A COSTA-HOFFMAN-MEEKS TYPE SURFACE IN $\mathbb{H}^2 \times \mathbb{R}$

Abstract : We show the existence in the space $\mathbb{H}^2 \times \mathbb{R}$ of a family of embedded minimal surfaces of genus $1 \leq k < +\infty$ and finite total extrinsic curvature with two catenoidal type ends and one middle planar end. The proof is based on a gluing procedure.
Document type :
Journal articles
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal-upec-upem.archives-ouvertes.fr/hal-00693003
Contributor : Admin Lama <>
Submitted on : Tuesday, May 1, 2012 - 7:24:12 PM
Last modification on : Friday, October 4, 2019 - 1:38:19 AM

File

FMA.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

  • HAL Id : hal-00693003, version 1

Citation

Filippo Morabito. A COSTA-HOFFMAN-MEEKS TYPE SURFACE IN $\mathbb{H}^2 \times \mathbb{R}$. Transactions of the American Mathematical Society, American Mathematical Society, 2011, 363 (1), pp.1-36. ⟨hal-00693003⟩

Share

Metrics

Record views

125

Files downloads

82