R. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

M. Kleiber, D. H. Tran, and T. D. Hien, The stochastic finite element method, 1992.

G. I. Schueller, A state-of-the-art report on computational stochastic mechanics, Probabilistic Engineering Mechanics, vol.12, issue.4, pp.197-321, 1997.
DOI : 10.1016/S0266-8920(97)00003-9

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, issue.5, pp.1979-1996, 2001.
DOI : 10.1121/1.1360716

URL : https://hal.archives-ouvertes.fr/hal-00686287

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.26-64, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

W. D. Iwan and Y. Zhang, Protecting base-isolated structures from nearfield ground motion by turned interaction damper, Journal of Engineering Mechanics, vol.128, issue.3, pp.287-295, 2002.

A. Sinha and J. H. Griffin, Effects of friction dampers on aerodynamically unstable rotor stages, AIAA Journal, vol.23, issue.2, pp.262-270
DOI : 10.2514/3.8904

E. J. Berger and D. V. Deshmukh, Convergence behaviors of reduced-order models for friction contacts, Journal of Vibration and Acoustics, vol.127, pp.370-381, 2005.

D. V. Deshmukh, E. J. Berger, M. R. Begley, and U. Komaragiri, Correlation of a discrete friction (Iwan) element and continuum approaches to predict interface sliding behavior, European Journal of Mechanics - A/Solids, vol.26, issue.2, pp.212-224, 2007.
DOI : 10.1016/j.euromechsol.2006.05.001