Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range
Christophe Desceliers, Christian Soize, S. Naili, Q. Grimal, M. Talmant

To cite this version:

HAL Id: hal-00692871
https://hal-upec-upem.archives-ouvertes.fr/hal-00692871
Submitted on 1 May 2012

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Probabilistic model of the human cortical bone with alterations of the mechanical properties and adapted for the experimental identification using measurements in ultrasonic range

C. Desceliers ¹, C. Soize ¹, S. Naili ², Q. Grimal ³, M. Talmant ³

¹ Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR8208 CNRS, 5 Bd Descartes, 77454 Marne la Vallée, France
e-mail: christophe.desceliers@univ-paris-est.fr, christian.soize@univ-paris-est.fr

² Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR8208 CNRS, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
e-mail: naili@univ-paris12.fr

³ Université Paris 6, Laboratoire d’Imagerie Paramétrique, UMR7623 CNRS, 15 rue de l’école de médecine, 75006 Paris, France
e-mail: quentin.grimal@upmc.fr, Talmant@lip.bhdc.jussieu.fr

Abstract
The biomechanical materials are among the most complex mechanical systems. Most often, their microstructure are complex and random. This is the case for the human cortical bones which are considered in this paper. For such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in the thickness direction but, in this case, none of the usual theories of porous materials can be applied. For this reason, we present a simplified model with gradient for the elasticity tensor. The predictability of this model is improved by taking into account uncertainties. The elasticity tensor is then modelled by a random field. This random model is well adapted for the modelling of the random experimental measurements in ultrasonic range for the human cortical bone.

1 Introduction
The biomechanical materials are among the most complex mechanical systems. Modelling such media is a challenge and the main difficulty is given rise to by the complexity level of their micro-structures. This is the case for the human cortical bones which are considered in this paper. For such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in the thickness direction but, in this case, none of the usual theories of porous materials can be applied. For these reasons, these systems are often modelled using a simplified mechanical model which corresponds to a rough approximation of the real system. Nevertheless, the predictability of such a simplified model can be improved by taking into account the uncertainties introduced by these approximations. In this paper, a model for the human cortical bone is constructed. It consists of a fluid-solid semi-infinite multilayer system in which the solid layer (the cortical bone) is a non-homogeneous transverse isotropic elastic material and the two others semi-infinite layers (skin/muscles and marrow) are modelled by acoustical fluids. A gradient
of the elasticity properties of the cortical bone is introduced in order to take into account the alterations of
the cortical bone micro-structure. Thus, inside the solid layer, the constitutive equation of the solid goes to
the constitutive equation of the fluid (the marrow).

The uncertainties related to such a model are taken into account by modelling the elasticity tensor by a
random field. The parameters of this probabilistic model are (1) the mean value of the effective thickness
and the mean value of the elasticity tensor of the cortical bone and (2) the parameters controlling the level of
uncertainties which depends on the spatial coordinates. The purpose is to present such a probabilistic model
constructed within the framework of the theory of information. This probabilistic model should be adapted
for the experimental identification using measurements in ultrasonic range.

2 Simplified model

the properties of the human cortical bone are studied by using in vivo measurements obtained with the axial
transmission technique: an acoustic pulse is applied on the skin layer in the ultrasonic range and the velocity
of the first arriving signal is measured. A simplified model of the human cortical bone with the skin, the
coupling gel with a probe that applied the acoustic pulse and the marrow has been developed in [8, 5].
This simplified model is composed of an elastic solid semi-infinite layer between two acoustic fluid semi-
infinite layers (see fig. 1). Let \(R(O, e_1, e_2, e_3) \) be the reference Cartesian frame where \(O \) is the origin of the

![Figure 1: Geometry of the multilayer system](image)

space and \((e_1, e_2, e_3)\) is an orthonormal basis for this space. The coordinates of the generic point \(x \) in \(\mathbb{R}^3 \) are
\((x_1, x_2, x_3)\). The thicknesses of the layers are denoted by \(h_1, h \) and \(h_2 \). The first acoustic fluid layer occupies
the open unbounded domain \(\Omega_1 \), the second acoustic fluid layer occupies the open unbounded domain \(\Omega_2 \)
and the elastic solid layer occupies the open unbounded domain \(\Omega \). Let \(\partial \Omega_1 = \Gamma_1 \cup \Sigma_1 \), \(\partial \Omega = \Sigma_1 \cup \Sigma_2 \) and
\(\partial \Omega_2 = \Sigma_2 \cup \Gamma_2 \) (see Fig. 1) be respectively the boundaries of \(\Omega_1, \Omega \) and \(\Omega_2 \) in which \(\Gamma_1, \Sigma_1, \Sigma_2 \) and \(\Gamma_2 \) are
the planes defined by

\[
\begin{align*}
\Gamma_1 &= \{ x_1 \in \mathbb{R}, \ x_2 \in \mathbb{R}, \ x_3 = z_1 \} \\
\Sigma_1 &= \{ x_1 \in \mathbb{R}, \ x_2 \in \mathbb{R}, \ x_3 = 0 \} \\
\Sigma_2 &= \{ x_1 \in \mathbb{R}, \ x_2 \in \mathbb{R}, \ x_3 = z \} \\
\Gamma_2 &= \{ x_1 \in \mathbb{R}, \ x_2 \in \mathbb{R}, \ x_3 = z_2 \}
\end{align*}
\]

in which \(z_1 = h_1, z = -h \) and \(z_2 = -(h + h_2) \). Therefore, the domains \(\Omega_1, \Omega \) and \(\Omega_2 \) are unbounded along
the transversal directions \(e_1 \) and \(e_2 \) whereas they are bounded along the vertical direction \(e_3 \). A line source
modelling an acoustical impulse is applied in domain Ω_1. This line source is defined with a source density Q_1 such that

$$\frac{\partial Q_1}{\partial t}(x, t) = \rho_1 F(t) \delta_0(x_1 - x_1^S) \delta_0(x_3 - x_3^S),$$

in which $F(t) = F_1 \sin(2\pi f_c t) e^{-4(t-f_c)^2}$ where $f_c = 1$ MHz is the central frequency and $F_1 = 100$ N; ρ_1 is the mass density of domain Ω_1; δ_0 is the Dirac function at the origin and x_1^S and x_3^S are the coordinates of a line source modelling the acoustical impulse. At time $t = 0$, the system is assumed to be at rest. Let $\rho(x_3)$ and $[C(x_3)]$ be the mass density and the effective elasticity matrix of the solid layer at a point $x_3 \in \Omega_1$. For a given effective elasticity matrix field $x_3 \mapsto [C(x_3)]$, the displacement field u in the solid layer Ω and the pressure fields p_1 and p_2 in the two fluids Ω_1 and Ω_2 respectively, are calculated using the fast and efficient hybrid solver presented in [4].

3 Simplified model for a porous medium with gradient

It is well-known that bone medium are made of porous material. However, for the human cortical bones, the pore sizes are not small with respect to the thickness of the cortical layer. In addition, the pore size increases along the transverse direction x_3. In case of osteoporosis, this gradient of porosity is such that, near interface Σ_2, the cortical material is mostly made up of a fluid. No usual theory on porous medium [1, 2, 3] is suitable for modelling such properties. Hereafter, we then propose an approach that allows the modelling of the elasticity matrix $[C(x_3)]$ to be still constructed within the usual framework of the continuum mechanics. For all x_3 in $[a, b]$, the material in the cortical layer is assumed to be locally an homogeneous transverse isotropic medium and for all x_3 in $[z, b]$ it is assumed to be a fluid. Consequently, (1) for all x_3 in $[0, a]$, we have $[C(x_3)] = [C^S]$ and $\rho(x_3) = \rho^S$; (2) for all x_3 in $[z, b]$ we have $[C^F]$ and $\rho(x_3) = \rho_2$; where $[C^S]$ is the elasticity matrix of a transverse isotropic medium, $[C^F]$ is the elasticity matrix of a fluid medium, ρ^S is the mass density of the cortical layer without taking into account the porosity and ρ_2 is the mass density of the second fluid (the marrow). All components of $[C^S]$ are zeros except the following

$$[C^S]_{11} = \frac{\nu^2(1 - \nu)}{(1 + \nu)(1 - \nu \nu_L - 2\nu T_L^2)} , \quad [C^S]_{22} = \frac{\nu T_L(\nu L - \nu T_L^2)}{(1 + \nu)(1 - \nu \nu_L - 2\nu T_L^2)},$$

$$[C^S]_{12} = \frac{\nu T_L}{(1 - \nu \nu_L - 2\nu T_L^2)} , \quad [C^S]_{23} = \frac{\nu T_L(\nu L - \nu T_L^2)}{(1 + \nu)(1 - \nu \nu_L - 2\nu T_L^2)},$$

$$[C^S]_{44} = g_T , \quad [C^S]_{55} = g_L ,$$

with $[C^S]_{22} = [C^S]_{33}$, $[C^S]_{12} = [C^S]_{21} = [C^S]_{23} = [C^S]_{31}$, $[C^S]_{22} = [C^S]_{33}$ and $[C^S]_{55} = [C^S]_{66}$ and where ν_L and ν_T are the longitudinal and transversal Young moduli, g_L and g_T are the longitudinal and transversal Poisson coefficients such that $g_T = g_T / (1 + \nu T)$. All components of $[C^F]$ are zero except $[C^F]_{11}$, $[C^F]_{22}$, $[C^F]_{13}$, $[C^F]_{21}$, $[C^F]_{22}$, $[C^F]_{31}$, $[C^F]_{33}$, $[C^F]_{32}$, $[C^F]_{33}$ that are all equal to $\rho_2 c_2^2$. The proposal model of $[C(x_3)]$ and $\rho(x_3)$ is the following

$$[C(x_3)] = (1 - f(x_3)) [C^S] + f(x_3) [C^F] ,$$

$$\rho(x_3) = (1 - f(x_3)) \rho^S + f(x_3) \rho_2 ,$$

where $f(x_3) = 1$ if $x_3 < b$, $f(x_3) = 0$ if $x_3 > a$ and $f(x_3) = c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3$ if $b \leq x_3 \leq a$ in which $c_0 = a^2(3b - 3b^2)/(3b - 3b^2)$, $c_1 = 6a/(3b - 3b^2)$, $c_2 = -3(a + b)/(3b - 3b^2)$ and $c_3 = 2/(3b - 3b^2)$. This model has been constructed such that, for $x_3 = a$ or $x_3 = b$,}

$$\frac{\partial [C(x_3)]}{\partial x_3} = 0 \quad \text{and} \quad \frac{\partial \rho(x_3)}{\partial x_3} = 0 .$$
4 Probabilistic model of the thickness and elasticity matrix of the cortical layer

The modelling of these biomechanical materials is tricky due to the lack of knowledge on the micro-structure which is random and complex. In the two previous sections, a simplified model has been presented. The predictability of this model can be improved by taking into account these uncertainties. In this section, the probabilistic model is constructed by substituting the elasticity matrix field \(x_3 \rightarrow [C(x_3)] \) by a matrix-valued random field \(x_3 \rightarrow [C(x_3)] \). The probabilistic model of random elasticity matrix field \(x_3 \rightarrow [C(x_3)] \) is constructed using the maximum entropy principle \([6, 7]\) within the framework of the theory of the information \([9]\). We then consider the following available information: (1) the random matrix \([C(x_3)]\) is a second-order random variable with values in the set of all the \((6 \times 6)\) real symmetric positive-definite matrices; (2) the mean value of random matrix \([C(x_3)]\) is the mean elasticity matrix \([C(x_3)]\); (3) the norm of the inverse matrix of \([C(x_3)]\) is a second-order random variable. It has been shown in \([10, 11]\) that the random matrix \([C(x_3)]\) is then written as, for all \(b < x_3 < 0 \)

\[
[C(x_3)] = [L(x_3)]^T[G(x_3)][L(x_3)] ,
\]

and since, for \(x_3 < b \) the medium is not uncertain (no uncertainties on the fluid mediums) then, for all \(x_3 < b \)

\[
[C(x_3)] = [C(x_3)] ,
\]

in which the \((6 \times 6)\) upper triangular matrix \([L(x_3)]\) corresponds to the Cholesky factorization \([C(x_3)] = [L(x_3)]^T[L(x_3)]\) and where the probability model of matrix-valued random field \(x_3 \rightarrow [G(x_3)] \) is defined as the non-linear mapping of 21 second-order centered homogeneous Gaussian random fields \(U_{j',j}(x_3) \) with \(1 \leq j, j' \leq 6 \). The explicit expression of this non-linear mapping can be found in \([2, 3]\). The stochastic germs \(U_{j',j}(x_3) \) are then defined by the autocorrelation functions \(R_{U_{j',j}}(\tau) = E\{U_{j',j}(x_3 + \tau)U_{j,j}(x_3)\} \) such that

\[
R_{U_{j',j}}(\tau) = (2(\ell/\pi \tau)^2 \sin^2(\pi \tau/2 \ell) ,
\]

where the spatial correlation length \(\ell \) is a parameter of the probabilistic model. The random field \(x_3 \rightarrow [G(x_3)] \) also depends on an additional parameter \(0 < \delta < (7/11)^{1/2} \) that is independent of \(x_3 \). This parameter controls the statistical fluctuations of \([G(x_3)]\) and \([C(x_3)]\) since it can be shown that

\[
E\{\|[G(x_3)] - [C(x_3)]\|_F^2\} = 6(\delta^2 + 1) ,
\]

\[
\delta_C(x_3) = \frac{\delta}{\sqrt{7}} \left(1 + \frac{(\tr[C(x_3)]^2)}{\tr[C(x_3)]^2} \right)^{1/2} ,
\]

(1)

where \(\delta_C(x_3)^2 = E\{\|[C(x_3)] - [C(x_3)]\|_F^2\}/\|[C(x_3)]\|_F^2 \) and \(\cdot \) is the Frobenius norm. It should be noted that the dispersion coefficient of matrix \([C(x_3)]\) is a not \(\delta \) but \(\delta_C(x_3) \) that is dependent of the spatial coordinate \(x_3 \). Finally, the spatial correlation length \(\ell_C \) of random field \(x_3 \rightarrow [C(x_3)] \) is such that

\[
\ell_C = \int_0^{+\infty} \left| r_c(\tau) \right| \, d\tau ,
\]

where

\[
r_c(\tau) = \frac{\tr E\{([C(x_3 + \tau)] - [C(x_3)])([C(x_3)] - [C(x_3)])\}}{E\{\|[C(x_3)] - [C(x_3)]\|_F^2\} ,
\]

Then, the displacement field of the solid layer and the two pressure fields of the fluid layers are random fields denoted by \(\mathbf{U}, \mathbf{P}_1 \) and \(\mathbf{P}_2 \).
5 Application

In a previous paper [5], the components of matrix $[C^S]$ has been identified with an experimental database using measurement of the first arriving signal with the axial transmission technique. The experimental configuration is described by Fig. 2. A device has been designed and is made up of $n_R = 11$ receivers and 2 transmitters. A coupling gel is applied at the interface between the device and the skin of the patient. Each transmitter generates an acoustical impulse in the ultrasonic range that propagates in the coupling gel, the skin, the muscle, the cortical bone and the marrow. The axial transmission technique consists in recording these signals at the $n_R = 11$ receivers located in the device. The first arriving contribution of the signal (FAS) is considered. Following the signal processing method used with the experimental device, the velocity of FAS is determined from the time of flight of the first extremum of the contribution. This experimental database allows the components of matrix $[C^S]$ to be indentified (see [5]) and we obtained $\rho^S = 1598.8$ kg.m^{-3}, $\epsilon_L = 17.717$ GPa, $\nu_L = 0.3816$, $g_L = 4.7950$ GPa, $\epsilon_T = 9.8254$ GPa, $\nu_T = 0.4495$ and $\delta_C(0) = 0.1029$.

Using Eq. (1) yields $\delta = 0.0575$. In this paper, we are interested by the propagation of the uncertainties in the first fluid layer Ω_1 for the cortical bone system in the context of the axial transmission technique. We then introduce the random variable Q defined by

$$Q = \int_0^T \sum_{k=1}^{n_R} |P_2(t, x_k)|^2 \, dt,$$

where T is the duration of an experimental signal and x_k^k, with $k = 1, \ldots, n_R$ are the positions of the receivers along direction e_1. Let $q \mapsto p_Q(a, b, \ell; q)$ be the probability density function of random variable Q. In Fig. 3, the graph of $x_3 \mapsto \delta_C(x_3)$ is shown with $a = 0, b = -z$ (thin solid line) and $a = z/2, b = -z$ (thick solid line) and $a = 0, b = z/2$ (dashed thin line). It can be seen that the value of the dispersion coefficient $\delta_C(x_3)$ of the random matrix $[C(x_3)]$ decreases when the constitutive equations of the material go to the constitutive equations of the fluid in Ω_2 that is not uncertain. In Fig. 4, the graph of $q \mapsto p_Q(a, b, \ell; q)$ is shown in logscale with $a = 0, b = z, \ell = h/10$ (thick solid line), with $a = z/2, b = z, \ell = h/10$ (thin solid line), with $a = 0, b = z, \ell = h/20$ (thick dashed line), with $a = z/2, b = z, \ell = h/20$ (thin dashed line). It can be seen that the probability density function is sensitive with respect to the thickness a and the spatial correlation length ℓ.

6 Conclusions

In this paper we have considered the transient dynamical response of a multilayer system submitted to an impulse in the ultrasonic range. The application concerns a biomechanical system: the human cortical bone. This system is really tricky to be modelled due to the lack of knowledge on its micro-structure. For such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in the thickness direction but, in this case, none of the usual theories of porous
Figure 3: Graph of $x_3 \mapsto \delta_C(x_3)$ with $a = 0, b = -z$ (thin solid line) and $a = z/2, b = -z$ (thick solid line) and $a = 0, b = z/2$ (dashed thin line).

Figure 4: Graph of $q \mapsto p_Q(a, b, \ell; q)$ in logscale with $a = 0, b = z, \ell = h/10$ (thick solid line), with $a = z/2, b = z, \ell = h/10$ (thin solid line), with $a = z/2, b = z, \ell = h/20$ (thin dashed line), with $a = z/2, b = z, \ell = h$ (thick dashed line).

Materials can be applied. This is the reason why we have proposed a simple model of the elasticity tensor for media with a gradient of the porosity in order to take into account the alterations of the cortical bone micro-structure. Thus, inside the solid layer, the constitutive equation of the solid goes to the constitutive equation of the fluid (the marrow). Then, in order to improve the predictability of this simplified model, we have taken into account the uncertainties by substituting the elasticity tensor with a random field for which the probabilistic model has been constructed using the maximum entropy principle. An application has been proposed to study the propagation of these uncertainties on the pressure field inside the first fluid domain (the skin). Results show that the total energy of the random pressure pressure field is very sensitive to the gradient and the spatial correlation length of the random elasticity tensor in the cortical layer. Consequently,
experimental measurements in the context of the axial transmission technique can be used in order to identify the parameters of this probabilistic model.

7 Acknowledgments

This research was supported by the French Research National Agency (ANR) for the BONECHAR project.

References

