ v� } is equivalent to the weak convergence of the sequence of
unfolded functions {T� (v� )} in L p(� × Y). Thus, the two-scale convergence in �
is reduced to a mere weak convergence inL p(� × Y), which conceptually simpli“es
proofs.

In section 2 are also introduced a local average operatorM � and an averaging
operator U� , the latter being, in some sense, the inverse of the unfolding operatorT� .

The second ingredient of the periodic unfolding method consists of separating
the characteristic scales by decomposing every function� belonging to W 1,p (�) in
two parts. In section 3 it is achieved by using the local average. In section 4, the
original proof of this scale-splitting, inspired by the “nite element method (FEM), is
given. The confrontation of the two methods of sections 3 and 4 is interesting in itself
(Theorem 3.5 and Proposition 4.8). In both approaches,� is written as � = � �

1 + �� �
2,

where � �
1 is a macroscopic part designed not to capture the oscillations of order� (if

there are any), while the microscopic part � �
2 is designed to do so. The main result

states that, from any bounded sequence{ w� } in W 1,p (�), weakly convergent to some
w, one can always extract a subsequence (still denoted{ w� } ) such that w� = w�

1 + �w �
2,

with

(1.2)

(i) w�
1 � w weakly in W 1,p (�) ,

(ii) T� (w� ) � w weakly in L p(�; W 1,p (Y )),

(iii) T� (w�
2) � �w weakly in L p(�; W 1,p (Y )),

(iv) T� (� w� ) � � w + � y �w weakly in L p(� × Y ),

where �w belongs toL p(�; W 1,p
per (Y )).

In section 5 we apply the periodic unfolding method to a classical periodic homog-
enization problem. We point out that, in the framework of this method, the proof of
the homogenization result is elementary. It relies essentially on formula (1.1), on the
properties of T� , and on convergences (1.2). It applies directly for both homogeneous
Dirichlet or Neumann boundary conditions without hypothesis on the regularity of
� �. For nonhomogenous boundary conditions (or for Robin-type condition), some
regularity of � � is required for the problem to make sense, in which case the method
applies also directly (see Remark 5.12).

Section 6 is devoted to a corrector result, which holds without any additional
regularity on the data (contrary to all previous proofs; see [11], [30], and [59]). This
result follows from the use of the averaging operatorU� . The idea of using averages
to improve corrector results “rst appeared in Dal Maso and Defranceschi [33]. We
also give some error estimates and a new corrector result for the case of domains with



 

a smooth boundary (obtained by Griso in [42], [43], [44], and [45]). These results are
explicitely connected to the unfolding method and improve on known classical ones
(see [11] and [59]).

The periodic unfolding method is particularly well-suited for the case of multiscale
problems. This is shown in section 7 by a simple backward iteration argument. This
problem has a long history; one of the “rst papers on the subject is due to Bruggeman
[19]. Its mathematical treatment by homogenization goes back to the book of Bensous-
san, Lions, and Papanicolaou [11], where for this problem, the method of asymptotic
expansions is used. For more recent references of multiscale homogenization and its
applications, we refer to the books of Braides and Defranceschi [17], Milton [57], and
the articles by Damlamian and Donato [35], Lukkassen and Milton [54], Lukkassen
[53], Braides and Lukkassen [18], Babadjian and Báša [6], and Barchiesi [8].

The “nal section gives a list of papers where the method has been successfully
applied since the publication of [24].

To conclude, let us turn back to the papers quoted at the beginning of this
introduction and point out their relationships with our results. The dilation operation
from Arbogast, Douglas, and Hornung [5] was de“ned in a domain which is an exact
union of �Y -cells. It consists in a change of variables, similar to that used in De“nition
2.1 below. By this operation, any integral on � can be written as an integral over
� × Y. Some elementary properties of the dilation operator in the spaceL 2 were also
contained in Lemma 2 of [5].

The same dilation operator was used by Bourgeat, Luckhaus, and Mikelic in [16]
under the name of •periodic modulation.Ž Proposition 4.6 of [16] showed that if a
sequence two-scale converges and its periodic modulation converges weakly, they have
the same limit.

In the context of two-scale convergence, Allaire and Conca [3] de“ned a pair
of extension and projection operators (suited to Bloch decompositions) which are
adjoint of each other. They are similar to our operators T� and U� and the equiv-
alent of property (2.12) and Proposition 2.18(ii) below, are proved in Lemma 4.2
of [3]. These properties were exploited by Allaire, Conca, and Vanninathan in [4]
for a general bounded domain by extending all functions by zero on its comple-
ment.

In [48], Lenczner used the dilation operator (here called •two-scale transforma-
tionŽ) in order to treat the homogenization of discrete electrical networks (by nature,
the domain is a union of � -cells). The convergence of the two-scale transform is
called two-scale convergence (this would be confusing except that it was shown to be
equivalent to the original two-scale convergence). As an aside, a convergence similar
to (1.2)(iv) was also treated. In Lenczner and Mercier [49], Lenczner and Senouci-
Bereksi [50], and Lenczner, Kader, and Perrier[51], this theory was applied to periodic
electrical networks.

Finally, Casado D́šaz and Luna-Laynez [21], Casado D́šaz, Luna-Laynez, and Mar-
tin [22] and [23] used the dilation operator in the case of reticulated structures. In
this framework, they obtained the equivalent of (3.7)(i) of Theorem 3.5 below.

2. Unfolding in L p -spaces.

2.1. The unfolding operator T� . In Rn , let � be an open set and Y a reference
cell (e.g., ]0, 1[n , or more generally, a set having the paving property, with respect to
a basis (b1, . . . , bn ) de“ning the periods).

By analogy with the notation in the one-dimensional case, forz � Rn , [z]Y denotes
the unique integer combination

� n
j =1 kj bj of the periods such that z Š [z]Y belongs



 

Fig. 1 . De“nition of [z]Y and { z} Y .

to Y , and set

{ z} Y = z Š [z]Y � Y a.e. for z � Rn .

Then for eachx � Rn , one has

x = �
�� x

�

�

Y
+

� x
�

	

Y



a.e. for x � Rn (See Figure 1).

We use the following notations:

(2.1)

�
�����


������

� � =
�

� � ZN , � (� + Y ) � �
�

,

�� � = interior

�
�

� � � �

�
�
� + Y

�
�

,

� � = � \ �� � .

The set �� � is the largest union of � (� + Y) cells (� � Zn ) included in �, while � � is
the subset of � containing the parts from �

�
� + Y

�
cells intersecting the boundary� �

(see Figure 2).
Definition 2.1. For � Lebesgue-measurable on� , the unfolding operator T� is

de“ned as follows:

T� (� )(x, y ) =

�



�

�
�

�
� x

�

�

Y
+ �y



a.e. for (x, y) � �� � × Y,

0 a.e. for (x, y) � � � × Y.

Observe that the function T� (� ) is Lebesgue-measurable on �× Y and vanishes
for x outside of the set �� � .

As in classical periodic homogenization, two di�erent scales appear in the de“-
nition of T� : the •macroscopicŽ scalex gives the position of a point in the domain
�, while the •microscopicŽ scale y (= x/� ) gives the position of a point in the cell
Y . The unfolding operator doubles the dimension of the space and puts all of the
oscillations in the second variable, in this way separating the two scales (see Figures 3,
4 and Figures 5, 6).

The following property of T� is a simple consequence of De“nition 2.1 forv and
w Lebesgue-measurable; it will be used extensively:

(2.2) T� (vw) = T� (v) T� (w).



 

Fig. 2 . The domains �� � and � � .

Fig. 3 . f � (x) = 1
4 sin(2� x

� ) + x; � = 1
6 .

Fig. 4 . T� (f � ).



 

Fig. 5 . f � = f ({ x
� } Y ).

Fig. 6 . T� (f � ).

Another simple consequence of De“nition 2.1 is the following result concerning highly
oscillating functions.

Proposition 2.2. For f measurable onY, extended byY-periodicity to the whole
of Rn , de“ne the sequence{ f � } by

(2.3) f � (x) = f
� x

�



a.e. for x � Rn .

Then

T� (f � |� )(x, y ) =

�
f (y) a.e. for (x, y) � �� � × Y,

0 a.e. for (x, y) � � � × Y.

If f belongs toL p(Y ), p � [1, + �[ , and if � is bounded,

(2.4) T� (f � |� ) � f strongly in L p(� × Y ).

Remark 2.3. An equivalent way to de“ne f � in (2.3) is to take simply f � (x) =
f ({ x

� } Y ). For example, with

f (y) =

�
1 for y �

�
0, 1/ 2

�
,

2 for y �
� 1/ 2, 1

�
,

f � is the highly oscillating periodic function, with period � from Figure 5.



 

Remark 2.4. Let f in L p(Y ), p � [1, + �[, and f � be de“ned by (2.3). It is
well-known that { f � |� } converges weakly inL p(�) to the mean value of f on Y , and
not strongly unless f is a constant (see Remark 2.11 below).

The next two results, essential in the study of the properties of the unfolding
operator, are also straightforward from De“nition 2.1.

Proposition 2.5. For p � [1, + �[ , the operator T� is linear and continuous
from L p(�) to L p(� × Y). For every � in L 1(�) and w in L p(�) ,

(i)
1

|Y |

�

� × Y
T� (� )(x, y ) dx dy =

�

�
� (x) dx Š

�

� �

� (x) dx =
�

�� �

� (x) dx,

(ii)
1

|Y |

�

� × Y
|T� (� )| dxdy 	

�

�
|� | dx,

(iii)

�
�
�
�

�

�
� dx Š

1
|Y |

�

� × Y
T� (� ) dxdy

�
�
�
� 	

�

� �

|� | dx,

(iv) 
T � (w)
 L p (� × Y ) = | Y |
1
p 
 w 1�� �


 L p (�) 	 | Y |
1
p 
 w
 L p (�) .

Proof. Recalling De“nition 2.2 of �� � , one has

1
|Y |

�

� × Y
T� (� )(x, y ) dx dy =

1
|Y |

�

�� � × Y
T� (� )(x, y ) dx dy

=
1

|Y |

�

� � � �

�

( �� + �Y )× Y
T� (� )(x, y ) dx dy.

On each (�� + �Y ) × Y , by de“nition, T� (� )(x, y ) = � (�� + �y ) is constant in x. Hence,
each integral in the sum on the right-hand side successively equals

�

( �� + �Y )× Y
T� (� )(x, y ) dx dy = |�� + �Y |

�

Y
� (�� + �y ) dy

= � n |Y |
�

Y
� (�� + �y ) dy = |Y |

�

( �� + �Y )
� (x) dx.

By summing over � � , the right-hand side becomes
�

�� �
� (x) dx, which gives the

result.
Property (iii) in Proposition 2.5 shows that any integral of a function on � is

•almost equivalentŽ to the integral of its unfolded on � × Y; the •integration defectŽ
arises only from the cells intersecting the boundary� � and is controlled by its integral
over � � .

The next proposition, which we call unfolding criterion for integrals (u.c.i.),
is a very useful tool when treating homogenization problems.

Proposition 2.6 ( u.c.i.). If { � � } is a sequence inL 1(�) satisfying
�

� �

|� � | dx � 0,

then
�

�
� � dx Š

1
|Y |

�

� × Y
T� (� � ) dxdy � 0.

Based on this result, we introduce the following notation.



 

Notation. If { w� } is a sequence satisfying u.c.i., we write
�

�
w� dx

T �
�

1
|Y |

�

� × Y
T� (w� ) dxdy.

Proposition 2.7. Let { u� } be a bounded sequence inL p(�) , with p � ]1, + �]
and v � L p�

(�) (1/p + 1 /p � = 1 ), then

(2.5)
�

�
u� v dx

T �
�

1
|Y |

�

� × Y
T� (u� )T� (v) dxdy.

Suppose� � is bounded. Let{ u� } be a bounded sequence inL p(�) and { v� } a bounded
sequence inL q(�) , with 1/p + 1 /q < 1, then

(2.6)
�

�
u� v� dx

T �
�

1
|Y |

�

� × Y
T� (u� )T� (v� ) dxdy.

Proof. Observe that 1� � (x) � 0 for all x � � . Consequently, by the Lebesgue
dominated convergence theorem, one gets

�
� �

|v|p
�
dx � 0, and then by the Hölder in-

equality,
�

� �
|u� v| dx � 0. This proves (2.5). If � � is bounded, then one immediately

has |� � | � 0 when � � 0, and this implies (2.6).
We now investigate the convergence properties related to the unfolding operator

when � � 0. For � uniformly continuous on �, with modulus of continuity m� , it is
easy to see that

sup
x � �� � ,y � Y

|T� (� )(x, y ) Š � (x)| 	 m� (� ).

So, as� goes to zero, even thoughT� (� ) is not continuous, it converges to� uniformly
on any open set strongly included in �. By density, and making use of Proposition 2.5,
further convergence properties can be expressed using the mean value of a function
de“ned on � × Y.

Definition 2.8. The mean value operatorM
Y

: L p(� × Y ) �� L p(�) for p �
[1, + �] , is de“ned as follows:

(2.7) M
Y

(�)(x ) =
1

|Y |

�

Y
�( x, y) dy a.e. for x � � .

Observe that an immediate consequence of this de“nition is the estimate


M
Y

(�) 
 L p (�) 	 | Y |Š
1
p 
 � 
 L p (� × Y ) for every � � L p(� × Y ).

Proposition 2.9. Let p belong to[1, + �[ .
(i) For w � L p(�) ,

T� (w) � w strongly in L p(� × Y ).

(ii) Let { w� } be a sequence inL p(�) such that

w� � w strongly in L p(�) .

Then

T� (w� ) � w strongly in L p(� × Y ).



 

(iii) For every relatively weakly compact sequence{ w� } in L p(�) , the correspond-
ing {T� (w� )} is relatively weakly compact inL p(� × Y ). Furthermore, if

T� (w� ) � �w weakly in L p(� × Y),

then

w� � M
Y

( �w) weakly in L p(�) .

(iv) If T� (w� ) � �w weakly in L p(� × Y ), then

(2.8) 
 �w
 L p (� × Y ) 	 lim inf
� � 0

|Y |
1
p 
 w� 
 L p (�) .

(v) Supposep > 1, and let { w� } be a bounded sequence inL p(�) . Then, the
following assertions are equivalent:

(a) T� (w� ) � �w weakly in L p(� × Y) and lim sup
� � 0

|Y |
1
p 
 w� 
 L p (�) 	


 �w
 L p (� × Y ) ,

(b) T� (w� ) � �w strongly in L p(� × Y ) and
�

� �

|w� |p dx � 0.

Proof. (i) The result is obvious for any w � D (�). If w � L p(�), let � � D (�).
Then, by using (iv) from Proposition 2.5,


T � (w) Š w
 L p (� × Y ) = 
T � (w Š � ) +
�
T� (� ) Š �

�
+ ( � Š w)
 L p (� × Y )

	 2|Y |
1
p 
 w Š � 
 L p (�) + 
T � (� ) Š � 
 L p (� × Y ) ,

hence,

lim sup
� � 0


T � (w) Š w
 L p (� × Y ) 	 2|Y |
1
p 
 w Š � 
 L p (�) ,

from which statement (i) follows by density.
(ii) The following estimate, a consequence of Proposition 2.5(iv), gives the result


T � (w� ) Š T� (w)
 L p (� × Y ) 	 | Y |
1
p 
 w� Š w
 L p (�) � w � L p(�) .

(iii) For p � ]1, + �[, by Proposition 2.5(iv), boundedness is preserved by T� .
Suppose thatT� (w� ) � �w weakly in L p(� × Y), and let � � L p�

(�). From Proposi-
tion 2.7,

�

�
w� (x) � (x) dx

T �
�

1
|Y |

�

� × Y
T� (w� )(x, y ) T� (� )(x, y ) dx dy.

In view of (i), one can pass to the limit in the right-hand side to obtain

lim
� � 0

�

�
w� (x) � (x) dx =

�

�

�
1

|Y |

�

Y
�w(x, y) dy

�
� (x) dx.

For p = 1, one uses the extra property satis“ed by weakly convergent sequences
in L 1(�), in the form of the De La Vall´ ee…Poussin criterion (which is equivalent to



 

relative weak compactness): there exists a continuous convex function � :R+ �� R+

such that

lim
t � + �

�( t)
t

= + �, and the set
� �

�

�
� 
 | w� |

�
(x) dx

�
is bounded.

Unfolding the last integral shows that
� �

� × Y

�
� 
 |T � (w� )|

�
(x, y) dxdy

�
is bounded,

which completes the proof of weak compactness of{T� (w� )} in L 1(� × Y ) in the case
of � with “nite measure. For the case where the measure of � is not “nite, a similar
argument shows that the equiintegrability at in“nity of the sequence { w� } carries over
to {T� (w� )} .

If T� (w� ) � �w weakly in L 1(� × Y ), let � be in D(�). For � su�ciently small,
one has

�

�
w� (x) � (x) dx =

1
|Y |

�

� × Y
T� (w� )(x, y ) T� (� )(x, y ) dx dy.

In view of (i), one can pass to the limit in the right-hand side to obtain

lim
� � 0

�

�
w� (x) � (x) dx =

�

�

�
1

|Y |

�

Y
�w(x, y) dy

�
� (x) dx.

(iv) Inequality (2.8) is a simple consequence of Proposition 2.5(ii).
(v) Proposition 2.5(i) applied to the function |w� |p gives

1
|Y |


T � (w� )
 p
L p (� × Y ) +

�

� �

|w� |p dx = 
 w� 
 p
L p (�) .

This identity implies the required equivalence.
Corollary 2.10. Let f be in L p(Y ), p � [1, + �[ , and { f � } be the sequence

de“ned by (2.3). Then

(2.9) f � |� � M
Y

(f ) weakly in L p(�) .

Proof. Proposition 2.2 gives the strong (hence weak) convergenge of{T� (f � |� )}
to f in L p(� × Y ). Convergence (2.9) follows from Proposition 2.9(iii).1

Remark 2.11. In general, in the case where �� is not null set (for every � ),
the strong (resp. weak) convergence of the sequence{T� (w� )} does not imply the
corresponding convergence for the sequence{ w� } , since it gives no control of the
sequence{ w� 1� � } . If { w� 1� � } is bounded inL p(�) and if {T � (w� )} converges weakly,
so does{ w� } by Proposition 2.9(iii). On the other hand, even if { w� 1� � } converges
strongly to 0 in L p(�), the strong convergence of {T� (w� )} does not imply that of
{ w� } as it is shown by the sequence{ f � |� } in Corollary 2.10, unlessf is a constant
on Y .

Corollary 2.12. Let p belong to]1, + �[ , let { u� } be a sequence inL p(�) such
that

T� (u� ) � u weakly in L p(� × Y ),

1Note that the proof of convergence (2.9) is really straightforward when using unfolding!



 

and let { v� } be a sequence inL p�
(�) (1/p + 1 /p � = 1 ), with

T� (v� ) � v strongly in L p�
(� × Y).

Then, for any � in Cc(�) , one has
�

�
u� (x) v� (x) � (x)dx �

1
|Y |

�

� × Y
u(x, y) v(x, y) � (x)dxdy.

Moreover, if
�

� �

|v� |p
�
dx � 0,

then, for any � in C(�) , one has
�

�
u� (x) v� (x) � (x)dx �

1
|Y |

�

� × Y
u(x, y) v(x, y) � (x)dxdy.

Proof. The result follows from the fact that, in both cases, the sequence{ u� v� � }
satis“es the u.c.i. by the Hölder inequality.

Remark 2.13. A consequence of (iii) of Proposition 2.9, together with (iv) of
Proposition 2.5, is the following. Suppose the sequence{ w� } converges weakly tow
in L p(�). Then the sequence {T� (w� )} is relatively weakly compact in L p(� × Y ),
and each of its weak-limit points �w satis“es M

Y
( �w) = w.

Now recall the following de“nition from Nguetseng [58] and Allaire [1].

Two-scale convergence. Let p � ]1, + �[ . A bounded sequence{ w� } in L p(�)
two-scale converges to somew belonging toL p(� × Y ), whenever, for every smooth
function � on � × Y , the following convergence holds:

�

�
w� (x)�

�
x,

x
�



dx �

1
|Y |

� �

� × Y
w(x, y) � (x, y) dxdy.

The next result reduces two-scale convergence of a sequence to a mere weak
L p(� × Y)-convergence of the unfolded sequence.

Proposition 2.14. Let { w� } be a bounded sequence inL p(�) , with p � ]1, + �[ .
The following assertions are equivalent:

(i) {T� (w� )} converges weakly tow in L p(� × Y),
(ii) { w� } two-scale converges tow.
Proof. To prove this equivalence, it is enough to check that, for every� in a set

of admissible test functions for two-scale convergence (for instance,D(� , L q(Y ))), the
sequence{T� [� (x, x/� )]} converges strongly to� in L q(� × Y )). This follows from
the de“nition of T� , indeed

T�

�
�

�
x,

x
�


�
(x, y) = �

�
�
� x

�

�

Y
+ �y, y



.

Remark 2.15. Proposition 2.14 shows that the two-scale convergence of a se-
quence in L p(�) , p � ]1, + �[, is equivalent to the weak ŠL p(� × Y) convergence of
the unfolded sequence. Notice that, by de“nition, to check the two-scale convergence,
one has to use special test functions. To check a weak convergence in the space
L p(� × Y ), one simply makes the use of functions in the dual spaceL p�

(� × Y ).
Moreover, due to density properties, it is su�cient to check this convergence only on
smooth functions from D(� × Y).



 

2.2. The averaging operator U� . In this section, we consider the adjoint U�

of T� , which we call averaging operator. In order to do so, letv be in L p(� × Y ), and
let u be in L p�

(�). We have successively,

1
|Y |

�

� × Y
T� (u)(x, y ) v(x, y) dxdy =

1
|Y |

�

�� � × Y
T� (u)(x, y ) v(x, y) dxdy

=
1

|Y |

�

� � � �

�

� ( � +Y )× Y
u(�� + �y ) v(x, y) dxdy

=
�

� � � �

1
|Y |

�

Y × Y
u(�� + �y ) v(�� + �z, y )� N dzdy

=
�

� � � �

1
|Y |

�

Y
dz

�

� ( � + Y )
u(x) v

�
�
� x

�

�

Y
+ �z,

� x
�

	

Y



dx

=
�

�� �

u(x)
�

1
|Y |

�

Y
v

�
�

� x
�

�

Y
+ �z,

� x
�

	

Y



dz

�
dx.

This gives the formula for the averaging operatorU� .
Definition 2.16. For p in [1, + �] , the averaging operatorU� : L p(� × Y ) ��

L p(�) is de“ned as

U� (�)(x ) =

�



�

1
|Y |

�

Y
�

�
�
� x

�

�

Y
+ �z,

� x
�

	

Y



dz a.e. for x � �� � ,

0 a.e. for x � � � .

Consequently, for � � L p(�) and � � L p�
(� × Y ), one has

�

�
U� (�)(x ) � (x) dx =

1
|Y |

�

� × Y
�( x, y) T� (� )(x, y ) dxdy.

As a consequence of the duality (Hölder•s inequality) and of Proposition 2.5(iv),
we get the following.

Proposition 2.17. Let p belong to [1, + �] . The averaging operator is linear
and continuous from L p(� × Y ) to L p(�) and

(2.10) 
U � (�) 
 L p (�) 	 | Y |Š
1
p 
 � 
 L p (� × Y ) .

The operator U� maps L p(� × Y ) into the space L p(�). It allows one to replace
the function x �� �( x, { x

� } Y ), which is meaningless, in general, by a function which
always makes sense. Notice that this implies, in particular, that the largest set of test
functions for two-scale convergence is actually the setU� (�), with � in L p�

(� × Y ).
It is immediate from its de“nition that U� is almost a left-inverse ofT� , since

(2.11) U�
�
T� (� )

�
(x) =

�
� (x) a.e. for x � �� � ,

0 a.e. for x � � � ,

for every � in L p(�), while

(2.12)

T� (U� (�))(x, y ) =

�
��


���

1
| Y |

�

Y
�

�
�
� x

�

�

Y
+ �z, y



dz a.e. for (x, y) � �� � × Y,

0 a.e. for (x, y) � � � × Y,

for every � in L p(� × Y ).



 

Proposition 2.18 ( properties of U� ). Suppose thatp is in [1, + �[ .
(i) Let { � � } be a bounded sequence inL p(� × Y) such that � � � � weakly in

L p(� × Y). Then

U� (� � ) � M
Y

(�) =
1

|Y |

�

Y
�( · , y) dy weakly in L p(�) .

In particular, for every � � L p(� × Y),

U� (�) � M
Y

(�) weakly in L p(�) ,

but not strongly, unless� is independent ofy.
(ii) Let { � � } be a sequence such that� � � � strongly in L p(� × Y ). Then

T� (U� (� � )) � � strongly in L p(� × Y ).

(iii) Suppose that{ w� } is a sequence inL p(�) . Then, the following assertions are
equivalent:

(a) T� (w� ) � �w strongly in L p(� × Y),

(b) w� 1�� �
Š U� ( �w) � 0 strongly in L p(�) .

(iv) Suppose that{ w� } is a sequence inL p(�) . Then, the following assertions are
equivalent:

(c) T� (w� ) � �w strongly in L p(� × Y ) and
�

� �

|w� |p dx � 0,

(d) w� Š U� ( �w) � 0 strongly in L p(�) .

Proof. (i) This follows from Proposition 2.9(ii) by duality for p > 1. It still holds
for p = 1 in the same way as the proof of Proposition 2.9(ii). Indeed, if the De La
Vall ée…Poussin criterion is satis“ed by the sequence{ � � } , it is also satis“ed by the
sequence{U� (� � )} , since for F convex and continuous, Jensen•s inequality implies
that

F (U� (� � ))( x) 	 U � (F (� � ))( x).

(ii) The proof follows the same lines as that of (i)…(ii) of Proposition 2.9.
(iii) The implication (a) �(b) follows from (2.10) applied to � � = w� 1�� �

Š U� ( �w)
and from (2.11).

As for the converse (b)�(a), Proposition 2.9(ii) implies that

T� (w� 1�� �
Š U� ( �w)) � 0 strongly in L p(� × Y).

SinceT� (w� ) = T� (w� 1�� �
), from (ii) above it converges to �w strongly in L p(� × Y ).

(iv) The implication (c) �(d) follows from (iii) and the second condition of (c).
Its converse (d)�(c) is a consequence of from (iii): since U� ( �w) 1� � = 0, (d)

implies (b) and w� 1� � � 0 in L p(�).
Remark 2.19. The statement of Proposition 2.18(iii) does not hold with weak

convergences instead of strong ones, contrary to an erroneous statement made in [24].
In view of (2.11) and Proposition 2.18(i), if T� (w� ) � �w weakly in L p(� × Y ), then
w� 1�� �

Š U� ( �w) converges weakly to 0 inL p(�).



 

But the converse of this last implication cannot hold. Indeed, choose�v with
M

Y
(�v) = 0. By Proposition 2.18(i), U� (�v) converges weakly toM

Y
(�v) = 0. Conse-

quently, the weak limit of w� 1�� �
Š U� ( �w) is also the weak limit of w� 1�� �

Š U� ( �w + �v).
If the converse were true, it would imply that T� (w� ) converges weakly to both �w and
�w + �v. So �v = 0. In other words, M

Y
(�v) = 0 would imply �v = 0.

Remark 2.20. Assertions (iii)(b) and (iv)(d) are corrector…type results.
Remark 2.21. The condition (iii)(a) is used by some authors to de“ne the notion

of •strong two-scale convergence.Ž From the above considerations, condition (c) of
Proposition 2.18(iv) is a better candidate for this de“nition.

2.3. The local average operator M � . In this section, we consider the classical
average operator associated to the partition of � by � -cellsY (setting it to be zero on
the cells intersecting the boundary� �).

Definition 2.22. The local average operatorM � : L p(�) �� L p(�) , for p �
[1, + �] , is de“ned by

(2.13) M � (� )(x ) =

�
��


���

1
� N |Y |

�

�
� x

�

�

y

� (	 ) d	 if x � �� � ,

0 if x � � � .

Remark 2.23. It turns out that the local average M � is connected to the unfolding
operator T� . Indeed, by the usual change of variable cell by cell,

M � (� )(x ) =
1

|Y |

�

Y
T� (� )(x, y ) dy = M

Y

�
T� (� )

�
(x).

Remark 2.24. Note that, for any � in L p(�), one has T� (M � (� )) = M � (� ) on
the set � × Y . Moreover, one also hasU� (� ) = M � (� ).

Proposition 2.25 ( properties of M � ).
(i) Suppose thatp is in [1, + �] . For any any � in L p(�) ,


M � (� )
 L p (�) 	 
 � 
 L p (�) .

(ii) Suppose thatp is in [1, + �] . For � � L p(�) and � � L p�
(�) ,

(2.14)
�

�
M � (� ) � dx =

�

�
M � (� ) M � (� ) dx =

�

�
� M � (� ) dx.

(iii) Suppose thatp is in [1, + �[ . Let { v� } be a sequence such thatv� � v strongly
in L p(�) . Then

M � (v� ) � v strongly in L p(�) .

In particular, for every � � L p(�) ,

(2.15) M � (� ) � � strongly in L p(�) .

(iv) Suppose thatp is in [1, + �[ . Let { v� } be a sequence such thatv� � v weakly
in L p(�) . Then

M � (v� ) � v weakly in L p(�) .

The same holds true for the weak-� topology in L � (�) .



 

Proof. The proofs of (i) and (ii) are straightforward. The proof of (iii) is a simple
consequence of (ii) of Proposition 2.9. For the proof of (iv), let� be in L p�

(�), with
p

�
� [1, + �[ ( p �= 1), and use (2.14) and (2.15) to obtain

�

�
� M � (v� ) dx =

�

�
M � (� ) v� dx �

�

�
� v dx.

For p = 1, in the same way as the proof of Proposition 2.9(ii) and Proposi-
tion 2.18(i), if the De La Vall´ee…Poussin criterion is satis“ed by the sequence{ v� } ,
it is also satis“ed by the sequence{M � (v� )} , since for F convex and continuous,
Jensen•s inequality implies that

F (M � (v� ))( x) 	 M � (F (v� ))( x),

which ends the proof.
Corollary 2.26. Suppose thatp is in [1, + �[ . Let w be in L p(�) and { w� } be

a sequence inL p(�) satisfying T� (w� ) � w strongly in L p(� × Y). Then,

w� 1�� �
� w strongly in L p(�) .

Furthermore, if
�

� �
|w� |p � 0, then, w� � w strongly in L p(�) .

Proof. Since w does not depend ony, one has U� (w) = M � (w) which, by
Proposition 2.25(iii), converges strongly to w. The conclusion follows from Propo-
sition 2.18(iii), respectively, (iv).

3. Unfolding and gradients. This section is devoted to the properties of the
restriction of the unfolding operator to the space W 1,p (�). Some results require no
extra hypotheses, but many others are sensitive to the boundary conditions and the
regularity of the boundary itself.

Observe that, for w in W 1,p (�), one has

(3.1) � y (T� (w)) = � T� (� w), � w � W 1,p (�) a.e. for ( x, y) � � × Y.

Then, Proposition 2.5(iv) implies that T� maps W 1,p (�) into L p(�; W 1,p (Y )).
For simplicity, we assume that Y =]0, 1[n . Nevertheless, the results we prove here

hold true in the case of a generalY , with minor modi“cations.
Proposition 3.1 ( gradient in the direction of a period). Let k in [1, . . . , n] and

{ w� } be a bounded sequence inL p(�) , with p � ]1, + �] , satisfying

(3.2) �

�
�
�
�

�w �

�x k

�
�
�
�

L p (�)
	 C.

Then, there exist a subsequence (still denoted� ) and �w in L p(� × Y ), with � �w
�y k

in
L p(� × Y) such that

(3.3)

T� (w� ) � �w weakly in L p(� × Y),

� T�

�
�w �

�x k

�
=

� T� (w� )
�y k

�
� �w
�y k

weakly in L p(� × Y), (weakly-� for p = + �) .

Moreover, the limit function �w is 1-periodic, with respect to theyk coordinate.



 

Proof. Convergences (3.3) are a simple consequence of (3.1) and (3.2). It remains
to prove the periodicity of �w. Without loss of generality, assumek = n and write
y = ( y� , yn ), with y� in Y � .=]0, 1[n Š 1 and yn � ]0, 1[.

Let � � D (� × Y � ). Convergences (3.3) imply that the sequence{T� (w� )} is
bounded in L p(� × Y � ; W 1,p (0, 1)) so that {T� (w� )|{y n = s} } is bounded in L p(� × Y � )
for every s � [0, 1]. The periodicity with respect to yn results from the following
computation with an obvious change of variable:

�

� × Y �

�
T� (w� )(x, (y � , 1)) Š T� (w� )(x, (y � , 0)

�
� (x, y � ) dx dy �

=
�

� × Y �

�
w�

�
�
� x

�

�

Y
+ � (y � , 1)



Š w�

�
�
� x

�

�

Y
+ � (y � , 0)


	
� (x, y � ) dx dy�

=
�

� × Y �
w�

�
�
� x

�

�

Y
+ � (y � , 0)


 �
� (x Š �e n , y� ) Š � (x, y � )

�
dx dy� ,

=
�

� × Y �
T� (w� )(x, (y � , 0))

�
� (x Š �e n , y� ) Š � (x, y � )

�
dx dy� ,

which goes to zero.
Corollary 3.2. Let { w� } be in W 1,p (�) , with p � ]1, + �[ , and assume that

{ w� } is a bounded sequence inL p(�) satisfying

� 
� w� 
 L p (�) 	 C.

Then, there exist a subsequence (still denoted� ) and �w � L p(�; W 1,p (Y )) such that

T� (w� ) � �w weakly in L p(�; W 1,p (Y )),

� T� (� w� ) � � y �w weakly in L p(� × Y ).

Moreover, the limit function �w is Y -periodic, i.e., belongs toL p(�; W 1,p
per (Y )), where

W 1,p
per (Y ) denotes the Banach space ofY -periodic functions in W 1,p

loc (Rn ), with the
W 1,p (Y ) norm.

Corollary 3.3. Let p be in ]1, + �[ and { w� } be a sequence converging weakly
in W 1,p (�) to w. Then,

T� (w� ) � w weakly in L p(�; W 1,p (Y )).

Furthermore, if { w� } converges strongly tow in L p(�) , the above convergence is strong
(this is the case if, for example,W 1,p (�) is compactly embedded inL p(�) ).

Proof. Using (3.1), since{ w� } weakly converges, one has the estimates


T � (w� )
 L p (� × Y ) 	 C,


� y (T� (w� ))
 L p (� × Y ) 	 �C,

so that there exist a subsequence (still denoted� ) and �w in L p(�; W 1,p (Y )) such that

(3.4)
T� (w� ) � �w weakly in L p(�; W 1,p (Y )),

� y (T� (w� )) � 0 strongly in L p(� × Y ),

and � y �w = 0. Consequently, �w does not depend ony, and Proposition 2.9(iii)
immediately givesw = M

Y
( �w) = �w. Moreover, convergence (3.4) holds for the entire



 

sequence� . Finally, if the sequence{ w� } converges strongly tow in L p(�), so does
the sequence{T� (w� )} , thanks to Proposition 2.9(ii).

Proposition 3.4. Suppose thatp is in [1, + �[ . Let { w� } be a sequence which
converges strongly to somew in W 1,p (�) . Then,

(i) T� (� w� ) � � w strongly in L p(� × Y),

(ii)
1
�

�
T� (w� ) Š M � (w� )



� yc · � w strongly in L p(�; W 1,p (Y )),

where

yc =
�

y1 Š
1
2

, . . . , yn Š
1
2

�
.

Proof. The “rst asssertion follows from Proposition 2.9(i). To prove (ii), set

Z�
.=

1
�

�
T� (w� ) Š M � (w� )



,

which has mean value zero inY . Since

� y Z� =
1
�

� y
�
T�

�
w�

��
= T�

�
� w�

�
,

thanks to assertion (i),

� y Z� � � w strongly in L p(� × Y).

Then recall the Poincaré…Wirtinger inequality inY :

(3.5) � � � W 1,p (Y ),
�
� � Š M

Y
(� )

�
�

L p (Y ) 	 C
� � 
 L p (Y ) .

Applying it to the function Z� Š yc · � w (which is of mean value zero) gives

(3.6)
�
� Z� Š yc · � w

�
�

L p (� × Y ) 	 C
� y Z� Š � w
 L p (� × Y ) ,

and this concludes the proof.
Theorem 3.5. Suppose thatp is in ]1, + �[ . Let { w� } be a sequence converg-

ing weakly to somew in W 1,p (�) . Up to a subsequence, there exists some�w in
L p(�; W 1,p

per (Y )) such that

(3.7)
(i) T� (� w� ) � � w + � y �w weakly in L p(� × Y ),

(ii)
1
�

�
T� (w� ) Š M � (w� )



� �w + yc · � w weakly in L p(�; W 1,p (Y )).

Moreover, M
Y

( �w) = 0 .

Proof. Following the same lines as in the previous proof, introduce

Z� =
1
�

�
T� (w� ) Š M � (w� )



,

which has mean value zero inY . Since� y Z� = T�
�
� w�

�
, (ii) implies (i).



 

To prove (ii), note that the sequence{� y Z� } is bounded in L p(� × Y). By (3.6),
�
� Z� Š yc · � w

�
�

L p (� × Y ) 	 C

so that there exists �w in L p(�; W 1,p (Y )) such that, up to a subsequence,

Z� Š yc · � w � �w weakly in L p(�; W 1,p (Y )).

Since, by construction,M
Y

(yc) vanishes, so doesM
Y

( �w).
It remains to prove the Y-periodicity of �w. This is obtained in the same way as

in the proof of Proposition 3.1 by using a test function � � D (� × Y �). One has
successively,
�

� × Y �

�
Z� (x, (y � , 1)) Š Z� (x, (y � , 0)

�
� (x, y � ) dx dy �

=
�

� × Y �

1
�

�
w�

�
�
� x

�

�

Y
+ � (y � , 1)



Š w�

�
�
� x

�

�

Y
+ � (y � , 0)


	
� (x, y � ) dx dy�

=
�

� × Y �
w�

�
�
� x

�

�

Y
+ � (y � , 0)


 1
�

�
� (x Š �e n , y� ) Š � (x, y � )

�
dx dy� ,

=
�

� × Y �
T� (w� )(x, (y � , 0))

1
�

�
� (x Š �e n , y� ) Š � (x, y � )

�
dx dy� .

By Proposition 2.9(ii), {T � (w� )} converges strongly tow in L p(� × Y ), and by (3.7)
(i), it converges weakly to the samew in L p(�; W 1,p (Y )). By the trace theorem in
W 1,p (Y ), the trace of T� (w� ) on � × Y � converges weakly tow in L p(� × Y �). Hence,
the last integral converges to

(3.8) Š
�

� × Y �
w(x)

��
�x n

(x, y � ) dx dy� .

Similarly, since (yc · � w)(y � , 1) Š (yc · � w)(y � , 0) = �w
�x n

, we obtain
�

� × Y �

�
(yc · � w)(y � , 1) Š (yc · � w)(y � , 0)] � (x, y � ) dx dy �

=
�

� × Y �

�w
�x n

� (x, y � ) dx dy� = Š
�

� × Y �
w(x)

��
�x n

(x, y � ) dx dy� .

This, together with (3.8) and convergence (3.7)(ii), shows that
�

� × Y �

�
�w(x, (y � , 1)) Š �w(x, (y � , 0)

�
� (x, y � ) dx dy � = 0 ,

so that �w is yn -periodic. The same holds in the directions of all of the other
periods.

Theorem 3.5 can be generalized to the case ofW k,p (�)-spaces, with k � 1 and
p � ]1, + �[ . In order to do so, for r = ( r 1, . . . , r n ) � Nn with |r | = r1 + · · · + rn 	 k,
introduce the notation D r and D r

y :

D r =
� |r |

�x r 1
1 . . . �x r n

n
, D r

y =
� |r |

�y r 1
1 . . . �y r n

n
.

Then the following result holds.



 

Theorem 3.6. Let { w� } be a sequence converging weakly inW k,p (�) to w,
k � 1, and p � ]1, + �[ . There exist a subsequence (still denoted� ) and �w in the space
L p(�; W k,p

per (Y )) such that

(3.9)

�
T� (D l w� ) � D l w weakly in L p(�; W kŠ l,p (Y )), |l | 	 k Š 1,

T� (D l w� ) � D l w + D l
y �w weakly in L p(� × Y), |l | = k.

Furthermore, if { w� } converges strongly tow in W kŠ 1,p (�) , the above convergences
are strong in L p(�; W kŠ l,p (Y )) for |l | 	 k Š 1.

Proof. We give a brief proof for k = 2. The same argument generalizes fork > 2.
If |l | = 1, the “rst convergence in (3.9) follows directly from Corollary 3.3. Set

W� =
1
� 2

�
T� (w� ) Š M � (w� ) Š yc · M �

�
� w�

� �
.

The sequence{ w� } is bounded inW 2,p (�), hence proceeding as in the proof of Propo-
sition 2.25(iii), one obtains

�
� W�

�
�

L p (� × Y ) 	 C.

Moreover,

� y
�
W�

�
=

1
� 2

�
T�

�
� w�

�
Š M � (� w� )



,

and

D l
y

�
W�

�
= T�

�
D l w�

�
, with |l | = 2 .

This implies that the sequence{ W� } is bounded inL p(�; W 2,p (Y )). Therefore, there
exist a subsequence (still denoted� ) and  w � L p(�; W 2,p (Y )) such that
(3.10)

W� �  w weakly in L p(�; W 2,p (Y )),

�W �

�y i
=

1
� 2

�
T�

�
�w �

�x i

�
Š M �

�
�w �

�x i

��
�

�  w
�y i

weakly in L p(�; W 1,p (Y )).

Consequently,

(3.11) D l
y (W� ) = T� (D l w� ) � D l

y  w weakly in L p(� × Y), |l | = 2 .

Now, apply Theorem 3.5 to each of the derivatives�w �
�x i

, i � { 1, . . . , n} . There exist a
subsequence (still denoted� ) and �wi � L p(�; W 1,p

per (Y )) such that M
Y

( �wi ) � 0 and

1
�

�
T�

�
�w �

�x i

�
Š M �

�
�w �

�x i

��
� y c · �

�w
�x i

+ �wi weakly in L p(� × Y ).

Then (3.10) gives

(3.12) � i � { 1, . . . , n} ,
�  w
�y i

= yc · �
�w
�x i

+ �wi .

Set

�w =  w Š
1
2

n�

i,j =1

�
yc

i yc
j Š M

Y
(yc

i yc
j )

� � 2w
�x i �x j

.



 

By construction, the function �w belongs toL p(�; W 2,p (Y )). Furthermore,

M
Y

( �w) = 0 ,
� �w
�y i

=
�  w
�y i

Š yc · �
�

�w
�x i

�
= �wi , and M

Y
(� y �w) = 0 .

The last equality implies that �w belongs toL p(�; W 2,p
per (Y )). Finally from (3.12) one

gets

D l
y  w = D l w + D l

y �w, with |l | = 2 ,

which together with (3.11), proves the last convergence of (3.9).
Corollary 3.7. Let { w� } be a sequence converging weakly inW 2,p (�) to w,

and p � ]1, + �[ . Then, there exist a subsequence (still denoted� ) and �w in the space
L p(�; W 2,p

per (Y )) such that

1
� 2

�
T� (w� ) Š M � (w� ) Š yc · M �

�
� w�

� �
�

1
2

n�

i,j =1

�
yc

i yc
j Š M

Y
(yc

i yc
j )

� � 2w
�x i �x j

+ �w

weakly in L p(�; W 2,p (Y )), where �w is such that M
Y

( �w) = 0 .
Remark 3.8. For the caseY =]0, 1[n , yc was de“ned in Proposition 3.4. For a

generalY , all of the statements of this section hold true, with yc = y Š M
Y

(y).

4. Macro-micro decomposition: The scale-splitting operators Q �

and R � . In this section, we give a di�erent proof of Theorem 3.5, which was the
one given originally in [24]. It is based on a scale-separation decomposition which is
useful in some speci“c situations, for example, in the statement of general corrector
results (see section 6).

The procedure is based on a splitting of functions� in W 1,p (�) (or in W 1,p
0 (�))

for p � [1, + �], in the form

� = Q� (� ) + R � (� ),

where Q� (� ) is an approximation of � having the same behavior as� , while R � (� )
is a remainder of order � . Applied to the sequence{ w� } converging weakly to w
in W 1,p (�), it shows that, while {� w� } , {� (Q� (w� ))} and {T� (�Q � (w� ))} have the
same weak limit � w in L p(�), respectively, in L p(� × Y ), the sequenceT�

�
� (R � (w� ))

�

converges weakly inL p(� × Y ) to � y �w� for some �w� in L p(�; W 1,p
per (Y )).

We will distinguish between the caseW 1,p
0 (�) and the case W 1,p (�). For the

former, any function � in W 1,p
0 (�) is extended by zero to the whole of Rn , and this

extension is denoted by � . In the latter case, we suppose that� � is smooth enough so
that there exists a continuous extension operatorP : W 1,p (�) �� W 1,p (Rn ) satisfying


P (� )
 W 1,p (Rn ) 	 C 
 � 
 W 1,p (�) , � � � W 1,p (�) ,

where C is a constant depending onp and � � only.
The construction of Q� is based on theQ1 interpolate of some discrete approx-

imation, as is customary in FEM. The idea of using these types of interpolate was
already present in Griso [40], [41] for the study of truss-like structures. For the pur-
pose of this paper, it is enough to take the average on�� + �Y to construct the discrete
approximations, but the average on�� + �Y � , whereY � is any “xed open subset ofY ,



 

or any open subset of a manifold of codimension 1 inY . The only property which is
needed is the Poincaré…Wirtinger inequality, which holds in both of these cases.

Definition 4.1. The operator Q� : L p(Rn ) �� W 1,� (Rn ), for p � [1, + �] , is
de“ned as follows:

(4.1) Q� (� )(�� ) = M � (� )(�� ) for � � � Zn ,

and for any x � Rn , we set

(4.2)
Q� (� )(x ) is the Q1 interpolate of the values ofQ� (� ) at the vertices

of the cell �
� x

�

�

Y
+ �Y.

In the case of the spaceW 1,p
0 (�) , the operator Q� : W 1,p

0 (�) �� W 1,� (�) is
de“ned by

Q� (� ) = Q� (  � )|� ,

where Q� (  � ) is given by (4.1).
In the case of the spaceW 1,p (�) , the operator Q� : W 1,p (�) �� W 1,� (�) is

de“ned by

Q� (� ) = Q� (P(� ))| � ,

where Q� (P(� )) is given by (4.1).
We start with the following estimates.
Proposition 4.2 ( properties of Q� on Rn ). For � in L p(Rn ), p � [1, + �] , there

exists a constant C depending onn and Y only, such that

(i) 
Q � (� )
 L p (Rn ) 	 C
 � 
 L p (Rn ) , (ii) 
�Q � (� )
 L p (Rn ) 	
C
�


 � 
 L p (Rn ) ,

(iii) 
Q � (� )
 L � (Rn ) 	
C

� n/p

 � 
 L p (Rn ) , (iv) 
�Q � (� )
 L � (Rn ) 	

C
� 1+ n/p


 � 
 L p (Rn ) .

Furthermore, for any � in L p(Y ),

(4.3)
�
�
� Q� (� )�

�� ·
�

	

Y


 �
�
�

L p (Rn )
	 C
 � 
 L p (Rn ) 
 � 
 L p (Y ) ;

if � is in W 1,p
per (Y ), then

(4.4)
�
�
� Q� (� )�

�� ·
�

	

Y


 �
�
�

W 1,p (Rn )
	

C
�


 � 
 L p (Rn ) 
 � 
 W 1,p (Y ) .

Proof. By de“nition, the Q1 interpolate is Lipschitz-continuous and reaches its
maximum at some �� . So, to estimate theL � norm of Q� (� ), it su�ces to estimate
the Q� (� )(�� )� s. By (4.1),

(4.5) |Q� (� )(�� )|p 	
1

|Y |

�

Y
|� (�� + �z )|p dz =

1
� n |Y |

�

�� + �Y
|� (x)|p dx.

Since

1
� n |Y |

�

�� + �Y
|� (x)|p dx 	

1
� n |Y |


 � 
 p
L p (Rn ) ,

estimate (iii) follows, with C = 1
|Y |1/p .



 

The spaceQ1(Y ) is of dimension 2n , hence all of the norms are equivalent. So,
there are constantsc1, c2, and c3 (depending only uponp and Y) such that, for every
� � Q1(Y ),


� � 
 L � (Y ) 	 c1

�

� �{ 0,1} n

�
�
�
�
�
�
�

!

"
n�

j =1


 j bj

#

$

�
�
�
�
�
�
,


 � 
 L p (Y ) 	 c2

!

"
�

� �{ 0,1} n

�
�
�
�
�
�
�

!

"
n�

j =1


 j bj

#

$

�
�
�
�
�
�

p#

$

1/p

,


� � 
 L p (Y ) 	 c3

!

"
�

� �{ 0,1} n

�
�
�
�
�
�
�

!

"
n�

j =1


 j bj

#

$

�
�
�
�
�
�

p#

$

1/p

.

Rescaling these inequalities for �(y) .= Q� (� )(�� + �y ), gives


�Q � (� )
 L � ( �� + �Y ) 	
c1

�

�

� �{ 0,1} n

�
�
�
�
�
�
Q� (� )

!

" �� + �
n�

j =1


 j bj

#

$

�
�
�
�
�
�
,


Q � (� )
 L p ( �� + �Y ) 	 c2� n/p

!

"
�

� �{ 0,1} n

�
�
�
�
�
�
Q� (� )

!

" �� + �
n�

j =1


 j bj

#

$

�
�
�
�
�
�

p#

$

1/p

,


�Q � (� )
 L p ( �� + �Y ) 	 c3� n/p Š 1

!

"
�

� �{ 0,1} n

�
�
�
�
�
�
Q� (� )

!

" �� + �
n�

j =1


 j bj

#

$

�
�
�
�
�
�

p#

$

1/p

.

Using (4.5), we have


�Q � (� )
 L � (Rn ) 	
2n c1

� 1+ n/p |Y |1/p

 � 
 L p (Rn ) ,

which gives (iv). Similarly,


Q � (� )
 p
L p ( �� + �Y ) 	

cp
2

|Y |

�

� �{ 0,1} n

�

�� + �
� n

j =1 � j bj +�Y
|� (x)|p dx,

which, by summation on � � � � , gives (i), with C = (2c2 )n/p

|Y |1/p .

Estimate (ii), with C = (2c3 )n/p

|Y |1/p , follows by a similar computation.
To prove (4.3), observe “rst that the function Q� (� )� ({ ·

� } Y ) belongs to L p(Rn ),
sinceQ� (� ) is in L � (Rn ) and � ({ ·

� } Y ) is in L p(Rn ). Moreover,
�
�
� �

�� ·
�

	

Y


 �
�
�

p

L p ( �� + �Y )
= � n 
 � 
 p

L p (Y ) ,

while, by (4.5),


Q � (� )
 p
L � ( �� + �Y ) 	

�

� �{ 0,1} n

1
� n |Y |

�

�� + �Y + �
� n

j =1 � j bj

|� (x)|p.

Using these two estimates and summing on �� gives (4.3), with C = 2n/p

|Y |1/p .



 

Estimate (4.4) is obtained in a similar fashion, with C = (2) n/p +(2 c3 )n/p

|Y |1/p .
Corollary 4.3. For � in L p(Rn ), p � [1, + �[ , the following convergences hold:

Q� (� ) � � strongly in L p(Rn ),

� �Q � (� ) � 0 strongly in (L p(Rn ))n .

Definition 4.4. The remainder R � (� ) is given by

R � (� ) = � Š Q � (� ) for any � � W 1,p (�) .

The following proposition is well-known from the FEM.
Proposition 4.5 ( properties of Q� and R � ). For the caseW 1,p

0 (�) , one has

(i) 
Q � (� )
 W 1,p (�) 	 C
 � 
 W 1,p
0 (�) ,

(ii) 
R � (� )
 L p (�) 	 �C 
 � 
 W 1,p
0 (�) ,

(iii) 
�R � (� )
 L p (�) 	 C
� � 
 L p (�) .

The constant C depends onY (via its diameter and its Poincaré…Wirtinger constant)
only, and depends neither on� nor on � .

Similarly, for the case W 1,p (�) , one has

(iv) 
Q � (� )
 W 1,p (�) 	 C 
P

 � 
 W 1,p (�) ,

(v) 
R � (� )
 L p (�) 	 � C 
P

 � 
 W 1,p (�) ,

(vi) 
�R � (� )
 L p (�) 	 C 
P

� � 
 L p (�) .

Moreover, in both cases,

(4.6)

�
�
�
�

� 2Q� (� )
�x i �x j

�
�
�
�

L p (�)

	
C�

�

� � 
 L p (�) for i, j � [1, . . . , n], i �= j,

where C� does not depend on� .
Proof. We start with � in W 1,p (Rn ). From Proposition 2.5(i) and inequality

(3.5), we get

(4.7) 
 � Š M � (� )
 L p (Rn ) = | Y |Š
1
p 
T � (� ) Š M � (� )
 L p (Rn × Y ) 	 �C 
� � 
 L p (Rn ) .

On the other hand, for any � � W 1,p (interior( Y � (Y + ei ))), i � { 1, . . . , n} , we
have

| M
Y + ei

(� ) Š M
Y

(� ) |= | M
Y

�
� (· + ei ) Š � (·)

�
|

	 
 � (· + ei ) Š � (·)
 L p (Y ) 	 C
� � 
 L p (Y � (Y + ei )) .

By a scaling argument and using De“nition 4.1, this gives

(4.8) |Q� (� )(�� ) Š Q � (� )(�� + �e i )| 	 �C 
� � 
 L p (� (� + Y ) � � (� + ei + Y))

for all � � � Zn .
Let x � �

�
� + Y

�
, and set for every
 = ( 
 1, . . . , 
 n ) � { 0, 1} n ,

x( � l )
l =

�
�


��

xl Š � l

�
if 
 l = 1 ,

1 Š
xl Š � l

�
if 
 l = 0 .



 

If � � � Zn , for every 
 � { 0, 1} n , by de“nition we have

(4.9) Q�
�
�

�
(x) =

�

� �{ 0,1} n

Q� (� )
�
�� + �


�
x( � 1 )

1 . . . x( � n )
n ,

and so, for example,

� Q� (� )
�x 1

(x)

=
�

� 2 , ...,� n

Q� (� )
�
�� + � (1, 
 2, . . . , 
 n )

�
Š Q � (� )

�
�� + � (0, 
 2, . . . , 
 n )

�

�
x( � 2 )

2 . . . x( � n )
n ,

and a same expression for the other derivatives. This last formula and (4.7)…(4.9)
imply estimate (i) written in Rn .

Now, from (4.9), we get

� (x) Š Q �
�
�

�
(x) =

�

� �{ 0,1} n

�
� (x) Š Q � (� )

�
�� + �


� 

x( � 1 )

1 . . . x( � n )
n ,

and (ii) (in Rn ) follows by using estimate (4.7). Estimate (iii) (again in Rn ) is straight-
forward from the previous ones.

If � is in W 1,p
0 (�), let  � be its extension to the whole ofRn . To derive (i)…(iii), it

su�ces to write down the estimates in Rn obtained above. Similarly, applying them
to P(� ) for � in W 1,p (�) gives (iv)…(vi).

To “nish the proof, it remains to show estimate (4.6) . To do so, it is enough to
take the derivative with respect to any xk , with k �= 1 in the formula of � Q � ( � )

�x 1
above,

and use estimate (4.8).
Remark 4.6. By construction (see explicit formula (4.9)), the function Q� (� ) is

separately piecewise linear on each cell. Observe also that, for anyk � { 1, . . . , n} ,
� Q � ( � )

�x k
is independent ofxk in each cell �

�
� + Y

�
.

Proposition 4.7. Let { w� } be a sequence converging weakly inW 1,p
0 (�) (resp.

W 1,p (�) ) to w. Then, the following convergences hold:

(i) R � (w� ) � 0 strongly in L p(�) ,

(ii) Q� (w� ) � w weakly in W 1,p (�) ,

(iii) T� (�Q � (w� )) � � w weakly in L p(� × Y).

Proof. Convergence (i) is a direct consequence of estimate (ii) (resp. (v)) of
Proposition 4.5, and it implies convergence (ii). Together with (i), Proposition 2.9(ii)
implies T� (Q� (w� )) � w weakly in L p(� × Y ). From (4.5),

�
�
�
�

�
�x i

�
� Q� (w� )

�x j

� �
�
�
�

L p (�)

	
C
�

for i, j � [1, . . . , n], i �= j.

Now, by Proposition 3.1, there exist a subsequence (still denoted� ) and �wj � L p(� ×
Y ), with � �w j

�y i
� L p(� × Y) such that, for i �= j ,

T�

�
� Q� (w� )

�x j

�
� �wj weakly in L p(� × Y),

� T�

�
� 2Q� (w� )

�x i �x j

�
�

� �wj

�y i
weakly in L p(� × Y),



 

where �wj is yi -periodic for every i �= j . Moreover, from Remark 4.6, the function �wj

does not depend onyj , hence it is Y -periodic. But, by Remark 4.6 again, �wj is also
piecewise linear, with respect to any variableyi . Consequently, �wj is independent of
y. On the other hand, from (ii) above we have

� Q� (w� )
�x j

�
�w
�x j

weakly in L p(�) .

Now Proposition 2.9(iii) gives �wj = �w
�x j

, and convergence (iii) holds for the whole
sequence� .

Proposition 4.8 ( Theorem 3.5 revisited). Let { w� } be a sequence converging
weakly in W 1,p

0 (�) (resp. in W 1,p (�) ) to w. Then, up to a subsequence there exists
some �w� in the spaceL p(�; W 1,p

per (Y )) such that the following convergences hold:

1
�

T�
�
R � (w� )

�
� �w� weakly in L p(�; W 1,p (Y )),

T�
�
�R � (w� )

�
� � y �w� weakly in L p(� × Y ),

T� (� w� ) � � w + � y �w� weakly in L p(� × Y ).

Actually, the connection with the �w of Theorem 3.5 is given by

�w = �w� Š M
Y

( �w� ).

Proof. Due to estimates of Proposition 4.5, up to a subsequence, there exists�w�

in L p(�; W 1,p
per (Y )) such that

1
�

T�
�
R � (w� )

�
� �w� weakly in L p(�; W 1,p (Y )),

T�
�
�R � (w� )

�
� � y �w� weakly in L p(� × Y).

Combining with convergence (iii) of Proposition 4.7 shows that

T�
�
� w�

�
� � w + � y �w� weakly in L p(� × Y ).

So � y �w � � y �w� in L p(� × Y). Since M
Y

( �w) = 0, it follows that �w = �w� Š

M
Y

( �w� ).

Remark 4.9. In the previous proposition, one can actually compute the average
of �w� . One can check thatM

Y
( �w� ) = ŠM

Y
(y) · � w, and consequently,

1
�

�
T� (w� ) Š M � (w� )



� y · � w + �w� weakly in L p(�; W 1,p (Y )).

5. Periodic unfolding and the standard homogenization problem.
Definition 5.1. Let �, � � R, such that 0 < � < � and O be an open subset

of Rn . Denote by M (�, �, O) the set of the n × n matrices A = ( aij )1	 i,j 	 n �
(L � (O))n × n such that, for any 
 � Rn and a.e. on O,

(A(x)
, 
 ) � � |
 |2, |A(x)
 | 	 � |
 |.



 

Let A� = ( a�
ij )1	 i,j 	 n be a sequence of matrices inM (�, �, �) . For f given in

H Š 1(�), consider the Dirichlet problem

(5.1)

�
Šdiv (A� � u� ) = f in �,

u� = 0 on � � .

By the Lax…Milgram theorem, there exists a uniqueu� � H 1
0 (�) satisfying

(5.2)
�

�
A� � u� � v dx = � f, v � H Š 1 (�) ,H 1

0 (�) , � v � H 1
0 (�) ,

which is the variational formulation of (5.1). Moreover, one has the apriori estimate

(5.3) 
 u� 
 H 1
0 (�) 	

1
�


 f 
 H Š 1 (�) .

Consequently, there existu0 in H 1
0 (�) and a subsequence, still denoted � , such that

(5.4) u� � u 0 weakly in H 1
0 (�) .

We are now interested to give a limit problem, the •homogenizedŽ problem, sat-
is“ed by u0. This is called standard homogenization, and the answer, for some classes
of A� , can be found in many works, starting with the classical book by Bensoussan,
Lions, and Papanicolaou [11] (see, for instance, Cioranescu and Donato [30] and the
references herein). We now recall it.

Theorem 5.2 ( standard periodic homogenization). Let A = ( aij )1	 i,j 	 n belong
to M (�, �, Y ), where aij = aij (y) are Y -periodic. Set

(5.5) A� (x) =
�

aij

� x
�





1	 i,j 	 n
a.e. on � .

Let u� be the solution of the corresponding problem(5.1), with f in H Š 1(�) . Then
the whole sequence{ u� } converges to a limit u0, which is the unique solution of the
homogenized problem

(5.6)

�
��


���

Šdiv (A0� u0) =
n�

i,j =1

a0
ij

� 2u0

�x i �x j
= f in � ,

u0 = 0 on � � ,

where the constant matrixA0 = ( a0
ij )1	 i,j 	 n is elliptic and given by

(5.7) a0
ij = M Y

%

aij Š
n�

k=1

aik
� �� j

�y k

&

= M Y (aij ) Š M Y

%
n�

k=1

aik
� �� j

�y k

&

.

In (5.7), the functions �� j (j = 1 , . . . , n), often referred to as correctors, are the solu-
tions of the cell systems

(5.8)

�
����


�����

Š
n�

i,k =1

�
�y i

�
aik

� ( �� j Š yj )
�y k

�
= 0 in Y,

M Y ( �� j ) = 0 ,

�� j Y -periodic.



 

As will be seen below, using the periodic unfolding, the proof of this theorem is
elementary! Actually, with the same proof, a more general result can be obtained,
with matrices A� .

Theorem 5.3 ( periodic homogenization via unfolding). Let u� be the solution
of problem (5.1), with f in H Š 1(�) , and A� = ( a�

ij )1	 i,j 	 n be a sequence of matrices
in M (�, �, �) . Suppose that there exists a matrixB such that

(5.9) B � .= T�
�
A� �

� B strongly in [L 1(� × Y )]n × n .

Then there existsu0 � H 1
0 (�) and �u � L 2(�; H 1

per (Y )) such that

(5.10)

u� � u 0 weakly in H 1
0 (�) ,

T� (u� ) � u 0 weakly in L 2(�; H 1(Y )),

T� (� u� ) � � u0 + � y �u weakly in L 2(� × Y),

and the pair (u0, �u) is the unique solution of the problem

(5.11)

�
���


����

� � � H 1
0 (�) , � � � L 2(�; H 1

per (Y )),

1
|Y |

�

� × Y
B (x, y)

�
� u0(x) + � y �u(x, y)

��
� �( x) + � y �( x, y)

�
dxdy

= � f, � � H Š 1 (�) ,H 1
0 (�) .

Remark 5.4. System (5.11) is the unfolded formulation of the homogenized limit
problem. It is of standard variational form in the space

H = H 1
0 (�) × L 2(�; H 1

per (Y )/ R).

Remark 5.5. Hypothesis (5.9) implies that B � M (�, �, � × Y ).
Remark 5.6. If A� is of the form (5.5), then B (x, y) = A(y). In the case where

A� (x) = A1(x)A2( x
� ), one has (5.9), with B (x, y) = A1(x)A2(y).

Remark 5.7. Let us point out that every matrix B � M (�, �, � × Y ) can be
approached by the sequence of matricesA� in M (�, �, �), with A� de“ned as follows:

A� =

�
U� (B ) in �� � ,

�I n in � � .

Proof of Theorem 5.3. Convergences (5.10) follow from estimate (5.3), Corol-
lary 3.3, and Proposition 4.7, respectively.

Let us choosev = �, with � � H 1
0 (�) as test function in (5.2). The integration

formula (2.5) from Proposition 2.7 gives

(5.12)
1

|Y |

�

� × Y
B � T�

�
� u�

�
T�

�
� �

�
dxdy

T �
� � f, � � H Š 1 (�) ,H 1

0 (�) .

We are allowed to pass to the limit in (5.12), due to (5.9), (5.10), and Proposi-
tion 2.9(i), to get

(5.13)
1

|Y |

�

� × Y
B (x, y)

�
� u0(x) + � y �u(x, y)

�
� �( x) dxdy = � f, � � H Š 1 (�) ,H 1

0 (�) .



 

Now, taking in (5.2), as test function v� (x) = � �( x)� ( x
� ), � � D (�) , � � H 1

per (Y ),
one has, due to (2.5) and Proposition 2.7,

1
|Y |

�

� × Y
B � T�

�
� u�

�
�� (y)T�

�
� �

�
dxdy

+
1

|Y |

�

� × Y
B � T�

�
� u�

�
� y � (y)T�

�
�

�
dxdy

T �
� � f, v � � H Š 1 (�) ,H 1

0 (�) .

Sincev� � 0 in H 1
0 (�) , we get at the limit

1
|Y |

�

� × Y
B (x, y)

�
� u0(x) + � y �u(x, y)

�
�( x)� y � (y) dxdy = 0 .

By the density of the tensor product D(�) � H 1
per (Y ) in L 2(�; H 1

per (Y )), this holds
for all � in L 2(�; H 1

per (Y )).
Remark 5.8. As in the two-scale method, (5.11) gives�u in terms of � u0 and

yields the standard form of the homogenized equation, i.e., (5.6). In the simple case
where A(x, y) = A(y) = ( aij (y))1	 i,j 	 n , it is easily seen that

(5.14) �u =
n�

i =1

�u 0

�x i
�� i ,

and that the limit B is precisely the matrix A0 which was de“ned in Theorem 5.2 by
(5.7) and (5.8).

Proposition 5.9 ( convergence of the energy).Under the hypotheses of Theo-
rem 5.3,

(5.15)

�
��


���

lim
� � 0

�

�
A� � u� � u� dx =

1
|Y |

�

� × Y
B

�
� u0 + � y �u

� �
� u0 + � y �u

�
dx dy,

lim
� � 0

�

� �

|� u� |2 dx = 0 .

Proof. By standard weak lower-semicontinuity, one successively obtains

1
|Y |

�

� × Y
B

�
� u0 + � y �u

� �
� u0 + � y �u

�
dx dy

	 lim inf
� � 0

1
|Y |

�

� × Y
B � T�

�
� u�

�
T�

�
� u�

�
dx dy

	 lim sup
� � 0

1
|Y |

�

� × Y
B � T�

�
� u�

�
T�

�
� u�

�
dx dy

	 lim sup
� � 0

�

�
A� � u� � u� dx = lim sup

� � 0
� f, u � � H Š 1 (�) ,H 1

0 (�)

= � f, u 0� H Š 1 (�) ,H 1
0 (�) =

1
|Y |

�

� × Y
B

�
� u0 + � y �u

� �
� u0 + � y �u

�
dx dy,

which gives the “rst convergence in (5.15), as well as

lim sup
� � 0

�

� �

A� � u� � u� dx = 0 ,

which implies the second convergence in (5.15).



 

Remark 5.10. From the above proof, we also have

lim
� � 0

1
|Y |

�

� × Y
B � T�

�
� u�

�
T�

�
� u�

�
dx dy

=
1

|Y |

�

� × Y
B

�
� u0 + � y �u

� �
� u0 + � y �u

�
dx dy.

Corollary 5.11. The following strong convergence holds:

(5.16) T� (� u� ) � � u0 + � y �u strongly in L 2(� × Y ).

Proof. We have successively

1
|Y |

�

� × Y
B � �

T�
�
� u�

�
Š � u0 Š � y �u

��
T�

�
� u�

�
Š � u0 Š � y �u

�
dx dy

=
1

|Y |

�

� × Y
B � T�

�
� u�

�
T�

�
� u�

�
dx dy

Š
1

|Y |

�

� × Y
B � �

� u0 + � y �u
�
T�

�
� u�

�
dx dy

Š
1

|Y |

�

� × Y
B � T�

�
� u�

��
� u0 + � y �u

�
dx dy

+
1

|Y |

�

� × Y
B � �

� u0 + � y �u
� �

� u0 + � y �u
�

dx dy.

Each term in the right-hand side converges, the “rst one due to Remark 5.10, and the
others due to (5.10) and hypothesis (5.9). So, the right-hand side term converges to
zero. Then convergence (5.16) is a consequence of the ellipticity ofB � .

Remark 5.12. One can consider problem (5.1) with a homogeneous Neumann
boundary condition on � � provided a zero order term is added to the operator. This
problem is variational on the spaceH 1(�) without any regularity condition on the
boundary. The exact same method applies and gives the corresponding limit problem.
In order for a nonhomogeneous Neumann boundary condition (or Robin condition)
on � � to make sense, a well-behaved trace operator is needed fromH 1(�) to L 2(�).
In that case, the same method applies.

6. Some corrector results and error estimates. Under additional regularity
assumptions on the homogenized solutionu0 and the cell-functions �� j , the strong
convergence for the gradient ofu0 with a corrector is known (cf. [11] Chapter 1,
section 5, [30] Chapter 8, section 3 and references therein). More precisely, suppose
that � y �� j � (L r (Y ))n , j = 1 , . . . , n and � u0 � L s(�), with 1 	 r, s < + � and such
that 1 /r + 1 /s = 1 / 2. Then

� u� Š � u0 Š
n�

j =1

�u 0

�x j

�
� y �� j

� � ·
�



� 0 strongly in L 2(�) .

Our next result gives a corrector resultwithout any additional regularity assump-
tion on �� j , and its proof reduces to a few lines. We also include a new type of
corrector.

Theorem 6.1. Under the hypotheses of Theorem5.2, one has

(6.1) � u� Š � u0 Š U�
�
� y �u

�
� 0 strongly in L 2(�) .



 

In the case whereA� (x) = A({ x
� } Y ), the function u0 + �

� n
i =1 Q� ( �u 0

�x i
)� i ({ ·

� } Y ) be-
longs to H 1(�) , and one has

(6.2) u� Š u0 Š �
n�

i =1

Q�

�
�u 0

�x i

�
� i

�� ·
�

	

Y



� 0 strongly in H 1(�) .

Proof. From (5.15), (5.16), and Proposition 2.18(iii), one immediately has

� u� Š U�
�
� u0

�
Š U�

�
� y �u

�
� 0 strongly in L 2(�) .

But since � u0 belongs toL 2(�), Corollary 2.26 implies that

U�
�
� u0

�
� � u0 strongly in L 2(�) ,

whence (6.1). From (4.4) in Proposition 4.2, the functionu0+ �
� n

i =1 Q� ( �u 0
�x i

)� i ({ ·
� } Y )

belongs toH 1(�). From (5.14), we obtain

� u0 + U� (� y �u) Š �

'

u0 + �
n�

i =1

Q�

�
�u 0

�x i

�
� i

�� ·
�

	

Y



(

= Š
n�

i =1

)
Q�

�
�u 0

�x i

�
Š M �

�
�u 0

�x i

�*
� y � i

�� ·
�

	

Y




Š �
n�

i =1

�
)
Q�

�
�u 0

�x i

�*
� i

�� ·
�

	

Y



,

and using estimate (4.2), Proposition 2.25(iii), and Corollary 4.3, one immediately
gets the strong convergence inL 2(�) of the right-hand side in the above equality.
Thanks to (6.1), one has (6.2).

We end this section by recalling the error estimates obtained by Griso in [42],
[44], and [45] for problem (5.1), with f � L 2(�).

Theorem 6.2 ( see [42], [44]). Suppose that� � is of classC1,1. The solution u�

of (5.1) satis“es the following estimates:

�
�
� � u� Š � u0 Š

n�

i =1

Q�

�
�u 0

�x i

�
� y �� i

�� .
�

	
 �
�
�

[L 2 (�)] n
	 C� 1/2 
 f 
 L 2 (�) ,


 u� Š u0
 L 2 (�) +

�
�
�
�
�
�

%

� u� Š � u0 Š
n�

i =1

Q�

�
�u 0

�x i

�
� y �� i

� .
�



& �

�
�
�
�

[L 2 (�)] n

	 C� 
 f 
 L 2 (�) ,

where �� i for i = 1 , . . . , n is de“ned by (5.8) and � = � (x) is the distance between
x � � and the boundary� � . The constant C depends onn, A, and � � .

Corollary 6.3 ( see [44]). Let �
�

be an open set strongly included in� , then
�
�
�
�
�

u� Š u0 Š �
n�

i =1

Q�

�
�u 0

�x i

�
�� i

� .
�



�
�
�
�
�

H 1 (� � )

	 C� 
 f 
 L 2 (�) .

The constant depends onn, A, �
�
, and � � .

In what follows in this paragraph, we suppose that the open set � is a bounded
domain in Rn , n = 2 or 3, of polygonal (n = 2) or polyhedral ( n = 3) boundary. We



 

assume that � is on one side only of its boundary, and that 	 0 is the union of some
edges (n = 2) or some faces (n = 3) of � �. Recall that classical regularity results
show that the solution u0 of the homogenized problem (5.6) belongs toH 1+ s(�) for s
in ]1/ 2, 1[ (s = 1 if the domain is convex) depending only on� �, on A0, and satis“es
the estimate


� u0
 H 1+ s (�) 	 C
 f 
 L 2 (�) .

The error estimate for this case is given in the following result.
Theorem 6.4 ( see [45]). The solution u� of problem (5.1) satis“es the estimate

�
�
�
�
�
� u� Š � u0 Š

n�

i =1

Q�

�
�u 0

�x i

�
� y �� i

� .
�



�
�
�
�
�

[L 2 (�)] n

	 C� s/ 2
 f 
 L 2 (�) ,


 u� Š u0
 L 2 (�) +

�
�
�
�
�
�

%

� u� Š � u0 Š
n�

i =1

Q�

�
�u 0

�x i

�
� y �� i

� .
�



& �

�
�
�
�

[L 2 (�)] n

	 C� s
 f 
 L 2 (�) .

The constants depend onn, A, and � � .
Corollary 6.5 ( see [45]). Let �

�
be an open set strongly included in� , then

�
�
�
�
�
u� Š u0 Š �

n�

i =1

Q�

�
�u 0

�x i

�
�� i

� .
�



�
�
�
�
�

H 1 (� � )

	 C� s
 f 
 L 2 (�) .

The constant depends onn, A, �
�
, and � � .

7. Periodic unfolding and multiscales. As we mentioned in the Introduction,
the periodic unfolding method turns out to be particularly well-adapted to multiscales
problems. As an example, we treat here a problem with two di�erent small scales.

Consider two periodicity cells Y and Z , both having the properties introduced
at the beginning of section 2 (each associated to its set of periods). Suppose that
Y is •partitionedŽ in two nonempty disjoint open subsets Y1 and Y2, i.e., such that
Y1 � Y2 = � and Y = Y 1 � Y 2.

Let A�� be a matrix “eld de“ned by

A�� (x) =

�
��


���

A1

�� x
�

	

Y



for

� x
�

	

Y
� Y1,

A2

%� �
x
�

�
Y

�

�

Z

&

for
� x

�

	

Y
� Y2,

where A1 is in M (�, �, Y 1) and A2 in M (�, �, Z ) (cf. De“nition 5.1). Here we have
two small scales, namely,� and �� , associated, respectively, to the cellsY and Z (see
Figure 7).

Consider the problem
�

�
A�� � u�� � w dx =

�

�
f w dx � w � H 1

0 (�) ,

with f in L 2(�). The Lax…Milgram theorem immediately gives the existence and
uniqueness ofu�� in H 1

0 (�) satisfying the estimate


 u�� 
 H 1
0 (�) 	

1
�


 f 
 L 2 (�) .



 

Z

Y

Y1

Fig. 7 . A domain with periodic scales � and �� .

So, there is someu0 such that, up to a subsequence,

u�� � u 0 weakly in H 1
0 (�) .

Using the unfolding method for scale� , as before we have

Q�
�
u��

�
� u 0 weakly in H 1

0 (�) ,

T� (u�� ) � u 0 weakly in L 2(�; H 1(Y )),
1
�

T�
�
R � (u�� )

�
� �u weakly in L 2(�; H 1(Y )),

T�
�
� u��

�
� � u0 + � y �u in L 2(� × Y ).

These convergences do not see the oscillations at the scale�� . In order to capture
them, one considers the restrictions to the set � × Y2 de“ned by

v�� (x, y) .=
1
�

T�
�
R � (u�� )

�
|Y2 .

Obviously,

v�� � �u|Y2 weakly in L 2(�; H 1(Y2)).

Now, we apply to v�� , a similar unfolding operation, denoted T y
� , for the variable y,

thus adding a new variablez � Z .

T y
� (v�� )(x, y, z ) = v��

�
x, �

� y
�

�

Z
+ �z



for x � � , y � Y2, and z � Z.

It is essential to remark that all of the estimates and weak convergence properties
which were shown for the original unfoldingT� still hold for T y

� , with x being a mere
parameter. For example, Proposition 4.7 and Theorem 3.5 adapted to this case imply
that

T y
�

�
� y v��

�
� � y �u|� 2 + � z  u weakly in L 2(� × Y2 × Z ),

T y
�

�
T�

�
� u��

� 

� � u0 + � y �u + � z  u weakly in L 2(� × Y2 × Z ).

Under these conditions, the limit functions u0, �u, and  u are characterized by the
following result.



 

Theorem 7.1. The functions

u0 � H 1
0 (�) , �u � L 2(� , H 1

per (Y )/ R),  u � L 2(� × � 2, H 1
per (Z )/ R)

are the unique solutions of the variational problem
�
�������


��������

1
|Y 
 Z |

�

�

�

Y2

�

Z
A2(z)

�
� u0 + � y �u + � z  u

	�
� � + � y � + � z 


	
dx dy dz

+
1

|Y |

�

�

�

Y1

A1(y)
�

� u0 + � y �u
	�

� � + � y �
	

dx dy =
�

�
f � dx,

� � � H 1
0 (�) , � � � L 2(�; H 1

per (Y )/ R), � 
 � L 2(� × � 2, H 1
per (Z )/ R).

The proof uses test functions of the form

�( x) + � � 1(x)� 1

� x
�



+ �� � 2(x)� 2

�� x
�

	

Y




 2

�
1
�

� x
�

	

Y

�
,

where � , � 1, � 2 are in D(�), � 1 in H 1
per (Y ), � 2 � D (Y2), and 
 2 � H 1

per (Z ).
Remark 7.2. The same theorem holds true for a generalA�� under the hypotheses

T� (A�� ) 1Y1 � A1 strongly in [L 1(� × Y1)]n × n ,

T y
�

�
T� (A�� ) 1Y2

�
� A2 strongly in [L 1(� × Y2 × Z )]n × n .

Proposition 5.9 (convergence of the energy) and Corollary 5.11 extend without
any di�culty to the multiscale case.

Proposition 7.3. The convergence for the energy holds true:

lim
�,� � 0

�

�
A�� � u�� � u�� dx

=
1

|Y 
 Z |

�

�

�

Y2

�

Z
A2(z)

�
� u0 + � y �u + � z  u

	�
� u0 + � y �u + � z  u

	
dx dy dz

+
1

|Y |

�

�

�

Y1

A1(y)
�

� u0 + � y �u
	�

� u0 + � y �u
	

dx dy.

Corollary 7.4. The following strong convergences hold true:

T y
�

�
� y v��

�
� � y �u|� 2 + � z  u strongly in L 2(� × Y2 × Z ),

T y
�

�
T�

�
� u��

� 

� � u0 + � y �u + � z  u strongly in L 2(� × Y2 × Z ).

Remark 7.5. A corrector result, similar to that of Theorem 6.1, can be obtained.
Remark 7.6. Theorem 7.1 can be extended to the case of any “nite number of

distinct scales by a simple reiteration.

8. Further developments. The unfolding method has some interesting prop-
erties which make it suitable for more general situations than that presented here. In
problems which are set on a domain �� which depends on the parameter� , it may be
di�cult to have a good notion of convergence for the sequence of solutionsu� . The
traditional way is to extend the solution by 0 outside � � ; however, this precludes the
strong convergence of these extended functions in general. For the case of holes of the



 

size of order� distributed � -periodically, the unfolded sequence lives on a “xed do-
main. Similarly, for domains with � -oscillating boundaries, a partial unfolding yields
a function which is de“ned on a “xed domain.

We conclude by giving a list of publications making use of the unfolding method
in several of these directions (both for linear and nonlinear problems).

… Reiterated homogenization: Meunier and Van Schaftingen [56].
… Electro-magnetism: Banks et al. [7], Bossavit, Griso, and Miara [15].
… Homogenization of thin piezoelectric shells: Ghergu et al. [39].
… Homogenization of di�usion deformation media: Griso and Rohan [46].
… Homogenization of the Stokes problem in porous media: Cioranescu, Damlamian,

and Griso [25].
… Homogenization in perforated domains with Robin boundary conditions: Cio-

ranescu, Donato and Zaki [31], [32].
… Homogenization in domains with oscillating boundaries: Damlamian and Pet-

tersson [36].
… Homogenization of nonlinear integrals of the calculus of variations: Cioranescu,

Damlamian, and De Arcangelis [27], [28], and [29].
… Homogenization of multivalued monotone operators of Leray…Lions type:

Damlamian, Meunier, and Van Schaftingen [37].
… Thin junctions in linear elasticity: Blanchard, Gaudiello, and Griso [12], [13],

Blanchard and Griso [14].
… Thin domains and free boundary problems arising in lubrication theory:

Bayada, Martin, and Vazquez [9], [10].
… Elasticity problems in perforated domains: Griso and Sanchez-Rua [47].
… Neumann sieve and Dirichlet shield problems: Onofrei [60], Cioranescu et al.

[26]. This last paper treats the case of domains with� -periodically distributed •very
smallŽ holes (their size being a power of� ) on the boundary of which a homogeneous
Dirichlet condition is prescribed. This requires the introduction of a rescaled unfolding
operator (which originally appeared in the framework of the two-scale convergence in
Casado-D́šaz [20]).
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[48] M. Lenczner, Homogénéisation d•un circuit ´ electrique , C.R. Acad. Sci. Paris, Ser. 2, 324
(1997), pp. 537…542.

[49] M. Lenczner and D. Mercier , Homogenization of periodic electrical networks including
voltage to current ampli“ers , SIAM Multiscale Model. Simul., 2 (2004), pp. 359…397.

[50] M. Lenczner and G. Senouci-Bereksi , Homogenization of electrical networks including
voltage-to-voltage ampli“ers , Math. Models Methods Appl. Sci., 9 (1999), pp. 899…932.

[51] M. Lenczner, M. Kader, and P. Perrier , Modèle à deux échelles de l•équation des ondes
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