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Bounds and correlation approximation for the effective conductivity of heterogeneous plates

H. Le Quang and G. Bonnet”
Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Boulevard Descaites,
F-77454 Marne-la-Vallde Cedex 2, France

D. C. Pham
Instituie of Mechanics—VAST, 204 Doi Can, Hanod, Vietnam

The size effect obtained when studying the effective properties of plates is investigated by producing a
third-order correlation approximation and Hashin-Shtrikman bounds for the effective in-plane conductivity of
heterogeneous plates. The boundary condition of the plates is taken into account by obtaining the exact Green
operator for the boundary problem. Results are obtained for a two-dimensional (2D) random distribution of disks
and a 3D distribution of spheres. All results recover those obtained for an infinite medium when the heterogeneity
size becomes small compared to plate thickness. They show that the size effect is more significant in the case of
a 2D distribution of heterogeneities than for a 3D distribution.

PACS number(s): 46.65.4g.72.80.Tm, 72.80.Ng. 71.15.Mb

L. INTRODUCTION

Numerous methods can be used to predict the effective
properties of heterogeneous materials. In the case of materials
with randomly distributed properties in large domains. bounds
of the effective properties, which take into account second-
or third-order correlation functions, have been provided in
[1-7]. Alternatively. different kinds of approximations can be
used, including Maxwell, self-consistent, differential scheme
[8~11]. and those involving correlation information about
the microgeometries of the composites [2,3.7.12-16]. The
perturbation series in the component properties’ contrast is
often used when the contrast is small [2.3], while for high-
contrast-property composites, the strong-contrast expansion is
developed [7.17]. which is expected to have a larger radius
of convergence than the weak-contrast one. It is interesting
to note that a series expansion on the contrast parameter
converges for any nonoverlapping distribution of the disks on
the plane [14]. Still, in practice we have to restrict ourselves
to approximations involving up to three-point correlation
parameters, since higher-point correlation information is not
available for most practical microstructures.

Sen and Torquato [ 18] derived strong-contrast expansions
for the effective conductivity tensor of macroscopically
anisotropic two-phase media. Pham and Torquato [19] ex-
tended this approach further to the N-phase composites.
From the expansions, they proposed the three-point correlation
approximation for the effective conductivity of isotropic
composites that, in the case of two-phase matenials. agrees
well with a number of analytical and numerical results,
even when the contrast between the phases is infinite and
their volume proportions are near percolation thresholds. The
simple approximation reduces to the well-known Maxwell
and self-consistent ones for the respective asymmetric matrix
mixture and symmetric cell microgeometries, and it obeys
Hashin-Shtrikman as well as three-point correlation bounds
over all the parameter ranges.
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It is important to evaluate the effect of restricted domains
such as plates when the size of the heterogeneities is no
longer negligible compared to a characteristic size of the
domain (e.g., the thickness of the plate). In the case of plates,
first- and second-order bounds were extended in the case of
elastic properties [20-23]. The aim of this paper is to provide
additional results on the conductivity of plates, taking into
account simultaneously up to third-order correlations and the
effect of plate thickness.

In Sec. 11, a third-order correlation expansion in the case
of large domains is displayed. which uses a strong-contrast
expansion of the effective properties. The subsequent sections
are devoted to studying the conductivity of heterogeneous
plates. Taking into account boundary conditions at the surface
of the plate can be done effectively by using a Green operator,
as was done in [23]. This Green operator for homogeneous
plates is computed in Sec. III. It is then possible to obtain
second-order Hashin-Shtrikman bounds for the conductivity
of plates (Sec. IV) and an approximation involving second-
and third-order correlations (Sec. V) based on the approach
described in Sec. II. Numerical applications are provided in
Sec. VL allowing us to evaluate the effect of plate thickness
on in-plane conductivity. A few concluding comments are
presented in Sec. VIL

II. STRONG-CONTRAST EXPANSION
AND CORRELATION APPROXIMATION

For the reasons mentioned in the Introduction, our
correlation approximation will be based on the strong-contrast
expansion.

Following [7.19]. let us consider a macroscopically
anisotropic two-phase composite in space dimension d (d =
2 or 3) comprised of isotropic phases having conductivities
¢q and volume fractions v, (@ = | or 2). The local scalar
conductivity at position x is expressible as

2
cx) =Y cal(x), (1)

a=1



where

T@(x) = I ifxis i.n phase a. 2)
0 otherwise,
is the indicator function for phase « (e = 1 or 2). For sta-
tistically homogeneous media, (I'*(x)) = v,. where angular
brackets denote an ensemble average. The local conductivity
c(x) is the coefficient of proportionality in the linear constitu-
tive relation

qi(x) = c(x)E(x) (3)

between the local thermal flux q at position x and the local
field intensity E(x). which is the opposite of the gradient of
temperature field T(x),

Ex)=-VTix), )
while the flux should satisfy the energy conservation equation
V.qix)=0 (5)

in the case of stationary thermal conduction without a heat
source.

Let us consider this d-dimensional composite specimen
with an infinite reference medium having conductivity cq.
which is subjected to an applied intensity field E” at infinity.
and introduce the Green operator for the reference medium

G(r) = Dé(r) — H(r), (6)

where D = I/dcp. r = x — x'.n = r/|r|. (r) is the delta Dirac
function, and I is the second-order identity tensor. The constant

M — 2
ety = _/dz(unu-» (LO)L(2))
(L(1) (L(D){L(2))
xH(1,2) - H(2,3) — -+ .

The general term contains the n-point correlation functions
(L(1)---Lin)). Multiplying Eq. (12) by ¢p. truncating the
series after the third-order term, and making the substitution
into Eq. (10), we get the third-order approximation equation

(13)

1 B 1

where (assuming statistical homogeneity)

2
B = Z l."bao.
e=l

Aj and Aj are, respectively, second- and third-order terms (the
higher-order terms have been neglected),

(14)

2
l -
Ar=g3 / d2 ) baobpl T(1NIP(2))

a,f=1
—TNI P 2)n,2)

(b — bio)*
= %/dz[sgz’u.z)- v3]bi1.2), (15)

second-order tensor D arises because of the exclusion of the
spherical cavity. and it is understood that integrals involving
the second-order traceless tensor H are to be carried out by
excluding atx" = x an infinitesimal sphere in the limit in which
the sphere radius shrinks to zero (Cauchy principal part). For
the infinite space, the second-order tensor H can be expressed
explicitly by

1 dn@n-—1
2(d — ey ré ’
Moreover, the integral of H(r) over the surface of a sphere of

radius R = 0 is identically zero, i.e.. f'=R H(rdQ = 0.
For later use, it is convenient to denote

Hir) = (7

2
c(x)—cp
Lix) = cpd 0 — 40— = bl ®ix). (8
(x) = cp g ST o o cud'él 0L (x), (8)
Ca — €O
by = ——mm8™@ @, 9
O et d— o “

L = cpd[C — col] - [C° 4 (d — Dcal]™, (10)

where C is the effective conductivity tensor of the macro-
scopically anisotropic composite.

Following the approach presented in [7,19], we obtain the
result for the effective tensor L¢,

(L)™' = H+ (L - LH)™H)~!, (1)

or in the infinite series expansion, the first few terms of which
are explicitly given by (we adopt the shorthand notation of
representing x and x" by | and 2, .. ., respectively)

2)L(3 2){L2
Hu,z)—//dzds(“‘“"‘( IL(3))  (L()L(2)){L( )L(S)))

(L) (L(2)) (L(DY{L2))(L(3))

(12)

with S;"’(I.Z) = (I'(1)I#)2)} specifying the respective
two-point correlation function, and

2
1
Az = ?[/ d2d3 pz baobgobyo T (TP (2T (3))
afly=1
2

1

- Z baobgobyobso (T (1HT#(2))
a,B,yé=1

x (ITY2I3)) | h(1,2)h(2.3), (16)

hir) = coH(r). (17)

For macroscopically isotropic infinite media, Ay = 0 since h,
like H. is traceless. We take the trace of both sides of Eq. (13)
and choose the conductivity cp of the reference medium as the
solution of the equation

2
Ca — €
g————————— =0, (18
Z'E Ca +(d — Lo )



which makes the trace of Az vanish. Then we get the three-
point correlation approximation for the effective conductivity
¢, of the macroscopically isotropic media [19].

-1
2
Vo
C= —_— —(d = o (19)
[§C.+(d—l)co] ’

alternative expressions of the geometric three-point correlation
parameters &.5 (51,5 20, & +&=1) in Eq. (18) and
tables of their values for various microgeometries are given
in [7,19]. For example. a very good approximation of & versus
particle volume fraction vz can be given as

£ =021068v; — 0.04693v3 + 0.00247v3,  (20)

with vz < 0.6 for the random suspension of equisized hard
spheres in a matrix or provided by

& = vy — 0.0570703, 21

with vz < 0.7 for the random distribution of unidirectionally
aligned. infinitely long identical circular hard fibers in a matrix.

Approximation (19), with ¢y determined by Eq. (18),
involves the volume fractions vy. vy and the conductivities
cy. ¢ of the two components as well as the three-point
correlation parameters &, & describing the microgeometry
of the isotropic two-component composite. The three-point
correlation approximation falls within both the second-order
Hashin-Shtrikman bounds and third-order bounds involving
three-point correlation parameters &) £ over all the parameter
ranges [19].

This simple approximation reduces to the well-known
self-consistent one for the respective symmetric cell microge-
ometries (§2 = v3). as well as to the Maxwell approximation
for the asymmetric matrix mixtures (£ = 0) that coincides
with the Hashin-Shtrikman upper (or lower) bound when the
matrix phase (phase 1) is the phase of larger (or smaller)
conductivity.

The approximation agrees well with simulation data for
periodic structures as well as random suspensions of equalized
hard or overlapping random spheres for the highest contrast
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FIG. 1. (Color online) The thermal conductivity obtained by
the three-point correlation approximation is compared with the
experimental results and Hashin-Shtrikman bounds for a random
suspension of silica spherical particles (conductivity 1.5 W/mK) in
a polymer matrix (conductivity 0.195 W/mK).

composites involving superconductive or insulate phases. up
to the high volume fractions of the inclusion phase near
percolation thresholds (see. e.g., [19]).

Here. as an additional illustration, we compare in Fig. | the
predictions of the three-point correlation approximation (19)
accounting for (18) and (20) with the experimental results
by [24] for the high contrast composites made of a polymer
matrix (thermal conductivity 0.195 W /mK) reinforced with
silica spherical particles (conductivity 1.5 W/mK). Hashin-
Shtrikman bounds are also included for comparison.

A modification of the procedure for the plates of finite
thickness will be developed thereafter in Sec. V.

III. A GREEN OPERATOR FOR ISOLATED PLATES
AND PERIODIC POLARIZATIONS

To compute Hashin-Shtrikman-type bounds (Sec. 1V) as
well as the correlation approximation (Sec. V) for the
conductivity of composite plates with a possible finite-size
(thickness) effect, we need to construct the Green operator for
the plates.

The Green operator for the plates obtained in this section
can be considered to be an extension of the thermal conduction
phenomenon of the result of [25] for the context of linear
elasticity. Moreover, the method elaborated and results ob-
tained by our work for the Green operator of the plates can be
used in the thermal conduction phenomenon, but they are also
applicable to physically analogous transport phenomena, such
as electric conduction, dielectrics, magnetism, diffusion, and
flow in porous media.

The Green operator for the plate can be obtained as the
limit for large periods of the Green operator for periodic cells,
which can be used, for example, for obtaining the properties
of heterogeneous periodic plates. Indeed, we consider now a
homogeneous plate of conductivity ¢p that is assumed to be
subjected to a polarization field that is periodic in the xj-x;
plane of the plate. This plate can, therefore, be characterized
by a unit cell denoted by Z and defined by

Z= Ix e R’ x=(x.x2.33), X4 €

b b t
]—E.?[. .t}e]— .E[I. (22)

where @ = 1 or 2: /1. [3. and ¢ are the length, width, and thick-
ness of Z, respectively. We denote by @ = |—=Iy/2,1;/2[ x
1=12/2.13/2[ the middle surface of Z and by dw the boundary
of w. The lateral boundary 3Z; of Z is defined by 9Z; =
dw x |—1/2,t/2[. The top and bottom surfaces dZ* of Z are
defined by 8Z* = w x (£ /2). A mixed boundary condition
with a periodic boundary condition on dZ; and an insulation
boundary condition on 8Z% is imposed on the external surface
of Z. Simultaneously, a periodic polarization field p(x) is
applied. For this problem. the intensity solution field E(x)
is related linearly to the periodic polarization field p(x) as
follows:

[ s

E(x) = —f Gix — x')p(x')dx’, (23)
z

where G is the Green operator with insulation boundary
conditions. Moreover, this intensity solution field E(x) can be



decomposed into two parts, Le.. E{x) = EP(x) 4+ Ef(x). The
first part, EF(x), comresponds to the intensity solution field of
the periodic boundary value problem in which the unit cell Z
medium with periodic boundary conditions on 3Z; and 3Z% is
imposed on the periodic polarization field p(x). This problem
can be expressed in the form

V.gPixi=0 in¥Z,

g7 (x) = exEF(x) + pi(x) In Z,
Ef(x) = —¥VTFix) inZ, (24)
T?{x) periodic ond Z;,

g f(x) - n antiperiodic on 4Z;, and az*.

By introducing the Green operator GP with periodic
boundary conditions, the intensity solution field E#(x) takes
the following form:

Efix) = —f GP(x — x"jp(x"jdx’. (25)
Z

It is clear that when the dimensions of the unit cell Z are large
enough, the Green operator GF for the problem (24) becomes
equal to the Green operator for an infinite medivm provided
by Egs. (6) and (7).

The second part. ES(x). corresponds to the intensity
solution field of the complementary boundary value problem,
which is necessary to comply with the insulation boundary
conditions on 3Z%. This complementary problem is defined
as

V. qiix) =0 inZ,
qix) = coEf(x) in Z,
Ef{x) = —¥T°x) inZ,

(26)
TFix) pericdicon 8.2,

q°ix) - m antiperiodic on 87,
g5(xixa £3) = —gf (x1.x2. £ 5).

where cgf[.rl..rg. + %} is the third component of the heat-Aux
solution field of { 24). The intensity solution field E€i(x) of (26)
can be written in the following form:

ES(x) = —fG‘gi—i‘.:;.xgjpcx’mi (27)
z

where & =(xp,x2) and & = (a{.x}): the Green operator
Goix — i",_r;,_r_:_] is periodic in the xy-x7 plane. Thus, the Green
operator G with free heat flux boundary conditions is given in
the form

G=0G"+G" (28)

For later use, we note from the problem (24) that G and G¥ are
two self-adjoint operators. Consequently, the Green operator
G related to G and GP by Eq. (28) is also a self-adjoint
operator. Moreover, the explicit expressions of G and GF
have been derived in the Appendix.

IV, HASHIN-SHTRIKMAN-TYPE BOUNDS
FOR THE PLATE®S IN-PLANE CONDUCTIVITY

In this section. the two materials composing the heteroge-
neous plate under consideration are assumed to be randomly
distributed. Additionally, on a macroscopic scale, this hetero-
geneous plate is supposed to be statically homogeneous along
directions inthe x1-x7 plane. By taking into account two-point
correlation information about the microstructure and boundary
conditions of the plate and by applying the Hashin-Shtrikman
variational principle, we aim at determining the wpper and
lower bounds for the effective conductivity of this random
plate.

A. Hashin-shtrikman variational principle

We start by introducing the thermal energy Weg. which is
defined as

1 1 o 0
W = —— (x)- E(x)dx = =E" . C°E", (29)
ff zlrlj;ql\} (x) dx 3 (29

where ¥ is a representative volume element (RVE) of the
heterogeneous plate under consideration, E is the applied
uniform intensity field on the boundary of the plate, and g{x)
and Eix) are. respectively. the flux and intensity solution fields.

Mext, we define atrial function WiT) in the following form:

Wir) = Wy + WiiT), (30)
where
Wo = 4c0E” - E”, i31)

|
Wity = mf[?.r E et -1 Gridx, (32)
¥

with dc = e¢(x) — ¢, and T(x) being a trial periodic polariza-
tion field. It is noted that the function Wy is independent of the
trial periodic polarization field Tix), and that the trial function
Wit) will be equal to Wy if and only if the trial periodic
polarization field is equal to the polarization corresponding to
the solution field, e, Tix) = p(x) = ScED.

By applying the well-known Hashin-Shtrikman variational
principle [1], it can be shown that

max{Ws 4+ Wi(t)}, dc =0,

-
min{Wo + Wiit)}, dc=<n.
T

Wer = LE' . C°E" =
Finally. since the function Wy is independent of 1(x), the
upper and lower bounds of the effective conductivity tensor
C# for the random plate are then obtained by finding the
trial periodic polarization field 7(x) in the same way the
function Wit attains its maximum value in the case in which
¢ 2 0 and its minimum value in the case in which éc = 0,
respectively.

B. Cheice of the trial polarization fiekd

As proven in Sec. [V A, an important feature necessary to
obtain the upper and lower Hashin-Shtrikman bounds is the
choice of the trial periodic polarization field Tix). We will
show in this subsection that the trial pericdic polarization field
T(%) can be found by estimating the stationary value of Wyit)
as below.



First. the trial periodic polarization field in each phase is
chosen so that it is independent of x; and x7, ie., T4(x) =
Tolx3) with @ = | or 2. Moreover, owing to the fact that the
random plate is statistically homogeneous along directions in
the xy-x7 plane, the characteristic properties are invariant with
respect to any translation along these directions, i.e.,

Tx)) = (T'x3)) = 5" (x3), (34)
TONIP ) = S5 (xx) = 55 — 8 x3,0h). (35)

An ensemble average of Eq. (31). taking into account
Eqs. (28), (34). and (34), yields

(Wi(r))
1 2
_ 25 5@ o(x3) - E°
Y] "I: ; | (X3)Tg(x3)

2
= 857308 walx3) - Talxs)

a=l

2
- Z t.,(.tg)/G”(i—i'..t;.x_’;)tp(.tﬁ)S;"ﬂ’dx'
Y

a,f=1
2
- Z Tq(x3) f G(x— i’..t;.x§)t‘g(.tﬁ)Sz‘“p’dx’] dx.
af=1 ¥
(36)

Second. we discretize the plate under consideration along the
x3 and x} directions with Nj points each. Correspondingly. the
trial periodic polarization field in each phase is approximately
expressed by a piecewise constant function such as

N;
talxrs) = Y woL,(x3), (37)

m=1

where I,,(x3) is an indicator function of the finite intervals
whose union yields the part of the x3 axis that is inside the
plate. Thus, Eq. (36) is then rewritten as

(Wi(T))

1 Ny 2 Ny

==—Y"|D_@srer -E'—Syéc'en - xT) = )

2Ns m=1 La=1 m'=1

2 m

Ta tﬂ moi’ - mm’ - m' e =

x 3y N f (G (&) + G (%)) Sz (x’)dx'].
« A=l o

(38)
where

Gom(X) = GP(',x3(m) — xi(m"),  Gm(X) =
T

G(& x3(m) xym"), Sir() = S x3(m) xyim')), and
St o= S‘l‘"[.rg(m)]. with x3(m) and x}(m') standing for the
third coordinates of the mth and m'th discretized points,
respectively.

Third. the surface integral in Eq. (38) can be calculated
by using the fast Fourier transform (FFT) with the wave
vectors k = (ky.k3) and by applying the Parseval theorem.

The expression of Eq. (38) is finally rewritten in the simple
form

(W)}
1
=—0TT . F =TT .M, T =TT . M, T =TT . M_T).
2N,
(39)
where the discretized trial polarization vector T is defined by
T=(eleheded el (40)

with T2 = 74[x3(m)]: the vector F is determined from the
one-point correlation function S7 and the applied uniform
intensity field E°. M, is a symmetric squared matrix to be
calculated from the one-point correlation functions S‘,” and
the conductivities of the plate and the reference medium, and
the squared matrices M, and M, relative to the Green operators
GP and G° are computed from the two-point correlation
functions Sy’ Additionally, since G and G* are self-adjoint
operators (as was mentioned in Sec. I1I), the matrices M, and
M, are both symmetric.

From Eq. (39). it is easy to show that the function (Wy(7)} is
stationary when T = T, (or equivalently when T = ). with

T, = (M, + M, + M.)"'F. 1)

Correspondingly. the stationary value (W(t,)) of (Wi(T)) is
then given by

1
Wilr,)) = —T17 . F. 42
(Wi(r,)) T )
Finally. by taking the conductivity of the reference medium
such as cp = max(cy,cz) [or cg = min(cy,c2)] and by applying
the Hashin-Shtrikman variational principle described above by
Eq.(33).ie.,

1 1
= —FY. CF? = — RO Y 4 — T . 4
Wegr = —E CEO_zcoE E +2N3T, F, 43)

o] =

with an appropriate choice of the macroscopic intensity field
E°, the latter equation allows us to obtain the upper (or lower)
bound of the effective conductivity components of C¢.

A few results will be shown in Sec. VL.

V. CORRELATION APPROXIMATION FOR THE
EFFECTIVE IN-PLANE CONDUCTIVITY

We apply the formalism of Secs. Il and III to estimate
the effective behavior of heterogeneous plates. We come
back to the third-order approximation (13). Because of the
finite ratio between the plate thickness and the size of the
inhomogeneities, which leads to the boundary effect. the term
A7 would not vanish. We will keep the conductivity ¢y of the
comparison medium as the solution of Eq. (18) (which makes
the third-order term vanish in the case of infinite media), and
Eq. (13) provides

Leen) 422 44)
o FT
where A is defined by (15) and B is determined by (14).
Similarly to the computation of the surface integral described



previously in Sec. IV, the determination of A is carried out
by writing Eq. (15) in the discretization space. This yields

(b — bl =
Ay = i s UL Z f e [foJ[SEml\'l} _ U%]ﬂ'l"
w

NiB?
e mm=1
(45)
where ng'ii’jz éﬁj{i‘,n[m}.xgqm"]}, with x3im) and

x3(m") being the third coordinates of the mth and m'th
discretized points, respectively: the second-order tensor
™ (%) is defined as h™ (%) = hix' xz(m) xj(m")). with
WX x3im ). xhim'y) determined from Eqs. (17) and (6) taking
into account the expression of the Green operator Gir) derived
in Sec. 1T as

hix', xa(m).x3(m")
1
= Eéli’.xsim] — xiim")I — co[GF (X, xa(m) — x3(m'))
+GT(, xaim) x5(m )], (46)

Mext, from Eq. (45), Az is then computed in Fourier space
by employing the FFT with the wave vector k = (k. kz) and
taking into account the Parseval theorem. It can be seen
immediately from Eq. (46) that the Fourier transform of
(%, x3(m).x5(m')) takes the following form:

. 1 R
hik, xa(m)xiim'y) = El — cplGP(k,x3(m) — xiim'))

+ G (ke x3(m) x5 (m" )], (47)
where
GP(k,xs(m) — xyim')) = Y GPkeRbatm=serl 4
k3

with GP(k) and ('f‘r‘{l-c,_r_:,(m],_rg(m“]} determined abowve in
Sec. IIL

I%[r+ﬁ11—£gl'-"—c03" (£

2 i 120,
S = v — v+ S = v — S =
v

It is interesting to note that the overlapping disk model is
particularly appropriate to describe the porous media in which
the voids can be considered as overlapping inclusions with
zero conductivity.

Asdescribed in Sec. I'V B, to obtain the second-order upper
and lower bounds of the effective conductivity for both models
with randomly nonoverlapping and overlapping distributions
of circular disks, we need to calculate the stationary value of
{Wi(r)) provided by Eq. (41). This value can be computed
in Fourier space by using FFT. A discretization in the xj-x3
plane of the plate is carried out by using the discretized points,
whose coordinates are given by

X =n;

where N; = 2F with peNT and
[—N:/2,....0, .00 N; /2 — 1]. The components of the wave

ny =

-
-

Mote that both sides of Eq. (44) are diagonal matrices due
to the choice of the axes, from which—for our purposes—we
need only the expression of the in-plane conductivity ¢, when
multiplying both sides of Eq. (44) by E’ = E?EJ.

Y1 NUMERICAL APPLICATIONS

The uwpper and lower Hashin-Shtrikman bounds estab-
lished in the previous Secs. IV A and IV B for the effective
conductivity of the heterogeneous plate are now numerically
illustrated by considering examples in which the spherical
particles or circular fibers with the same radius R, denoted by
phase 2, are introduced into a host matrix phase, referred to as
phase 1. Additionally, to describe the material microgeometry
of this heterogeneous plate, the one- and two-point correlation
information is provided via the one-point correlation functions
St“’l;:t]. which are equal to the volume fraction v, and the two-
point correlation functions .Sé“’g’u.]. which are assumed to be
invariant with respect to any translation and rotation. The ana-
Ivtical and numerical methods to estimate the two-point corre-
lation function for different random material distributions have
been studied previously. For more details about these methods,
the reader can refer to the excellent book by Torguato [7].

The first example consists of a fiber-reinforced plate
containing a random distribution of unidirectional fibers in a
matrix phase. The fibers of the plate are assumed to be aligned
along the direction x3 and have the same circular cross-section
of rayon R. To describe the distribution of circular fibers in
the heterogensous plate, the two randomly nonoverlapping
and overlapping circular disk models are used in [T]. More
precisely, in the randomly nonoverlapping disk model, also
called the random hard disk model. the two-point correlation
functions can be provided by Table 1 in [26]. However. for the
overlapping disk model, the two-point correlation functions
S;Lf'ﬁ][r] are given explicitly by [7]

if r= VE xS = 2R, (49)

if r= \I.".rf + .rj2 = 2R.

vectors are then defined as & = 2mm; /1. where I3 = ¢, and
Iy 1s large enough compared to the plate thickness and to the
size of the inclusions. Practically. all results are the same
as soon as {) is greater than 208, which means that for
these lengths. the Green tensor for a periodic polarization
approximates comrectly the Green tensor for a polarization
in an infinite plate. So, all computations are effected with
Iy = 20K, With this wvalue for [y, a discretization with
Ni=N; = 27 is sufficient to ensure the convergence of the
solution.

First, by using the randomly nonoverlapping disk model and
by assuming the inclusion phase to be more thermal conducting
than the matrix phase with the conductivity ratio of the matrix
and inclusions being kept constant with c2/c) = 20, the upper
and lower Hashin-Shtrikman bounds cpys/cy and cpps /ey
that are normalized with respect to cy. and the correlation
approximation cca /ey for the effective in-plane conductivity
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FIG. 2. {Color online) Lower and upper Hashin-Shirikman
bounds that are normalized with respect to ¢ and the correlation
approximation of the effective in-plane conductivity vs the inclusion
volume fraction va with es /oy = 2000 2R = 10, and ¢ /2R = 2 (hard
disk model).

of the heterogeneous plate that is nomalized with respect to ¢y,
are plotted versus the volume fraction v of the inclusion phase
in Fig. 2 with I} /2R = 10 and ¢/2R = 2. These values for
cugs/c1. s fer . and coa /oy are also compared in Fig. 2 with
the corresponding values for an infinite medium. Additionally,
compared 1o the classical upper and lower Hashin-Shtrikman
bounds and the correlation approximation for an infinite
medium, we show numerically that the relative differences
obtained for the bounds and correlation approximation of
the effective in-plane conductivity with /) /2R = /2R = 10
are less than 0.6% (while those of Fig. 2 are about 3% ). These
results allow us to conclude that, as soon as /2R = 10, the
plate does not display any boundary effect.

Figure 2 shows that when the size of the inhomogeneities
is compared to the thickness of the plate (/| /2R = 10 and
t/2R = 2), the upper and lower Hashin-Shtrikman bounds for
the effective in-plane conductivity obtained from the theory
established in the previous section (Secs. [V A and TV B)
appear lower (smaller) than the respective classical upper
and lower Hashin-Shirikman bounds. As expected. we can
observe also from Fig. 2 that the comrelation approximation
values obtained for the effective in-plane conductivity are
well situated hetween the upper and lower Hashin-Shtrikman
bounds. Similar results are observed in Fig. 3 for the randomly
overlapping disk model, with the inclusion phase being less
thermally conducting than the matrix phase {cyfc) = 1,/20).
Maoreover, it can be seen from Figs. 2 and 3 that the values
obtained For the effective in-plane conductivity are close either
to the lower Hashin-Shtrikman bound for the case in which
the inclusion phase is more thermally conducting than the
matrix phase. or to the wpper Hashin-Shtrikman bound for the
opposite case, Figures 4 and 5 address the two extreme cases
with superconducting inclusions {(c;/cy = ©0) and perfectly
insulating inclusions (e2/c) = 0). Figure 4 displays the lower
Hashin-Shtrikman bound and correlation approximation of the
effective in-plane conductivity that is nommalized with respect
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FIG. 2. (Color onling) Lower and upper Hashin-Shtrikman
bounds that are normalized with respect to ¢ and the correlation
approximation of the effective in-plane conductivity vs the inclusion
volume fraction vo with ¢a/cy = 120, /2R =10, and (/2R =2
(overlapping disk model).

to the matrix conductivity ¢ versus the inclusion volume
fraction vo with the random overlapping disk model. Figure 5
displays the upper Hashin-Shtrikman bound and correlation
approximation of the effective in-plane conductivity that is
normalized with respect to the matrix conductivity ¢y versus
the inclusion volume fraction vz with the random overlapping
disk model.

Mext. to understand more details about the size dependence
of the Hashin-Shtrikman bounds. we show in Figs. 6, 7, 8,
and 9 the wpper and lower bounds that are normalized with
respect to ¢y, as well as the comelation approximation for
the effective in-plane conductivity in terms of the inclusion
volume fraction vy with different values of the ratio between
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FIG. 4. (Color online) Lower Hashin-Shtrikman bound that is
normalized with respect to ¢y and the correlation approximation of
the effective in-plane conductivity vs the inclusion volume fraction
e with cz/ep = 00, 11 /2R = 10, and #/2K = 2 (hard disk model).



the plate thickness and inhomogeneity size ¢ /2R for the two
extreme cases. It can be seen from Figs. 6, 7. 8, and 9 that
the size dependence of Hashin-Shtrikman bounds is more
pronounced as the ratio f /2R decreases. The upper and lower
Hashin-Shtrikman bounds that are normalized with respect to
¢y and the correlation approximation for the effective in-plane
conductivity are presented in terms of the ratio between the
plate thickness and the size of the inhomogeneities. t /2R. in
Figs. 10 and 11, respectively, while the volume fraction of
the inhomogeneity phase is kept constant with v; = 0.7 for
the superconducting inclusion case and v; = 0.8 for perfectly
insulated inclusion case.

In the second example, the plate is now reinforced by
identically spherical particles. The two randomly nonoverlap-
ping and overlapping spheres models are used to describe the

2_ R25b|v|d| + 2g|[d1(2 + ) - l.'|(l')|/v|)2,3(9 —d| + ﬁf)] .

distribution of spherical particles in the heterogeneous plate.
More precisely, in the randomly nonoverlapping sphere model.
also called the random hard sphere model, the two-point
correlation functions can be expressed as [27.28]

S;"’(x - x;“‘a’)(r) = Vo ¥g + Vuldap — vp)h(r), (50)

where r denotes the distance between two points x and x', 8.5
is the Kronecker symbol, and A(r) is an exponential function
defined as follows [26,29]:

hir)=e"%. (51)

Here. the coefficient @ depends on both the radius R of
spherical inclusions and the volume fraction vy of the matrix
phase,

10gy (1 — vy)d)

where
1 3981 = 0.7117i; — 011497
l:‘l =t'|——U|2. b|= |( _l l),
16 2 (1—u)*
(53)
(1 —ip)?
g1 = 12b; dy =1+ 29,. (54)

n2+0)’
In the overlapping sphere model, the two-point correlation
functions S'z‘" '(r) are provided by [7.30]
gzz)(” =m-n+ s;ll)(’) =wn— 5(212)(’)

(+i5——20) X
vy TR i r < 2R

= ! (55)
v if r=2R.
T T —— =
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FIG. 5. (Color online) Upper Hashin-Shtrikman bound that is
normalized with respect to ¢; and the correlation approximation of
the effective in-plane conductivity vs the inclusion volume fraction vy
withez/er = 0.11/2R = 10,and ¢ /2R = 2(overlapping disk model).

Asbefore, to calculate the stationary value of (W(7)} provided
by Eq. (41) in the Fourier space by using FFT, a discretization
in the three-dimensional space of the plate is necessary. The
coordinates of the discretized points are then given by
k;
X;p =R —
i

(i= 1.2.3).

where N; =27 with peNt and n; =
[=N;/2,....0,...,N;/2—=1]. The components of the
wave vectors are then defined as k = 2mn;/l;. In our
computations for the three-dimensional case, a discretization
with Ny = Np = N3 = 2 is enough to ensure the convergence
of the solution. I3 is still equal to t while {; and /3 are set to
I} =l = 20R for the reasons given previously in the 2D case.

By using the randomly nonoverlapping sphere model
and by assuming the inclusion phase to be more thermally
conducting than the matrix phase with the conductivity ratio

LHS/CLHS
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FIG. 6. (Color online) Lower Hashin-Shtrikman bound of in-
plane effective conductivity that is normalized with respect to the
corresponding values for an infinite medium vs the inclusion volume
fraction vz with ca/cy = ocand /1/2R = 10 (hard disk model).
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FIG. 7. (Color online) Correlation approximation of in-plane
effective conductivity that is normalized with respect to the cor-
responding values for an infinite medium vs the inclusion volume
fraction v, with c; /¢y = o¢ and /; /2R = 10 (hard disk model).
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FIG. 8. (Color online) Upper Hashin-Shtrikman bound of in-
plane effective conductivity that is normalized with respect to the
corresponding values for an infinite medium vs the inclusion volume
fraction vy with ¢ /¢y = Oand !/, /2R = 10 (overlapping disk model).
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FIG. 9. (Color online) Correlation approximation of in-plane
effective conductivity that is normalized with respect to the cor-
responding values for an infinite medium vs the inclusion volume
fraction vy with ¢ /¢y = Oand/; /2R = 10 (overlapping disk model).
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FIG. 10. (Color online) Lower Hashin-Shtrikman bound that is
normalized with respect to corresponding values for an infinite
medium and the correlation approximation of effective in-plane
conductivity vs the ratio /2R with v, =0.7. ¢3/c; = o0, and
11 /2R = 10 (hard disk model).

of the matrix and inclusions being kept constant, ¢z /¢; = 20,
the normalized upper and lower Hashin-Shtrikman bounds.
cups/cy and cpps/cy. as well as the normalized correlation
approximation, cca /cy. of the effective in-plane conductivity
of the heterogeneous plate are plotted versus the volume
fraction vy of the inclusion phase in Fig. 12 with [} /2R =
I/2R = 10 and t /2R = 2. These normalized bounds cyps /¢y
and cyps /ey and normalized correlation approximation cca /¢y
are also compared in Fig. 12 with the normalized classical
upper and lower Hashin-Shtrikman bounds, ccups/cy and
ccrns/cy. and the normalized correlation approximation for
an infinite medium. It is seen from Fig. 12 that the correlation
approximation values obtained for the effective in-plane
conductivity are well located between the upper and lower
Hashin-Shtrikman bounds. Moreover, we observe also from
Fig. 12 that the estimation values obtained for the effective

055

]
2R
FIG. 11. (Color online) Upper Hashin-Shtrikman bound that is
normalized with respect to corresponding values for an infinite
medium and the correlation approximation of effective in-plane con-

ductivity vs the ratio 7 /2R with v2 = 0.8, c2/c1 = 0,and /1 /2R = 10
(overlapping disk model).
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FIG. 12. (Color online) Lower and upper Hashin-Shtrikman
bounds that are normalized with respect to ¢; and the correlation
approximation of the effective in-plane conductivity vs the inclusion
volume fraction v; with ¢3/cp = 20, I,/2R =1;/2R = 10, and
1/2R = 2 (hard sphere model).

in-plane conductivity for the hard sphere model with higher
conducting inclusions are close to the lower Hashin-Shtrikman
bound. As can be seen in Fig. 12, there is a size effect on
the upper and lower Hashin-Shtrikman bounds as well as
on the correlation approximation for the effective in-plane
conductivity of the heterogeneous plate where the size of the
inhomogeneities is compared to the thickness of the plate for
t/2R =2.

Furthermore, to study more details about the size de-
pendence of the Hashin-Shtrikman bounds as well as the
correlation approximation, we present in Fig. 13 the upper
and lower bounds that are normalized with respect to the cor-
responding values for an infinite medium, and the correlation
approximation for the effective in-plane conductivity in terms
of the ratio between the thickness of the plate and the size of
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FIG. 13. (Color online) Lower and upper Hashin-Shtrikman
bounds that are normalized with respect to the corresponding values
for an infinite medium and the correlation approximation of effective
in-plane conductivity vs the ratio 7 /2R with v; = 0.4, ¢3/¢c; = 20,
and [y /2R = I;/2R = 10 (hard sphere model).
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FIG. 14. (Color online) Lower and upper Hashin-Shtrikman
bounds that are normalized with respect to ¢; and the correlation
approximation of the effective in-plane conductivity vs the inclusion
volume fraction vy with ¢3/cp = 1720, [} /2R = 13/2R = 10, and
1 /2R = 2 (overlapping sphere model).

inhomogeneity. f /2R, for a given value of the inclusion volume
fraction ¢z = 0.4. It can be seen that the size dependence of the
Hashin-Shtrikman bounds and the correlation approximation
is more pronounced as the ratio ¢t /2R decreases.

For the overlapping sphere model. by setting the inclu-
sion phase to be less conducting than the matrix phase
with ¢2 /¢y = 1720, the normalized upper and lower bounds
and the correlation approximation of the effective in-plane
conductivity for a thin heterogeneous plate with t/2R =2
are plotted in Fig. 14 and compared with their counterpart
values for an infinite medium. Compared with the relevant
results for the nonoverlapping sphere model. it is shown in
Fig. 14 that the size dependence of the upper and lower
bounds and the comrelation approximation of the effective
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FIG. 15. (Color online) Lower Hashin-Shtrikman bound that is
normalized with respect to ¢; and the correlation approximation of
the effective in-plane conductivity vs the inclusion volume fraction vy
with ¢/¢; = 00, [} /2R = §;/2R = 10, and {/2R = 2 (hard sphere
model).
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FIG. 16. (Color online) Upper Hashin-Shtrikman bound that is
normalized with respect to ¢; and the correlation approximation of
the effective in-plane conductivity vs the inclusion volume fraction
vy withcz/c) = 0.1)/2R =1 /2R = 10, and 1 /2R = 2 (overlapping
sphere model).

in-plane conductivity is much smaller (less than 1%). More-
over, because the matrix phase is more conducting than the
inclusion phase, the correlation approximation of effective
in-plane conductivity obtained in this case is then nearer to
the upper Hashin-Shtrikman bound.

Next, we consider the two extreme cases in which the
inclusion phase is assumed to be superconducting, i.e.,cz/c) =
o¢, and perfectly insulating, i.e., ¢3/c) = 0. More precisely.
we present in Fig. 15 the lower Hashin-Shtrikman bound
that is normalized with respect to ¢ and the correlation
estimation of the effective in-plane conductivity in terms of
the inclusion volume fraction according to the hard sphere
model with /;/2R = I/2R = 10 and t/2R = 2. Comparing
Fig. 12 with Fig. 15, we notice that the size dependence of the
lower Hashin-Shtrikman bound and the correlation estimation
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FIG. 17. (Color online) Lower Hashin-Shtrikman bound of
in-plane effective conductivity that is normalized with respect to the
corresponding values for an infinite medium vs the inclusion volume
fraction vy with ¢3/c; = o0 and [, /2R = [/2R = 10 (hard sphere
model).
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FIG. 18. (Color online) Correlation approximation of in-plane
effective conductivity that is normalized with respect to the cor-
responding values for an infinite medium vs the inclusion volume
fraction vy with ¢3/c; = 00 and /} /2R =§;/2R = 10 (hard sphere
model).

of the effective in-plane conductivity for the superconducting
inclusion case is more pronounced than in the first example
with ¢3/c) = 20. Concerning the second extreme case with
perfectly insulating inclusions, we plot in Fig. 16 the upper
Hashin-Shtrikman bound that is normalized with respect to
¢z and the correlation estimation of the effective in-plane
conductivity by applying the overlapping sphere model. It can
be seen again from Fig. 16 that the size effect of the upper
Hashin-Shtrikman bound and the correlation estimation of the
effective in-plane conductivity with the overlapping sphere
model is very small in spite of the extreme case with the
ratio c3 /¢ = 0. As before, the size dependences of the lower
Hashin-Shtrikman bound and the correlation approximation
of the effective in-plane conductivity are then presented in
Figs. 17 and 18 in terms of the inclusion volume fraction
vz and according to different values of the ratio t/2R in
the superconducting inclusion case. Figures 17 and 18 show
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FIG. 19. (Color online) Lower Hashin-Shtrikman bound that is
normalized with respect to corresponding values for an infinite
medium and the correlation approximation of effective in-plane
conductivity vs the ratio {/2R with v; =0.56, ¢;/c; = 00, and
I1/2R = /2R = 10 (hard sphere model).



that the size dependences become more important as the
ratio t /2R decreases. Similar results are also observed in
Fig. 19, in which the normalized lower Hashin-Shtrikman
bound and the correlation approximation of the effective
in-plane conductivity are plotted in terms of the ratio t/2R
in the superconducting inclusion case with vy = 0.56.

VIL. CONCLUSION

Usually. effective properties of materials do not depend on
the size of heterogeneities. However, in the case of plates,
a size effect appears when the size of the heterogeneities is
no longer negligible compared to the plate thickness. This
effect was studied in the case of the in-plane conductivity of
heterogeneous plates by producing an extension for plates of
Hashin-Shtrikman bounds and of approximations accounting
for third-order correlations. Results are obtained for 2D distri-
butions of circular inclusions and 3D distributions of spheres.
They show that the size effect leads to decreasing the effective
conductivity and can reach more than 10% both for the third
correlation approximation and Hashin-Shtrikman bounds in
the 2D case when inclusions have a radius that becomes half
the plate thickness. This effect becomes significantly smaller
(less than 5%) in the 3D case. The tendencies (increasing or
decreasing) of the effective conductivity of the heterogeneous
plate compared to those for the infinite medium observed for
the upper and lower bounds and the correlation approximation
over the ranges of parameters appear to be in agreement. In
this work, we examined the insulation boundary conditions
on the free boundaries of the heterogeneous plate. It should
be interesting to study the thin plate under other boundary
conditions.
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APPENDIX: THE EXPRESSIONS FOR THE GREEN
OPERATORS G? AND G¢ IN EQ. (28)

We will show in this appendix that the expressions of the
solution fields in (24) and (26) as well as the expressions of
G?, G, and G can be obtained explicitly in the Fourier space
by using fast Fourier transform (FFT) [31,32]. In fact, for any
function f(x) that is 3D-periodic and g(x) that is 2D-periodic
in the xy-x3 plane. the expansions into Fourier series of f(x)
and g(x) are given by

fx=)" fike™™, gx)= Zg(li.xgje"‘", (Al)
* &

where i = /=1: k=(k;.k2) and k = (ky.kp.k3) are the
discrete wave vectors arranged along a discrete lattice with
period 27 /I; (I3 = t) along the x; direction: the coefficients of
the Fourier series f(k) and g(ﬁ..r3) are calculated by FFT.

According to this method, the temperature solution fields
T?(x) and T¢(x) of the boundary-value problems (24) and (26)
are expanded into the Fourier series by

Tf(x):ZTP(k)e'“. T‘u):z:rui.x;;e"“. (A2)
3 3

The resulting intensity fields are given by

EP(n) = ) EP(e™, ECx =) Bk, (A3)
k 3

where f‘l’(k) and E:E‘(l:(..rg) are calculated from the temperature
fields T7(k) and T“(k,x3) by

E(k,x3) = =V @ T(k,x3),
(Ad)

EP(k) = VP & TP(k),

where VP and V© are two operators defined by VP =
[iky iky ik3]" and V€ = [ik; ik; )7, and the operator
d denotes the partial differentiation with respect to the
coordinate subscript that follows.

Next. by writing the polarization field p(x) into the Fourier
series as

px) =) pkje™, (AS)
k
the heat flux fields obtained from the Fourier law as
47(k) = cofP (k) + p(k),  q°(k.x3) = coF (k.x3),  (A6)

must verify, for the stationary thermal conduction case without
a heat source, the following energy conservation equation:

cok* TP(k) + ik - p(k) =0,

2 i 2 ac i (A7)
cos TE(k,x3) — cpdsz T(k,x3) = 0,
with k = (kf + k3 + k"2 and s = (k] +k3)"/%. The expres-
sions of the temperature solution fields T”(k) and T‘(f(..t;)
obtained from (A7) take the form

. ik -p(k
TP(k) = —%. Yk #0, (A8)
Te(k.x3) = ate™ +a"e™™, Vk#0. (A9)

In the preceding equation, @* are two constants to be

determined via the vector a(k) = (a*.a~)7 from the boundary
conditions on Y%,

~ t ke
g5 (k.xg = :l:;) ==Y k=T, (Al0)
= ky
This yields
ak) = K (Q(k), vk #0, (All)
where
. —e¥ -¥
K(k)=sco[_:_? :§ ] (A12)
- + G k)e#
Q(k)=[g_]=— Zh‘ﬁ,‘ Y PRENE)
Yk dfke



Substituting (A9) into (A4) together with (A11)—(A13) leads

o . koky . ,
Ef(k) = — k2 p(k), Vk#Z0, (Al4)
E(k,x3) = P(k.x3) K~ HK)Q(k), Yk #0, (Al5)
with
) —iky e —ikje™ ™
P(k.x3) = | —tkpe™ —ikye™™ (Al6)
—se'®  seT'
By writing (25) in the Fourier space
EP(k) = —GP(k)p?(k), (A17)

and by comparing (A17) with (Al4), we obtain the Fourier
transform of the Green operator G¥ such as

k@k

., Yk#0. Al8
— ) £ (A18)

GP(k) = (

Moreover, owing to the fact that

- N k3t N ﬁ:
0*k) ==Y e T = =Y Asn(k)pu(ke™T
ks ks
(A19)

withm = 1,2, or 3 and A(k) = I — qoGP(k) being the Green
operator for the flux vector, (A13) and (A15) show that

Ef(k,x3) = P(k,xs) K~ (k)Q(k)

= —P(kxs)K™'(K) )_S(k)p(k),  (A20)
ks

where k # 0and S(k) is a2 x 3 matrix whose components are
provided by

Sim(K) = Asn(K)e T, Syn(k) = Asu(k)e™ T .

By expressing Eq. (27) in the Fourier space such as

(A21)

L T, ,
E(k,x) = —/ Gekxs,xypik,xy)dxy,  (A22)
-1

and accounting for (A20), the Fourier transform of the Green
operator G is given by

Gkors,xy) = Pk K™'(R) ) Stkye™ 5, vk £ 0.
ka
(A23)

In particular, for k = 0. due to the periodic boundary condi-
tions on 3Z; and on 3Z* in (24), the Fourier transform of
the intensity solution field EF(x) is therefore equal to zero,
ie., EP(k = 0) = 0. This implies immediately that G?(k =
0) = 0. Similarly, due to the periodic boundary condition
on dZ; in (26). the Fourier transform components of the
intensity solution field E°(x) atk = 0 are nullin-plane, ES(k =
0,x3) = 0, but non-null out-of-plane, £5(k = 0,x3) # 0. More
precisely, by using the boundary condition (A10) and the
differential equation that is the second expression in (A7),
the non-null out-of-plane component E’;(R = 0,x3) is given
by

e 1 o il
Esk =03 = — Y gf(k = 0kp)e ¥ (A24)
@ 4

Itis easy to check from (A6) together with (A18) that ¢f (k =
0.k3) = 0 for any k3 # 0. and therefore
ol 1
ES(k =0.x3) = ——p3(k = 0). (A25)
3 o
This equation allows us to derive the expression of G<( k,x3,x%)
atk = 0 as follows:
e 1
G(k= 0.x;.x§) = Ee; ® ea. (A26)
As expressed previously, the Green operator defined by
(28) together with (A18) and (A23) is related to a periodic
distribution of sources within the plate. It is used in the paper
for computing the Green operator for the infinite plate and
nonperiodic polarization by using large enough values of the
in-plane period.
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