Skip to Main content Skip to Navigation
Journal articles

Approximation of the biharmonic problem using piecewise linear finite elements

Abstract : We propose an approximation of the solution of the biharmonic problem in $H_0^2(\Omega)$ which relies on the discretization of the Laplace operator using nonconforming continuous piecewise linear finite elements.
Document type :
Journal articles
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download

https://hal-upec-upem.archives-ouvertes.fr/hal-00693004
Contributor : Admin Lama <>
Submitted on : Monday, July 31, 2017 - 3:01:49 PM
Last modification on : Monday, July 19, 2021 - 4:40:03 PM

File

RERH.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Robert Eymard, Raphaèle Herbin. Approximation of the biharmonic problem using piecewise linear finite elements. Comptes Rendus. Mathématique, Centre Mersenne (2020-..) ; Elsevier Masson (2002-2019), 2010, 348 (23-24), pp.1283-1286. ⟨10.1016/j.crma.2010.11.002⟩. ⟨hal-00693004⟩

Share

Metrics

Record views

699

Files downloads

1381