Abstract : We show the existence in the space $\mathbb{H}^2 \times \mathbb{R}$ of a family of embedded minimal surfaces of genus $1 \leq k < +\infty$ and finite total extrinsic curvature with two catenoidal type ends and one middle planar end. The proof is based on a gluing procedure.
https://hal-upec-upem.archives-ouvertes.fr/hal-00693003
Contributor : Admin Lama <>
Submitted on : Tuesday, May 1, 2012 - 7:24:12 PM Last modification on : Thursday, March 19, 2020 - 12:26:02 PM
Filippo Morabito. A COSTA-HOFFMAN-MEEKS TYPE SURFACE IN $\mathbb{H}^2 \times \mathbb{R}$. Transactions of the American Mathematical Society, American Mathematical Society, 2011, 363 (1), pp.1-36. ⟨hal-00693003⟩