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The biomechanical materials are among the most complex mechanical systems. Most
often, their micro-structure are complex and random. This is the case for the human
cortical bones which are considered in this paper. For such a system, the micro-
structure can be altered near its interface with the marrow (osteoporosis). A gradient
of porosity is then observed in the thickness direction but, in this case, none usual
theory of porous materials can be applied. For this reason, we present a simplified
model with gradient for the elasticity tensor. The predictability of this model is
improved by taking into account uncertainties. The elasticity tensor is then modeled
by a random field. This random model is well adapted for the modeling of the
random experimental measurements in ultrasonic range for the human cortical bone.

Keywords: Probabilistic model, uncertainties, ultrasonic range, cortical bones, porous
media.

1. Introduction

The biomechanical materials are among
the most complex mechanical systems.
Modeling such media is a challenge
and the main difficulty is given rise to
by the complexity level of their micro-
structures. This is the case for the human
cortical bones which are considered in
this paper. For such a system, the micro-
structure can be altered near its interface
with the marrow (osteoporosis). A gra-
dient of porosity is then observed in the
thickness direction but, in this case, none
usual theory of porous materials can be

applied. For these reasons, these systems
are often modeled using a simplified me-
chanical model which corresponds to a
rough approximation of the real system.
Nevertheless, the predictability of such
a simplified model can be improved by
taking into account the uncertainties in-
troduced by these approximations. In
this paper, a model for the human cor-
tical bone is constructed. It consists of
a fluid-solid semi-infinite multilayer sys-
tem in which the solid layer (the cortical
bone) is a non-homogeneous transverse
isotropic elastic material and the two
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others semi-infinite layers (skin/muscles
and marrow) are modeled by acousti-
cal fluids. A gradient of the elasticity
properties of the cortical bone is intro-
duced in order to take into account the
alterations of the cortical bone micro-
structure. Thus, inside the solid layer, the
constitutive equation of the solid goes to
the constitutive equation of the fluid (the
marrow).

The uncertainties related to such a
model are taken into account by mod-
eling the elasticity tensor by a random
field. The parameters of this probabilistic
model are (1) the mean value of the effec-
tive thickness and the mean value of the
elasticity tensor of the cortical bone and
(2) the parameters controlling the level
of uncertainties which depends on the
spatial coordinates. The purpose is to
present such a probabilistic model con-
structed within the framework of the the-
ory of information. This probabilistic
model should be adapted to the experi-
mental identification of this parameters.

2. Simplified model

A simplified model of the biomechanical
system made up of the coupling gel, the
skin, the cortical bone and the marrow
has been developed in Naili et al. (2010);
Desceliers et al. (2009). This simplified
model is composed of an elastic solid
semi-infinite layer between two acoustic
fluid semi-infinite layers (see fig. 1). Let
R(O, e1, e2, e3) be the reference Cartesian
frame where O is the origin of the space
and (e1, e2, e3) is an orthonormal basis
for this space. The coordinates of the
generic point x in 3 are (x1, x2, x3). The
thicknesses of the layers are denoted by
h1, h and h2. The first acoustic fluid layer
occupies the open unbounded domain
Ω1 , the second acoustic fluid layer oc-
cupies the open unbounded domain Ω2

and the elastic solid layer occupies the
open unbounded domain Ω. Let ∂Ω1 =

Γ1 ∪Σ1, ∂Ω = Σ1 ∪Σ2 and ∂Ω2 = Σ2 ∪ Γ2

(see Fig. 1) be respectively the boundaries
of Ω1, Ω and Ω2 in which Γ1, Σ1, Σ2 and
Γ2 are the planes defined by

Γ1 = {x1 ∈ , x2 ∈ , x3 = z1}
Σ1 = {x1 ∈ , x2 ∈ , x3 = 0}
Σ2 = {x1 ∈ , x2 ∈ , x3 = z}
Γ2 = {x1 ∈ , x2 ∈ , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h+
h2). Therefore, the domains Ω1, Ω and
Ω2 are unbounded along the transversal
directions e1 and e2 whereas they are
bounded along the vertical direction e3.
A line source modeling an acoustical im-
pulse is applied in domain Ω1. This line
source is defined with a source density
Q1 such that

∂Q1

∂t
(x, t) = ρ1 F(t)δ0(x1 − xS

1 )δ0(x3 − xS
3 )

in which F(t) = F1 sin(2π fct)e−4(t fc−1)2

where fc = 1 MHz is the central fre-
quency and F1 = 100 N; ρ1 is the mass
density of domain Ω1; δ0 is the Dirac
function at the origin and xS

1 and xS
3 are

the coordinates of a line source modeling
the acoustical impulse. At time t = 0,
the system is assumed to be at rest. Let
ρ(x3) and [C(x3)] be the mass density
and the effective elasticity matrix of the
solid layer at a point x3 in Ω1. For a given
effective elasticity matrix field [C(·)], the
displacement field u in the solid layer Ω

and the pressure fields p1 and p2 in the
two fluids Ω1 and Ω2 respectively, are
calculated using the fast and efficient hy-
brid solver presented in Desceliers et al.
(2008).

3. Simplified model for a porous
medium with gradient

It is well-known that bone medium are
made of porous material. However, for
the human cortical bones, the pore sizes
are not small with respect to the thick-
ness of the cortical layer. In addition,
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Fig. 1. Geometry of the multilayer system

the pore size increases along the trans-
verse direction x3. In case of osteoporo-
sis, this gradient of porosity is such that,
near interface Σ2, the cortical material is
mostly made up of a fluid. No usual
theory on porous medium Biot (1956,b,
1962) is suitable for modeling such prop-
erties. Hereafter, we then propose an
approach that allows the modeling of the
elasticity matrix [C(x3)] to be still con-
structed within the usual framework of
the continuum mechanics. Then, for all
x3 in [a, 0], the material in the cortical
layer is assumed to be locally a trans-
verse isotropic medium and it is assumed
to be a fluid for all x3 in [z, b] . Conse-
quently, (1) for all x3 in [0, a], we have
[C(x3)] = [CS] and ρ(x3) = ρS; (2) for all
x3 in [z, b] we have [CF] and ρ(x3) = ρ2;
where [CS] is the elasticity matrix of a
transverse isotropic medium, [CF] is the
elasticity matrix of a fluid medium, ρS

is the mass density of the cortical layer
without taking into account the porosity
and ρ2 is the mass density of the second
fluid (the marrow). All components of
[CS] are zeros except the following

[CS]11 =
e2

L(1 − νT)

(eL − eLνT − 2eTν2
L)

(1)

[CS]22 =
eT(eL − eTν2

L)

(1 + νT)(eL − eLνT − 2eTν2
L)

(2)

[CS]12 =
eTeLνL

(eL − eLνT − 2eTν2
L)

(3)

[CS]23 =
eT(eLνT + eTν2

L)

(1 + νT)(eL − eLνT − 2eTν2
L)

(4)

[CS]44 = gT , [CS]55 = gL (5)

with [CS]22 = [CS]33, [CS]12 = [CS]13 =
[CS]21 = [CS]31, [CS]23 = [CS]32 and
[CS]55 = [CS]66 and where eL and eT are
the longitudinal and transversal Young
modulus, gL and gT are the longitudinal
and transversal shear modulus and νL

and νT are the longitudinal and transver-
sal Poison coefficients such that gT =
eT/2(1 + νT). All components of [CF] are
zero except [CF]11, [CF]12, [CF]13, [CF]21,
[CF]22, [CF]23, [CF]31, [CF]32,[CF]33 that
are all equal to ρ2 c2

2. The proposal model
of [C(x3)] and ρ(x3) is the following

[C(x3)] = (1 − f (x3)) [C
S] + f (x3) [C

F]

ρ(x3) = (1 − f (x3)) ρS + f (x3) ρ2

where f (x3) = 1 if x3 < b, f (x3) = 0 if
x3 > a and f (x3) = c0 + c1 x3 + c2 x2

3 +

c3 x3
3 if b ≤ x3 ≤ a in which c0 = a2 (a −

3 b)/(a − b)3, c1 = 6 a b/(a − b)3, c2 =
−3(a + b)/(a − b)3 and c3 = 2/(a − b)3.
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This model has been constructed such
that, for x3 = a or x3 = b,

∂[C(x3)]

∂x3
= 0 and

∂ρ(x3)

∂x3
= 0

4. Probabilistic model of the
thickness and elasticity

matrix of the cortical layer

The modeling these biomechanical mate-
rials is tricky due to the lack of knowl-
edge on the micro-structure which is
random and complex. In the two pre-
vious sections, a simplified model has
been presented. The predictability of this
model can be improved by taking into
account these uncertainties. In this sec-
tion, the probabilistic model of the elas-
ticity matrix field is constructed by sub-
stituting the elasticity matrix field x3 �→
[C(x3)] by a matrix-valued random field
x3 �→ [C(x3)]. The probabilistic model
of random elasticity matrix field x3 �→
[C(x3)] is constructed using the maxi-
mum entropy principle Jaynes (1957a,b)
within the framework of the theory of the
information Shannon (1948) . We then
consider the following available informa-
tion (1) the random matrix [C(x3)] is a
second-order random variable with val-
ues in the set of all the (6 × 6) real sym-
metric positive-definite matrices; (2) the
mean value of random matrix [C(x3)] is
the mean elasticity matrix [C(x3)]; (3) the
norm of the inverse matrix of [C(x3)] is
a second-order random variable. It has
been shown in Soize (2006, 2008) that the
random matrix [C(x3)] can then be writ-
ten as, for all b < x3 < 0

[C(x3)] = [L(x3)]
T [G(x3)][L(x3)]

and since, for x3 < b the medium is
not uncertain (it is a well-known fluid
medium) then, for all x3 < b

[C(x3)] = [C(x3)]

in which the (6× 6) upper triangular ma-
trix [L(x3)] corresponds to the Cholesky

factorization [C(x3)] = [L(x3)]
T [L(x3)]

and where probability model of matrix-
valued random field x3 �→ [G(x3)] is
defined as the non-linear mapping of
21 second-order centered homogeneous
Gaussian random fields Uj j′(x3) with

1 ≤ j ≤ j′ ≤ 6. The explicit expression of
this non-linear mapping can be found in
[2, 3]. The stochastic germs Uj j′(x3) are
then defined by the autocorrelation func-
tions RUjj′ (τ) = E{Ujj′(x3 + τ)Ujj′(x3)}
such that

RUjj′ (τ) = (2 �/π τ)2 sin2(π τ/2 �)

where the spatial correlation length � is
a parameter of the probabilistic model.
The random field x3 �→ [G(x3)] also de-
pends on an additional parameter 0 <

δ < (7/11)1/2 that is independent of
x3. This parameter controls the statistical
fluctuations of [G(x3)] and [C(x3)] since
it can be shown that

E{‖[G(x3)]‖2
F} = 6(δ2 + 1)

δC(x3) =
δ√
7

(
1 +

(tr [C(x3)])
2

tr [C(x3]2

)1/2

(1)

where δC(x3)
2 = E{‖[C(x3)] −

[C(x3)]‖2
F}/‖[C(x3)]‖2

F and ‖ · ‖ is the
Frobenius norm. Finally, the spatial cor-
relation length �C of random field x3 �→
[C(x3)] is such that

�C =
∫ +∞

0
|rc(τ)| dτ

where

rc(τ) = tr E{([C(x3 + τ)]− [C(x3])

×([C(x3)]− [C(x3]])}
×(E{‖[C(x3)]− [C(x3]‖2

F})−1

Then, the displacement of the solid layer
and the two pressure of the fluid layers
are random fields denoted by U, P1 and
P2.



May 24, 2011 22:5 RPS CSM6 2010: Paper ID:P022

210 G. Deodatis and P. D. Spanos (Eds.)

Probe

transmitter receiver

Cortical layer of a long bone

soft tissue
coupling gel Transmitter

Transmitter

Receivers

Bone

Fig. 2. Experimental configuration

5. APPLICATION

In a previous paper Desceliers et al.
(2009), the components of matrix [CS]
have been identified with an experimen-
tal database. The ultrasonic axial trans-
mission technique has been used to con-
struct this experimental database. The
experimental configuration is described
by Fig. 2. A device has been designed
and is made up of nR = 11 receivers
and 2 transmitters. A coupling gel is
applied at the interface between the de-
vice and the skin of the patient. Each
transmitter generates an acoustical im-
pulse in the ultrasonic range that prop-
agates in the coupling gel, the skin, the
muscle, the cortical bone and the mar-
row. The axial transmission technique
consists in recording these signals at the
nR = 11 receivers receivers located in
the device. The first arriving contribu-
tion of the signal (FAS) is considered.
Following the signal processing method
used with the experimental device, the
velocity of FAS is determined from the
time of flight of the first extremum of the
contribution. This experimental database
allows the components of matrix [CS] to
be identified (see Desceliers et al. (2009))
and we obtained ρS = 1598.8 kg.m−3,
eL = 17.717 GPa, νL = 0.3816, gL =
4.7950 GPa, eT = 9.8254 GPa, νT = 0.4495
and δC(0) = 0.1029. Using Eq. (1)
yields δ = 0.0575. In this paper, we
are interested by the propagation of the
uncertainties to the first fluid domain Ω1

for the cortical bone system in the context
of the axial transmission technique. We
then introduce the random variable Q
that is such that

Q =
∫ T

0

nR

∑
k

|P2(t, xk
1)|2 dt

where T is the duration of an experimen-
tal signal and xk

1, with k = 1, . . . , nR are
the positions of the receivers along direc-
tion e1. Let pQ(a, b, L; q) be the probabil-
ity density function of random variable
Q. In Fig. 3, the graph of x3 �→ δC(x3)
is shown with a = 0, b = z (thin solid
line) and a = z/2, b = z (thick solid
line) and a = 0, b = z/2 (dashed thin
line). It can been seen that the value of
the dispersion coefficient δC(x3) of the
random matrix [C(x3)] decreases when
the constitutive equations of the material
go to the constitutive equations of a fluid.
In Fig. 4, the graph of q �→ pQ(a, b, L; q)
is shown in logscale with a = 0, b = z,
L = h/10 (thick solid line), with a = z/2,
b = z, L = h/10 (thin solid line), with
a = 0, b = z, L = h/20 (thick dashed
line), with a = z/2, b = z, L = h/20
(thin dashed line). It can be seen that the
probability density function is sensitive
with respect to the thickness a and to the
correlation length L.

6. CONCLUSION

In this paper we have considered the
transient dynamical response of a multi-
layered system submitted to an impulse
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Fig. 3. Graph of x3 �→ δC(x3) with a = 0, b = z (thin solid line) and a = z/2, b = z (thick solid

line) and a = 0, b = z/2 (dashed thin line)
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Fig. 4. Graph of q �→ pQ(a, b, L; q) in logscale with a = 0, b = z, L = h/10 (thick solid line),

with a = z/2, b = z, L = h/10 (thin solid line), with a = z/2, b = z, L = h/20 (thin dashed line),

with a = z/2, b = z, L = h (thick dashed line).

in the ultrasonic range. The application
concern a biomechanical system: the hu-
man cortical bone. This system is really
tricky to be modeled due to the lack of
knowledge on its micro-structure. For
such a system, the micro-structure can be
altered near its interface with the marrow
(osteoporosis). A gradient of porosity is
then observed in the thickness direction
but, in this case, none usual theory of

porous materials can be applied. This is
the reason why we have proposed a sim-
ple model of the elasticity tensor for me-
dia with a gradient of the porosity in or-
der to take into account the alterations of
the cortical bone micro-structure. Thus,
inside the solid layer, the constitutive
equation of the solid goes to the consti-
tutive equation of the fluid (the marrow).
Then, in order to improve the predictabil-
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ity of this simplified model, we take into
account the uncertainties by substituting
the elasticity tensor with a random field
for which the probabilistic model has
been constructed using the maximum en-
tropy principle. An application has been
proposed to study the propagation of
these uncertainties on the pressure field
inside the first fluid domain (the skin).
Results show that the total energy of the
random pressure pressure field is very
sensitive to the gradient and the spatial
correlation length of the random elastic-
ity tensor in the cortical layer. Conse-
quently, experimental measurements in
the context of the axial transmission tech-
nique can be used in order to identify the
parameters of this probabilistic model.
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