E. Audusse, F. Bouchut, M. Bristeau, R. Klein, and B. Perthame, A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2050-2065, 2004.
DOI : 10.1137/S1064827503431090

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Audusse, M. Bristeau, and B. Perthame, Kinetic Schemes for Saint-Venant Equations with Source Terms on Unstructured Grids, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00072657

D. S. Bale, R. J. Leveque, S. Mitran, and J. A. Rossmanith, A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions, SIAM Journal on Scientific Computing, vol.24, issue.3, pp.955-978, 2002.
DOI : 10.1137/S106482750139738X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bermúdez and M. E. Vásquez, Upwind methods for hyperbolic conservation laws with source terms, Computers & Fluids, vol.23, issue.8, pp.1049-1071, 1994.
DOI : 10.1016/0045-7930(94)90004-3

R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Mathematics of Computation, vol.72, issue.241, pp.131-157, 2003.
DOI : 10.1090/S0025-5718-01-01371-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, Well balanced finite volume methods for nearly hydrostatic flows, Journal of Computational Physics, vol.196, issue.2, pp.539-565, 2004.
DOI : 10.1016/j.jcp.2003.11.008

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Front. Math, 2004.

M. Castro, J. Macías, and C. Parés, -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.1, pp.107-127, 2001.
DOI : 10.1051/m2an:2001108

URL : https://hal.archives-ouvertes.fr/hal-00400150

M. Castro, A. Pardo-milanés, and C. Parés, WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE, Mathematical Models and Methods in Applied Sciences, vol.73, issue.12, pp.2055-2113, 2007.
DOI : 10.1016/0021-9991(92)90378-C

A. Chinnayya, A. Leroux, and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: The resonance phenomenon, Int. J. Finite Vol, vol.1, pp.1-33, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00017378

T. Gallouët, J. Hérard, and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Comput, pp.32-479, 2003.

L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Computers & Mathematics with Applications, vol.39, issue.9-10, pp.135-159, 2000.
DOI : 10.1016/S0898-1221(00)00093-6

L. Gosse and A. Leroux, Un schéma-´ equilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Acad. Sci. Paris Sér. I Math, vol.323, pp.543-546, 1996.
DOI : 10.1016/s0764-4442(99)80466-2

J. M. Greenberg and A. Y. Leroux, A Well-Balanced Scheme for the Numerical Processing of Source Terms in Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.1-16, 1996.
DOI : 10.1137/0733001

S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.4, pp.631-645, 2001.
DOI : 10.1051/m2an:2001130

A. Kurganov and D. Levy, Central-Upwind Schemes for the Saint-Venant System, ESAIM: Mathematical Modelling and Numerical Analysis, vol.36, issue.3, pp.397-425, 2002.
DOI : 10.1051/m2an:2002019

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2002/03/m2an0151.pdf

A. Kurganov and G. Petrova, A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System, Communications in Mathematical Sciences, vol.5, issue.1, pp.133-160, 2007.
DOI : 10.4310/CMS.2007.v5.n1.a6

S. Noelle, Y. Xing, and C. W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, Journal of Computational Physics, vol.226, issue.1, pp.29-58, 2007.
DOI : 10.1016/j.jcp.2007.03.031

S. Noelle, Y. Xing, and C. W. Shu, High-order well-balanced schemes, in Numerical Methods for Relaxation Systems and Balance Equations, Quad. Mat

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, pp.38-201, 2001.

M. E. Vázquez-cendón, Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry, Journal of Computational Physics, vol.148, issue.2, pp.497-526, 1999.
DOI : 10.1006/jcph.1998.6127