Skip to Main content Skip to Navigation
Journal articles

Approximation of the biharmonic problem using piecewise linear finite elements

Abstract : We propose an approximation of the solution of the biharmonic problem in $H_0^2(\Omega)$ which relies on the discretization of the Laplace operator using nonconforming continuous piecewise linear finite elements.
Document type :
Journal articles
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal-upec-upem.archives-ouvertes.fr/hal-00693004
Contributor : Admin Lama <>
Submitted on : Monday, July 31, 2017 - 3:01:49 PM
Last modification on : Thursday, March 19, 2020 - 12:26:02 PM

File

RERH.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Robert Eymard, Raphaèle Herbin. Approximation of the biharmonic problem using piecewise linear finite elements. Comptes Rendus Mathématique, Elsevier Masson, 2010, 348 (23-24), pp.1283-1286. ⟨10.1016/j.crma.2010.11.002⟩. ⟨hal-00693004⟩

Share

Metrics

Record views

574

Files downloads

1030