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Abstract

Abstract: Heat and mass transfer by natural convection coupled to wall surface condensation

or evaporation in a two-dimensional cavity subjected to uniform, but time-dependent wall

temperatures is investigated numerically. At initial state, the cavity is filled with quiescent humid

air at uniform temperature and density. By decreasing the wall temperature, condensation occurs

at the four wall surfaces until an equilibrium thermodynamic state is reached. The walls are then

heated and evaporation of the liquid water film is considered. Various time-variations of the wall

temperature were investigated. Since the mass of humid air and average pressure experience large

changes during transient regimes, a weakly compressible formulation has been used. The model

considers only condensation/evaporation under the thin film approximation. The computations

were carried out for temperatures of humid air varying between 300 K and 350 K, and pressure

variations around atmospheric pressure. The typical width of the cavities is L = 0.1 m. The results

show that very different transient flow structures occur during condensation and evaporation

processes. The thickness distributions of the water films condensed at the walls are discussed,

and it is shown that the thicknesses reflect the flow structures. The effect of the cavity aspect

ratio reveals more complicated results than for convection without phase change at the wall surfaces.

Keywords Thermosolutal convection, humid air, surface condensation/evaporation, cavity

flows, numerical simulations
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Nomenclature

a thermal diffusivity [m2 s−1]

A aspect ratio, A = H/L

Cp specific heat [J K−1 kg−1]

Dav binary mass diffusion coefficient [m2 s−1]

Fr Froude number, Fr = a2
0/gL

3

g gravitational acceleration [m s−2]

h enthalpy [J kg−1]

hlv phase change enthalpy [J kg−1]

H cavity height [m]

Hg dimensionless latent heat, Hg = hlv/Cp0∆T

¯̄I unit tensor

J mass flux density [kg m−2 s−1]

k thermal conductivity [W m−1 K−1]

L cavity width [m]

Le Lewis number, Le = a0/Dav,0

m mixture mass [kg]

ṁ mass flow rate [kg s−1]

M molecular weight [kg/kmol]

M∗ molecular weight ratio, M∗ = Mv/Ma

n unit inward normal to surface dS

N = Ram/RaT buoyancy ratio

Nu local Nusselt number (Eq. 32)

Nx, Ny numbers of grid points in x− and y−directions
p′ fluctuating part of the static pressure [Pa]

P thermodynamic pressure [Pa]

Pv,sat vapor pressure at saturation [Pa]

Pr mixture Prandtl number, Pr = µ0/ρ0a0

R universal gas constant, R = 8.315 kJ kmol−1

RH relative humidity [%]

Ram solutal Rayleigh number, Ram = ρ0gβm∆WL3/a0µ0
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RaT thermal Rayleigh number, RaT = ρ0gβT∆TL3/a0µ0

Sc Schmidt number, Sc = µ0/ρ0Dav,0

Sh local Sherwood number (Eq. 36)

t time [s]

T temperature [K]

V = (u, v) velocity vector [m s−1]

W mass fraction

(x, y) coordinates [m]

Greeks

βm solutal coefficient of volumetric expansion

βT thermal coefficient of volumetric expansion, βT = 1/T0 [K
−1]

∆mv variation of the water vapor mass within the cavity [kg]

∆T maximum wall temperature difference, ∆T = (Tw,max − Tw,min) [K]

∆W water vapor mass fraction difference

ǫm non-Boussinesq solutal parameter, ǫm = 1/M∗ − 1

ǫT non-Boussinesq thermal parameter, ǫT = ∆T/T0

γ specific heat ratio, γ = Cp/Cv

µ mixture dynamic viscosity [N m−1 s−1]

ν mixture kinematic viscosity [m2 s−1]

Ω volume of the enclosure [m3/m]

Ψ streamfunction

ρ density [kg m−3]

τ dimensionless time, τ = a0t/L
2

τ viscous stress tensor

θ dimensionless temperature ratio, θ = (T − T0)/∆T

Subscripts

a dry air

adv advection

diff diffusion
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l liquid water

m mixture

v water vapor

w wall

0 quantity at initial state

∞ refer to steady state

Superscripts

− average quantity

∗ dimensionless quantity

I. INTRODUCTION

The study of natural convection in enclosures is of great importance in a number of ap-

plications. A considerable number of theoretical, numerical and experimental studies have

been thus conducted over the last forty years on natural convection in cavities of various

shapes. The idealized problem of natural convection in differentially heated rectangular

cavity was the most studied, including different angles of inclination, various flow regimes

and temperature dependent fluid properties. Solutal or thermosultal convection was also

widely investigated for uniform wall concentrations of a dilute species in a binary mixture.

These works were generally concerned with steady-state situations and were based on the

Boussinesq approximation. The applications relevant to these studies are, for example, con-

vection of moist air resulting from different levels of temperature and humidity that occurs

in building construction elements, such as hollow bricks, energy efficient housing in warm

and humid climates, greenhouses and flat plate solar collectors. Similar situations can be

found in insulated container, liquid fuel storage, refrigeration equipment, to name just a few.

The problem of wall convective condensation of vapour carried by a non-condensable gas

flowing through ducts, or wall evaporation of liquid into a flowing non-condensable carrier

gas, was thoroughly investigated during the last past decades, especially for humid air. A

large number of works were devoted to forced or mixed convection in vertical ducts, and the
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assumption of thin film thickness was most often invoked, as in Lin et al. [1]. The flow of

falling liquid films over the duct walls were also considered by using boundary layer-type

formulations, for laminar as well as for turbulent duct flows. The recent papers by Rao et

al. [2,3] give comprehensive overviews on the current state of art pertaining to this problem.

Relative to the numerous published studies on thermosolutal convection in liquid filled cavi-

ties, experimental as well as numerical works combining heat and mass convective transport

in binary gas mixture has received less attention. Transient natural convection in a binary

mixture in square enclosures was numerically considered by Lin et al. [4]. The emphasis was

put on the effects of the combined thermal and solutal buoyancy forces on temporal evolu-

tions of the flow patterns and heat and mass transfer. Numerical results for steady-state

double diffusion in cavities submitted to either augmenting or opposing temperature and

concentration buoyancy forces were presented by Béghein et al. [5]. The aim of the study

was to investigate the effect of a pollutant source located on the hot or cold vertical walls

on the fluid motion and heat and mass transfer rates. Double-diffusive natural convection

in a vertical stack of square cavities filled with moist air, with heat and mass horizontal

diffusive walls, was studied numerically by Costa [6]. Natural convection in vertical cavities

filled with unsaturated humid air was theoretically considered by McBain [7] who used scale

analysis from the governing equations to obtain simple formulae for heat and mass transfer

rates across vertical cavities.

In all of these works, the Boussinesq approximation was invoked since only dilute gas mix-

tures were studied. Weaver and Viskanta [8,9] investigated a cavity flow problem in which

interdiffusion of species, variable thermophysical properties, Soret and Dufour effects were

accounted for. A rectangular enclosure in which a mass flux occurs at a hot vertical wall

due to sublimation of a solid or evaporation of a liquid and condensation at the opposite

cold wall was studied. The assumption of a binary mixture of ideal gases was introduced

and normal velocities at the vertical walls were determined by a mass balance as in Yan et

al. [10]. Laaroussi and Lauriat [11] presented a pioneer study using a transient, low-Mach

number compressible formulation to model simultaneous heat and mass transfer by natural

convection in cavities filled with humid air. The computations were carried out with the use

of a commercially available computational package but the thicknesses of the liquid water

films due to moisture condensed at the walls were not predicted and, evaporation was not

considered. An experimental and numerical study of heat and moisture transfers by natural
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convection in a cavity containing on line cylinders was recently published by Laguerre et

al. [12] who have also taken into account surface radiation exchanges and variable density

effects in their numerical simulations.

Unsteady thermal natural convection of fluids in enclosures under periodic variation of ther-

mal boundary conditions has attracted a significant interest for the last two decades, as

shown in the review by Wang et al. [13]. The responses of the confined fluid, when the

temperature or the heat flux specified at one of the vertical walls varies periodically, were of

concern in most of these studies. An extension to natural convection of fluid in an inclined

cavity with a sinusoidal wall temperature on one side wall and a constant temperature on the

opposite side wall was reported by Kalabin et al. [14, 15]. The case of an inclined, porous-

filled cavity subjected to the same boundary conditions was conducted recently by Wang et

al. [13]. In these studies, the time-averaged temperature difference between the opposing

side walls was zero because one vertical wall was maintained at a constant temperature T0,

while the temperature of the opposite side wall varied by a sine law with time about T0. For

these boundary conditions, it has been shown that there is a nonzero time-averaged heat

flux through inclined enclosures, and that the average Nusselt number takes a maximum

value for a certain angle of inclination and a certain frequency depending on the Grashof

number. This phenomenon has been termed resonance. Chung et al. [16] addressed the

effect of finite thickness and thermal conductivity of a vertical boundary wall subjected to

externally applied periodic temperature. Their results show that the amplitude of variations

in the Nusselt number has a sharp peak when the applied frequency matches the natural

frequency of the basic mode of internal gravity oscillations.

The aim of the present work is at understanding of the effects of evaporation/ condensation

processes of a condensable species on the transient mean flow characteristics of a binary mix-

ture enclosed in a cavity. A straightforward application is that of a closed container filled

with humid air subjected to periodic changes in the ambient temperature around the dew

point temperature. For this particular application, condensation of water vapour or evapora-

tion of liquid water films at the surfaces of a closed cavity are predicted for various evolutions

of the wall temperature. We address thus transient heat transfer by laminar thermosolutal

convection and condensation or evaporation at the wall surfaces of a two-dimensional, ver-

tical enclosure filled by a non-dilute binary mixture containing a non-condensable gas. The

formulation of the governing equation is close to the one used in recently published papers
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by Sun and Lauriat [18, 19] and Sun et al. [20] for thermosolutal convection in non-dilute

binary mixture. The main differences may be found in the transient boundary conditions

introduced in the present work in order to properly predict variations in the mass fluxes of

water vapour associated with evaporation or condensation. A low-Mach number asymptotic

flow model is thus employed, and variations in the mixture mass and heat fluxes associated

to evaporation or condensation are predicted. To the best of the author knowledge, this work

presents a much more realistic modelling of these phase change processes in comparison with

what has been published in the open literature.

The paper is organized as follows. In section 2, we present the problem formulation both

in dimensional form for a general cavity flow and in dimensionless form for the specific case

of a rectangular cavity with the thermal and solutal boundary conditions considered in the

following sections. Section 3 describes the numerical method used to solve the conservation

equations and to satisfy the overall mass conservation. In section 4, results and discussion

are presented. Concluding remarks are drawn in section 5.

II. PROBLEM FORMULATION

At initial state, the enclosure is filled with a binary ideal gas mixture of air and

water vapor at uniform temperature and concentration fields characterized by the set of

thermodynamic quantities (P0, T0, ρ0, M0), where M0 is the initial molecular weight of

the mixture. The mixture is thus composed of a condensable gas and a non-condensable

carrier gas. In the case of humid air, water vapor condenses at the walls if the vapor-air

mixture is cooled below the dew point temperature. The thin liquid film formed at the

walls (filmwise condensation) consists of only water and local thermodynamic equilibrium

is considered at the liquid-vapor interface. When the wall temperature is raised above

the dew point temperature, evaporation occurs. Fog formation may occur if the partial

pressure of the water vapor corresponding to the temperature and total pressure at a

given location within the enclosure increases above the saturation vapor pressure. In the

present study, it is assumed that there is no fog formation within the cavity. Since we are

considering mass transfer of water vapor into air with small temperature and mass fraction

differences, the species interdiffusion flux may be neglected [11]. The transient flow induced

by time-dependent wall temperatures is assumed laminar. The problem formulation is
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based on the low-Mach number approximation in order to take into account the variations

of mixture density and the work of pressure forces.

2.1 General formulation

The mass and momentum equations for an ideal gas mixture are written as follows:

∂ρ

∂t
+∇.(ρV) = 0 (1)

∂(ρV)

∂t
+∇.(ρV⊗V) = −∇p′ +∇.¯̄τ + ρg (2)

where ¯̄τ is the viscous stress tensor for a Newtonian fluid mixture written as

¯̄τ = µ[∇V+ (∇V)t − 2

3
(∇.V) ¯̄I] (3)

p′ is the fluctuating part of the static pressure decomposed as

p = P (t) + p′ (4)

P (t) is the volume-averaged thermodynamic pressure and p′ << P . It is assumed that

∫

Ω

p′ dΩ = 0 (5)

where Ω is the volume of the enclosure. The energy equation in terms of temperature reads

ρCp

DT

Dt
= ∇.(k∇T ) +

dP

dt
(6)

The species conservation equation written in terms of mass fraction for water vapor is:

D(ρWv)

Dt
= ∇.(ρDav ∇Wv) (7)

where Wv denotes the mass fraction of water vapor and Dav the mass diffusivity of water

vapor into dry air. The system of conservation equations is completed by the ideal gas

law used in order to determine the density field for a mixture composed of two gases with
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molecular weights Ma and Mv:

ρ =
P

RT

(

MaMv

WvMa +WaMv

)

(8)

where ρ = ρv + ρa. Since air does not condensate at the thermodynamic conditions consid-

ered, its density remains constant.

2.1.1 Thermodynamic pressure and overall mass conservation.

The assumption of mixture mass conservation is invoked for calculating the time variations

of P . The initial mixture mass within the cavity is ρ0Ω. At time t it is written as:

m(t) =

∫

Ω

ρm(xi, t)dΩ = ρ0Ω +∆m(t) (9)

where ∆m(t) is the mass of water vapour brings (losses) into the flow domain Ω owing to

evaporation (condensation) of liquid water at the wall between times t = 0 and t:

∆m(t) =

∫ t

0

∫

S

Jw.ndS dt (10)

Jw = ρVw is the mass flux of water vapour leaving dS (evaporation) or impinging on dS

(condensation). Here, n is the unit normal to dS directed toward the inside of the cavity.

Since the carrier gas is incondensable, the velocity mixture can be calculated by [1]

Vw = − Dav

1−Wv,w

∂Wv

∂n

∣

∣

∣

∣

w

(11)

where Wv,w denotes the mass fraction of water vapor at the interfaces between the liquid

films of water and humid air. It is worth noting that ∆mv(t) tends toward zero when a

thermodynamic equilibrium between water vapor and wall surfaces (dry or wet) is reached

because Vw vanishes. The liquid films are assumed to be extremely thin (this asssumption,

extensively used in the literature, will be justified later on). They are therefore assumed to

be at the wall temperatures and the conservation equations are handled in the gas flow only.

Wv,w is calculated by invoking saturation conditions at the wall temperature Tw and given

by

Wv,w =
MvPv,sat(Tw)

MvPv,sat(Tw) +Ma(P − Pv,sat(Tw))
(12)
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where Pv,sat is the vapor saturation pressure at the liquid-gas interface. By assuming that

the weakly compressible approximation holds, the total pressure P is considered at each

instant as the mixture thermodynamic pressure, i.e. P = P (t).

From the ideal gas law, the mass of the vapour-air mixture may also be written as

m(t) =

∫

Ω

ρ(xi, t)dΩ =

∫

Ω

M P

RT
dΩ = P (t)

∫

Ω

M

RT
dΩ (13)

since the thermodynamic pressure is assumed uniform within the cavity. Therefore, using

Eqs. 10, 11 and 13 the evolution of the thermodynamic pressure may be written as follows:

P (t) =
1

∫

Ω
M
RT

dΩ

{

ρ0Ω −
∫ t

0

∫

S

ρDav

1−Wv,w

∂Wv

∂n

∣

∣

∣

∣

w

.n dS dt

}

(14)

2.1.2 Boundary conditions

An initially dry elementary surface dS at a temperature higher than the dew point temper-

ature corresponding to the partial pressure of water vapor near the wall keeps dry (Jw = 0).

Otherwise condensation occurs (Pv(Tw) > Pv,sat(Tw)) and Vw is given by Eq. 11. For an

initially wet surface at temperature Tw such that Pv,sat(Tw) > Pv(Tw), the liquid film evap-

orates and Vw is still given by Eq. 11. Since the binary mixture is assumed to be an ideal

gas, the partial pressure of water vapour at the liquid-gas interface is written as follows:

Pv(Tw) = P

(

Wv,wMa

(1−Wv,w)Mv +Wv,wMa

)

(15)

Velocity boundary conditions: The normal velocity component is expressed by Eq. 11 for

the wet parts of the walls, otherwise the impermeable condition is used (i.e. Vw.n = 0).

Thermal boundary conditions: Owing to the thin film approximation, the continuity of tem-

perature at the liquid film-gas interface applies as the continuity of wall to gas temperatures,

i.e. T |w = Tw(t), ∀t.
Mass boundary conditions: At the dry parts of the walls, the mass flux is zero. Therefore

∂Wv

∂n

∣

∣

∣

∣

w

= 0 (16)
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otherwise, Equation 12 applies.

2.2 Dimensionless equations for a 2D rectangular cavity

A sketch of the geometry considered is shown in Fig.1. The governing equations were cast

in dimensionless form by using the following dimensionless variables

x∗ =
x

L
y∗ =

y

L
τ =

t a
0

L2
ρ∗ =

ρ

ρ
0

p∗ =
p′

ρ
0
(a

0
/L)2

P
∗
=

P

P 0

u∗ =
u

a
0
/L

v∗ =
v

a
0
/L

θ =
T − T0

∆T
m∗ =

m

ρ0Ω

µ∗ =
µ

µ
0

C∗
p =

Cp

Cp0

k∗ =
k

k
0

D∗
av =

Dav

Dav0

M∗ =
Mv

Ma

Subscript ”0” stands for a well defined initial thermodynamic state and ∆T is the maximum

wall temperature difference. The thermophysical properties used for dry air and water

vapour together with the expressions applied for the mixture properties are given in the

Appendix section.

The resulting dimensionless conservation equations are:

∂ρ∗

∂τ
+∇.(ρ∗V∗) = 0 (17)

∂(ρ∗V∗)

∂τ
+∇.(ρ∗V∗ ⊗V∗) = −∇p∗ + Pr∇.¯̄τ ∗ +

1

Fr
ρ∗

g

|g| (18)

where

¯̄τ ∗ = µ∗[∇V∗ + (∇V∗)t − 2

3
(∇.V∗) ¯̄I] (19)

ρ∗C∗
p

[

∂θ

∂τ
+V∗∇θ

]

= ∇.(k∗∇θ) +
(γ − 1)

γǫT

dP ∗

dτ
(20)

∂(ρ∗Wv)

∂τ
+∇.(ρ∗V∗Wv) =

1

Le
∇.(ρ∗D∗

av∇Wv) (21)

where Fr = a2
0/gL

3, Pr = µ0/ρ0a0, Le = a0/Dav,0, are the Froude, Prandtl and Lewis
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numbers, respectively. γ = Cp/Cv is the ratio of specific heats. ǫT = ∆T/T0 characterizes the

thermal deviation from the Boussinesq approximation. The dimensionless thermodynamic

pressure may be written as

P
∗
(τ ) =

1
∫ A

0

∫ 1

0
( 1

ǫT θ+1
)(

ǫmWv,0+1

ǫmWv+1
)dx∗dy∗

{A+∆m∗
v(τ )} (22)

In the above expression, A = H/L is the cavity aspect ratio and ǫm characterizes the solutal

deviation from the usual assumption of binary dilute solutions. It reads

ǫm =
1

M∗
− 1 (23)

The term ∆m∗
v(τ ) denotes the change in mass of water vapor inside the cavity due to

evaporation or condensation at the walls between the initial state and time τ . It is given by:

∆m∗
v(τ ) =

∫ τ

0

∫

S

ρ∗V∗
w.n dS dτ (24)

The local dimensionless mixture density is obtained from the ideal gas law as follows:

ρ∗ =
P

∗
(τ )(1 + ǫm Wv,0)

(1 + ǫT θ)(1 + ǫm Wv)
(25)

2.2.1 Initial and boundary conditions

The initial values of the dimensionless variables are:

V∗ = 0 , θ = 0 , Wv = Wv,0 , ρ∗ = 1 , P
∗
= 1 at τ = 0 ∀ (x∗, y∗) ∈ [0, 1]× [0, A] (26)

At the liquid-vapor interfaces along the wet parts of the walls at temperature Tw, the vapor

mass fraction is obtained from:

Wv,w(θw) =
M∗P ∗

v,sat(θw)

P ∗
v,sat(θw)(M∗ − 1) + P

∗ (27)

For τ > 0, the dimensionless boundary conditions at surface S having an inward normal
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vector n and a tangential vector t are:

V∗
w.t = 0, V∗

w.n = − χD∗
av

Le (1 −Wv,w)
∇Wv,w.n (28)

θ(τ ) = θw(τ ) (29)

(1 − χ)∇Wv,w.n+ χ(Wv −Wv,w(θw)) = 0 (30)

where χ = 0 at a dry point and χ = 1 at a wet point on the surface.

The set of 11 dimensionless parameters involved in the above problem formulation is listed

below.

- Eight parameters are introduced into the dimensionless conservation and state equations:

A = H/L Fr = a2
0
/gL3 Pr = ν

0
/a

0
Le = a

0
/Dav0

M∗ = Mv/Ma γ = Cp/Cv ǫm =
1

M∗
− 1 ǫT = ∆T/T

0

- One parameter is introduced into the initial and boundary conditions: Wv,0 = f(RH0)

where RH0 is the relative humidity at initial state.

- Two parameters characterizes the evolution of the wall temperature θw(τ ): the amplitude

and the period.

The four relationships used to calculate the thermophysical properties of humid air are

given in the Appendix section.

For low temperature and mass fraction differences, the present problem formulation turns

into the Boussinesq formulation [19], which can be viewed as a reference case. Most of the

papers published on natural convection in cavities, thermal as well as solutal convection, were

indeed based on the Boussinesq approximation. In that case, the leading flow parameters

are the solutal and thermal Rayleigh numbers. For comparison purpose, it is thus relevant

to introduce a dimensionless motion pressure, p∗ = p∗+y∗/Fr, and to re-write the buoyancy

term in Eq. 18 as −(RaTθ +RamWv)Pr or as −RaT (θ +N Wv)Pr.

2.2.2 Heat and mass fluxes at the walls
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In transient regime, the heat and mass fluxes at the walls are the sum of a diffusion term

and a phase change term. This last term vanishes at dry surface locations. Here, the

Nusselt numbers are defined as the ratio of the total heat flux over a reference heat flux

due to heat conduction alone in the cavity, the temperature difference being the maximum

temperature difference between the initial and final state or, for oscillating temperature wall,

the amplitude of temperature fluctuations. The reference conduction heat flux is defined as

qref = k0
∆T

L
(31)

As a result, the local Nusselt number at a point M on the walls is given by:

Nu(M, τ ) = k∗∇θ|
w
.n− χHg ρ∗(V∗

w.n) = Nudiff +Nulv (32)

where Hg = hlv/Cp0
∆T . For condensation of water vapor or evaporation of liquid water, Hg

is much larger than one. The surface averaged Nusselt number at wall ”i” of area Si is as

follows

Nui(τ ) =
1

Si

∫

Si

Nu(M, τ )dSi (33)

The Nusselt number averaged over the four wall of total area S is written as:

Nut(τ ) =
1

S

∑

i=1,4

SiNui(τ ) (34)

The reference diffusion mass flux is defined as:

qm,ref = ρ0Dav0
∆Wv,max

L
(35)

where ∆Wv,max = Wv,w(Tw,max) − Wv,w(Tw,min) is the maximum possible difference in the

mass fractions corresponding to saturation conditions at Tw,max and Tw,min.

The local Sherwood number is expressed as

Sh(M, τ ) = χ[ρ∗D∗
av∇W ∗

v |w .n− Le ρ∗(V∗
w.n)W

∗
v,w(θw)] = Shdiff + Shadv (36)

where W ∗
v = Wv/∆Wv,max The various averaged Sherwood numbers are defined as their
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Nusselt number counterpart.

III. NUMERICAL METHOD

The finite volumemethod was employed to discretize the system of conservation equations

on staggered, non-uniform Cartesian grids with a second-order central difference scheme for

the convective terms. The IDEAL algorithm recently proposed by Sun et al. [17] for in-

compressible fluid flow and heat transfer was used to solve the velocity-pressure coupling.

The time integration was performed with an Alternating Direction Implicit scheme (ADI),

and at each time step there existed an inner doubly iterative process to obtain the pressure

field solution. A mesh study was conducted by using uniform grids having from 64 × 64 to

512 × 512 nodes. The adopted convergence criterion required that relative maximum mass

and field variable residuals were less than 10−9. Detailed validation of the code for non-

Boussinesq thermosolutal convection in a square cavity may be found in Sun and Lauriat

[18, 19] and in Sun et al. [20].

The test case discussed here is for isothermal evaporation of liquid film (pure solutal con-

vection) in a square cavity (10 cm×10 cm) initially filled with dry air at T0 = 350 K and at

atmospheric pressure. The two vertical walls were assumed to be initially covered by a thin

film of liquid water (ml,0 = 1.284 g/m, i.e. a uniform liquid film thickness e = 6.42 µm).

The final state can be straightforwardly obtained from basic thermodynamic calculations.

At steady-state, the walls are dry because all the liquid water has evaporated into air. The

result is a humid air mixture with RH = 50% (relative humidity). The thermodynamic

pressure and density are thus increased up to P∞ = 1.221 105Pa and ρ∞ = 1.137 kg/m3,

respectively. This final state must be predicted numerically within a given accuracy and the

mass of the mixture plus that of liquid must be constant at each instant. It should be noted

here that the evaporation rate along the vertical walls is not uniform since natural convection

occurs at first with a solutal Froude number Fr = 8.78 10−8 (Le = 0.789). When the mass

fraction of water vapour within the cavity becomes almost uniform, the mass transfer turns

into a diffusive regime. The computations showed that the final state was reached within

maximum relative discrepancies less than 0.03% both for pressure and density, whatever the

grid resolution in the range [64 × 64, 512 × 512]. From Fig. 2a showing the evolution of

the average mixture density for various grid resolutions, it can be concluded that natural
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convection turns into diffusion after about 20 s while density increases sharply during the

first 5 s. The evolution of the mean Sherwood numbers at the vertical walls during the

evaporation period (Fig. 2b) shows that a coarse mesh leads to a non-monotonous decrease

in the mean Sherwood number when parts of the walls become dry. This behaviour is due to

sudden changes in the boundary conditions for velocity and mass fraction (refer to Eqs. 28

and 30). For too large mesh sizes, these local changes lead to a series of minimum followed

by maximum values in Sh. The zoom in Fig. 2b shows that a uniform 256 × 256 grid may

be considered as a good compromise between accuracy and computational costs.

IV. RESULTS AND DISCUSSION

A first series of computations was conducted for a square cavity (A = 1) of 10 cm width

initially filled with dry or humid air at atmospheric pressure and uniform temperature.

Before considering periodic variations of the wall temperature, the simplest cases of linear

variations of the wall temperature were studied. It is shown that the mathematical model

allows to properly predict the evolutions of the gas mixture properties from an initial state

up to a well defined steady-state. However, these computations clearly display that too

sharp increases or decreases in the wall temperature may lead to local supersaturations

which are admissible provided they do not exceed the critical supersaturation corresponding

to the local temperature within the cavity [21-23]. If excessive local supersaturations are

achieved, onset of fog formation due to homogeneous nucleation within the fluid phase may

occur. Since the problem formulation does not incorporate this phase change process, the

possible occurrence of transient, high supersaturating conditions at some part in the flow

field must be avoided. From a physical point of view, supersaturation takes place at point

where very fast variations in temperature occur. All the computations were conducted for

a maximum temperature difference ∆T = 50 K. The following set of parameters was kept

fixed: M∗ = 0.622, γ = 1.4, ǫm = 0.608. The transient local thickness of the liquid film at

point M on a wall was calculated from the following expression:

e(M, t) =

∫ t

0
ρVw(M).n(M)dt

ρwater

(37)
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4.1 Linear variation of the wall temperature.

The uniform wall temperatures were varied linearly from T0 = 300 K to T∞ = 350 K

for evaporation and from T0 = 350 K to T∞ = 300 K for condensation. In both cases, the

decrease (increase) in temperature was sudden (δt = 0 s) or occurred during δt = 20 s, 60 s

or 120 s.

4.1.1 Evaporation. The initial conditions for the study of evaporation were for a cavity

filled with saturated humid air (Wv,0 = 0.0219 or RH0 = 100%) at T0 = 300 K. The

four walls of the cavity were wetted by a thin film of liquid water of uniform thickness

e = 2.57µm (i.e. a mass of liquid equal to ml,0 = 1.03 g/m). Such a small liquid film

thickness precludes fall of the liquid films and support the assumptions of zero tangential

velocity at the liquid-gas interfaces and, negligible thermal resistance of the film. The

thermophysical properties of humid air calculated from the relationships given in Appendix

A are reported in the first column of Table I. From these data, the following dimensionless

parameters emerge: Fr = 5.03 10−8, Le = 0.887, Pr = 0.71, Hg = 47.7.

When invoking the Boussinesq approximation, the thermal and solutal Rayleigh numbers

based on the physical properties at initial state and maximum possible temperature

and mass fraction differences are RaT = 4.31 106 and Ram = 1.31 106 (N ≈ 0.3),

showing predominance in heat transfer over mass transfer. The steady-state properties

corresponding to humid air at uniform relative humidity and temperature equal to the

wall temperature (Tw = 350 K ) are reported in column 2 of Table I. Since the relative

humidity at steady-state is reduced to RH = 50%, the walls are dry and the mass fraction

of water vapour increases up to Wv ≈ 0.1. The increases both in temperature and mixture

density lead to a larger increase in thermodynamic pressure (about 33%). The purely

thermodynamic predictions reported in column 2 of Table I were calculated numerically

within a discrepancy less than 0.5%, whatever the slope retained for the variation of the

wall temperatures, provided that the initial conditions were those of column 1.

The evolutions of the average temperature and density are plotted in Fig. 3 for the

four cases considered. The duration of the transient regime appears to be driven by

the time required to reach a uniform mixture temperature. It takes about 20 s more
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than the duration of evaporation. For sudden increase in the wall temperatures, local

supersaturation conditions (RH up to 200%) are predicetd during few seconds in thin

layers of hot fluid adjacent to the walls. By considering the temperature dependence of the

critical supersaturation for homogeneous nucleation of water vapour in air [21], the validity

of the present results for sudden change in wall temperature could thus be questionable.

For δt = 20 s, the peaks in supersaturation do not exceed 20% and are located close to

the four cavity corners because the convective mixing of water vapour and dry air is the

lowest in these regions. When the wall temperature increases slowly (δt = 120 s), the

supersaturation rates do not exceed 5% and stretch just for few seconds over corner regions

of small extend.

Figure 4 shows the streamlines, isotherms, mass fraction and relative humidity isovalues

for δt = 20, 60 and 120 s at times for which the mean mixture temperature is T = 325 K.

At the beginning of the wall heating, thermosolutal convection develops quickly with the

onset of a complex, multicellular flow structure. The heating of the fluid is produced

by convective motions in the form of two large counter-rotating cells, symmetric about

the cavity mid-plane, and strong Rayleigh-Bénard type cells just above the bottom wall.

The clockwise circulations are plotted by full lines for the streamlines shown in Fig. 4

while dashed lines display counterclockwise circulations. On the other hand, the fluid is

almost motionless below the central part of the top wall owing to the solutal and thermal

stratifications prevailing in that region. As a consequence, the drying of the bottom wall

occurs at first, as can be seen from the plot of the isolines of mass fraction reported in

Fig. 4b and 4c. Similarities between temperature and mass fraction fields may thus not be

found when a significant surface of the walls is dry, as exemplified in Fig.4c for the bottom

wall. The top part of the cavity walls becomes progressively dry through a double-diffusive

transfer which ends the evaporation process. Finally, the temperature becomes uniform

within the cavity about 20 s after the full drying of the walls (Fig.3). It should be noted

that rapid increases in the wall temperatures leads to strong recirculating flows, but low

evaporation rates at times corresponding to an average mixture temperature of 325 K.

On the other hand, weaker fluid motion, more uniform temperature and mass fraction

distributions are predicted when the decrease in wall temperatures is slower. Comparisons

between Fig. 4a and 4c show also that the bottom wall is dryer for δt = 120 s than for
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δt = 20 s when the mean mixture temperature is T = 325 K. Since the mass of water

evaporated is almost the same whatever δt (see Fig. 3), it can be concluded that the

decrease rate in the wall temperature has a large influence on the film thickness distributions.

The evolutions of the mean components of the Nusselt and Sherwood numbers at the

vertical walls are shown in Fig. 5 for δt = 20 s and 120 s. The latent component in the Nus-

selt number (Eq.32) is largely dominant at the beginning of evaporation. The latent energy

required to evaporate the liquid water is indeed about ten times as much the sensible energy

needed to increase the gas temperature from 300 K to 350 K. The latent Nusselt number

and the diffusive Sherwood numbers exhibit similar evolutions with peaks corresponding to

the times at which the surfaces of the wall start to be dried. The reason is that the ratio

Shdiff/Nulv follows the evolution of the wall saturation condition as Le (1 − Wv,w)/Hg,

which is merely constant with time. Figure 5 shows that the diffusive heat fluxes and

advective mass fluxes are much smaller during the evaporation process. It can thus be

concluded that the heat transfer is governed by phase change while the mass transfer is

governed by mass diffusion. The reason is that the ratio Shdiff/Shadv = (1 −Wv,w)/Wv,w

is large for the present values of the vapour mass fraction at the walls.

4.1.2 Condensation.

The initial conditions for the study of condensation were for a cavity filled with humid

air (Wv,0 = 0.138 or RH0 = 50%) at T0 = 350 K. The four walls of the cavity were thus

dry. The thermophysical properties of humid air are listed in column 3 of Table I. From

these data, the following dimensionless parameters emerge: Fr = 8.67 10−8, Le = 0.846,

Pr = 0.71, Hg = 41.2. For a problem formulation based on the Boussinesq approximation,

the thermal and solutal Rayleigh numbers would be RaT = 2.5 106 and Ram = 106

(i.e. N = 0.4) The final steady-state conditions corresponding to humid air at uniform

temperature T∞ = 300 K are reported in the last column of Table I. The relative humidity

at steady-state is RH = 100%. The walls are completely wet because the mass fraction

of water vapour at saturation conditions is Wv,sat ≈ 0.031. Therefore, 0.254 g/m of water

vapour are uniformly distributed within the humid air while 1.03 g/m of liquid water are

non-uniformly distributed over the wall surfaces. The decrease both in temperature and

mixture density lead to a decrease in thermodynamic pressure of about 28%.
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The evolutions of the average temperature and density are plotted in Fig. 6 for the

four cases considered. The duration of the transient regime is now driven by the time

required to obtain uniform saturation conditions (RH = 100%) within the cavity. Figure

6 shows that the time required to reach a constant mass of humid air is about 10 s

more than that for the mean temperature. For sudden decrease in the wall temperature,

local supersaturations occur for about 20 s. Figure 7 shows the flow structure when

the mean mixture temperature has reached T = 325 K for the three cases δt = 20 s,

60 s and 120 s. The cooling of the fluid is first produced by convective motions in form

of two large counter-rotating cells along the vertical walls, symmetric about the cavity

mid-plane and with directions opposite to those for evaporation. Since the thermal and

solutal forces are aiding, the hot and humid air coming from the core region flows down-

ward along the cooled vertical walls, releasing heat and humidity. Strong Rayleigh-Bénard

type cells below the top wall develop because the fluid in the core is hotter than the top wall.

It should be noted that the thicknesses of the liquid films are not the same at the four

surfaces. About half of the mass of water vapour is condensed at the vertical walls while

about one third is condensed at the top wall. Figure 8 shows the profiles of the thicknesses

of the liquid films along the four walls at steady-state for the case δt = 120 s. These

profiles are almost independent of the time for the decrease in the wall temperature. The

convective motions associated with the two Rayleigh-Bénard cells at the top region produce

two symmetric maximums and a minimum in the thickness of the liquid film at the top

wall. The thicknesses of the vertical liquid films exhibit a maximum at the upper part of

the walls where the mass and heat transfer coefficients are the largest during the transient

regime.

The evolutions of the mean Sherwood number at the vertical walls displayed in Fig.9

present similar profiles as those for evaporation. Since the relationships between the Nusselt

and Sherwood components discussed for evaporation are still valid, we have only plotted

in Fig. 9 the Sherwood number evolutions along the vertical walls. The mass of water

vapour condensed at the vertical walls being almost independent of the duration of the

transient regime (differences less than 4%), the time integration of the variations of Sh(t)
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for δt = 20 s and 120 s are almost equal. The same is true for the Nusselt numbers and a

time integration of the heat fluxes at the four wall yields the latent energy transferred to

the walls equal to 2404 J/m, and the sensible energy equal to 216 J/m and 211 J/m for

δt = 20 s and 120 s, respectively.

4.2 Periodic variations of the wall temperature.

When the wall temperature varies periodically around a mean temperature Tw,m = (Tw,h+

Tw,c)/2 with a temperature difference ∆T = (Tw,h−Tw,c), the dimensional temperature may

be written as

Tw(t) = Tw,m +
∆T

2
cos(

2πt

tp
) (38)

where tp is the period of the wall temperature oscillations. The computations discussed in

this subsection were carried out for Tw,m = 325 K and ∆T = 50 K on a 256 × 256 uniform

grid. The time step has been selected to obtain more than 10, 000 steps in the oscillation

period (for example, ∆t = 5.10−3s for tp = 60 s).

Figure 10a shows the time variations of the wall temperature and of the mixture mean

temperature over the first five periods for tp = 60 s. The cavity is initially filled with

hot, humid air at T0 = 350 K and RH = 50%. Condensation occurs as soon as the wall

temperature falls below the dew point temperature. In this case, the relative humidity

reaches RH = 100% before the end of the first-half-period and the four walls are partially

wetted. For t ≥ 30 s, evaporation at the wet walls begins. The mean mixture temperature

being not equal to the wall temperature at the end of the first and subsequent periods, the

initial conditions for the second period are changed compared to the initial conditions. The

walls are dry but there is still a weak convective motion within the cavity due to the phase

lag of the oscillatory mean temperature. These differences in the transient behaviour of T

and Tw are reduced when increasing the period. For tp = 60 s, the results show that the

oscillation in the mean mixture temperature may be written as

T (t) ≈ (Tw,m − 0.6) + (
∆T

2
− 0.8)cos[2π(t− 2.32)/tp)] (K) (39)

This equation indicates that the mean mixture temperature oscillates around the mean
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wall temperature, with an amplitude slightly smaller than that of the wall temperature,

and with a small phase lag. The reason is that the period (tp = 60 s) is of same order of

magnitude than the characteristic times for heat or mass diffusion ((L/2)2/a0 ≈ 125 s and

(L/2)2/Dav,0 ≈ 75 s). On the other hand, computations not discussed here have shown

that chaotic thermosolutal flows may arise if the period of the wall temperature variation

is of the order or less than tp = 1 s. From Fig. 10b, it can be seen that the mean density

and thermodynamic pressure variations are time-periodic with a phase lag close to the one

displayed for the mean temperature. On the other hand, the amplitude of the variations in

thermodynamic pressure being ∆P = 0.275 P 0, the relative change in pressure is higher than

those for temperature and density because the decreases in temperature and density occur

almost simultaneously. The oscillation in the thermodynamic pressure may be approximated

by:

P (t) ≈ Pm +
∆P

2
cos[2π(t− 2.96)/tp)] (K) (40)

where Pm = 0.861P 0. From this relation, the work done by the pressure force over half

a period is thus (P (t + tp/2) − P (t))Ω = ∆PΩ = 278, 6 J/m. It has been checked that

this energy is approximately equal to the sensible heat transferred by diffusion to the four

walls during the same time interval. Therefore, the decrease or increase in the internal

energy during half a period is distributed between the sensible heat diffusion through the

thermal boundary layers and the reversible work of the pressure force (negative when Tw

decreases and positive otherwise). Figure 10c shows that the phase lag of Nu against wall

temperature oscillation is about π/2 and that the two components of the Nusselt number

oscillate almost in phase. Just before the end of each period, the vertical walls become

completely dry. The walls keep dry for about 7.5 s (i.e. ≈ tp/8).

A fully-established oscillating solution, independent of the initial state, may be assumed

obtained at the end of the third period. For the following periods, the initial state

corresponding to Tw = 350 K (i.e. t0 = ntp, with n ≥ 3) is shown in Fig. 11a in the form

of contour plots of the streamlines, isotherms, mass fraction and relative humidity isolines.

Owing to the period and phase lag, the mixture temperature and mass fraction are not

uniform at t = t0. As a result, there exists a weak convective motion above the bottom wall.

This motion is purely thermal since there is a stable solutal stratification while the thermal
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stratification between the bottom wall and the core of the cavity is unstable. At t = t1

(Fig. 11b), the wall temperature is decreased to 325 K. Layers of cold air along the four wall

are predicted while hot and humid air is still present in the central part of the cavity. The

fluid motion consists thus in two convective counter-rotating cells along the vertical walls.

Between t = t1 and t = t2, the cavity core is hotter than the fluid near the walls, leading

to an unstable stratification near the top wall and the appearance of Rayleigh-Bénard cells

which are still present at t = t2. At t = t2 (Fig. 11c), the bulk of the fluid is almost at the

wall temperature (Tw = 300 K) and saturated, except below the top wall where hotter,

supersaturated mixture pockets are observed. It should be emphasized that the decrease

in temperature between t = t0 and t = t2 is also produced by the quite large decrease in

thermodynamic pressure. Since the decrease in internal energy due to the pressure force is

uniformly distributed within the cavity (on account of the low Mach-number assumption),

it is believed that this energy loss is the main reason for the occurrence of supersaturation

peaks. In comparison with the condensation period, Figure 11d shows that the fluid motion

reverses and is amplified during the evaporation period. Stronger cells are seen along

both the vertical and bottom walls. As a result, the drying of the bottom wall occurs at first.

Figure 12 shows the thickness distributions of the liquid water films at the four walls.

Firstly, it can be seen that the top wall (Fig. 12a) is not completely dried at the beginning of

the period (t = t0). Furthermore the liquid film thickness, with two symmetrical maxima

and one minimum at the center of the top wall, over most of the period, faithfully reflects

the existence of the two convective cells. The trace of the two convective rolls is clear on the

top wall because the mass fraction of the water vapour is maximum at the top of the cavity,

since water vapour is lighter than dry air. On the other hand, the flat distribution of the

liquid thickness for t = t1 is in agreement with the flow structure shown in Fig. 11b. The

vertical and bottom walls are completely dried at t = t0. The main differences in the film

thickness distributions displayed in Fig. 12b and 12c may be summarized as follows: the

vertical walls are quickly dried over the last quarter of the period (from t3 to t0 + tp) while

the bottom wall is wetted just around the time interval corresponding to the minimum in

wall temperature (i.e. around t2). Like for the top wall, the thickness distributions along

the vertical walls reflect the flow structure, including the change in the direction of the

recirculating motions associated with condensation and evaporation.
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The evolutions of the mass of liquid water at the four walls, the water vapour mass and

the overall mixture mass within the cavity during one period are presented in Fig. 13. As

expected, these results show that the overall mass conservation is satisfied at any time.

The mass of vapour is minimum when the mass of liquid is maximum, while the sum is

time independent. The total mass of liquid water condensed at the two vertical walls is the

largest and that at the bottom wall is the smallest. The maximum in the mass of liquid

condensed at the four walls occurs few seconds after the time for the minimum in wall

temperature (t = t2), the phase difference being the largest at the top wall. The bottom

wall is dry for about half a period, the vertical walls for about a quarter of a period, while

the top wall is dry just during ≈ 3 s. A small amount of liquid water remains few seconds

after the peak in wall temperature (Tw = 350 K at t = t0) showing that evaporation

continues when temperature starts to decrease.

4.4 Effect of aspect ratio.

In this section we are considering the effects of the cavity aspect ratio on condensation.

The linear decrease in the wall temperatures from 350 K to 300 K occurs during δt = 60 s.

The initial conditions are similar to those considered in section 4.1 and the computations

were carried out until steady state.

Two cases were considered. First, the cavity width was maintained constant (L = 10 cm)

while the height was varied from H = 5 cm to H = 20 cm. It is the procedure generally

followed to investigate the effect of aspect ratio for thermosolutal convection. Second, the

aspect ratio was changed while the volume of the cavity was kept constant. In that case,

the Froude number changes.

When changing the aspect ratio through increases in H, the mass of liquid water

condensed at the four walls is proportional to H because the final thermodynamic state

is the same (mwater = (ρ0 − ρ∞)HL). Consequently the average thickness of the liquid

film increases with H for a constant L. For example, the average thickness of the liquid

film for A = 2 is two times larger than for A = 0.5. Indeed, em = κ/6, κ/4 and κ/3 for
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A = 0.5, 1 and 2, respectively, with κ = (ρ0 − ρ∞)L/ρwater. It could thus be expected that

the condensation period would increase with H, unless the strength of the thermosolutal

convection is enough to compensate for this increase in film thicknesses.

Figure 14 shows the evolutions the total mass of liquid condensed at the walls for the

three aspect ratios considered. During the first 20 seconds, convection is mainly thermal

because the wall temperature is above the dew point temperature ( Tdp ≈ 333 K) while the

gradients in the mass fraction fields caused by the temperature differences are small. The

sharp increase in the water condensed after this first period is linked to strong convective

circulations. Since the slope of the curves gives a global view of the strength of convection,

it can be concluded that the fluid circulations are amplified as the height of the cavity is

increased. For example, the maximum in the dimensionless streamfunction fields shifts from

6 to 22 when A is increased from 0.5 to 2. The plateau is mainly for the purely diffusive

period. That result is exemplified in Fig. 14 by considering the times td at which the

almost flat variations in the mass of liquid are reached. From an inspection of various flow

variables, we have assumed that it is relevant to consider that thermosolutal convection

turns into diffusion when the maximum in mass fraction and temperature differences within

the cavity are less than ∆Wv,max = 1.33 10−3 and ∆Tmax = 0.2 K, respectively. It is

indicated in Fig. 14 that the end of the convective regime increases from td = 70 s to

t”d = 100 s when A increases from 0.5 to 2. Since the mass of water vapour condensed is

twice greater for A = 2, it can be concluded that the speed of the phase change process

increases with the aspect ratio. On the other hand, larger aspect ratios lead to larger

duration of the diffusive regime toward steady state (the times t∞ shown in Fig.5 are based

on the criteria ∆Wv,max = 1.33 10−5 and ∆Tmax = 2. 10−3K).

Variations of the aspect ratio from A = 0.25 to A = 4, with the volume kept constant

at Ω = 10−2m3/m, correspond to 5 cm ≤ H,L ≤ 20 cm. The Froude number increases

thus from Fr = 1.08 10−8 to Fr = 6.94 10−7 as A increases from A = 0.25 to A = 4.

Since the mass of water vapour condensed is the same (mwater = 1.03 g) the steady-state

thermodynamic pressure is the same (P∞ = 0.716 atm). The Rayleigh-Bénard cells below

the top wall (see Fig. 7) still exist for A = 0.5, 1 and 2 but not for A = 0.25 and A = 4:

in these last two cases, the flow circulations consist in two counter-rotating cells along the

vertical walls with a width of L/2 (i.e 2.5 cm-width for A = 4 and 10 cm for A = 0.25).
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As a consequence, the variations in the water film thickness along the top wall are very

different, as it can be seen in Fig. 15. The thickness is maximum at the center of the top

wall for A = 0.25 and A = 4 while it is minimum for the other aspect ratios. Finally, the

repartitions of the mass of water vapour condensed at the walls are given in Table II. As

expected, the mass of water at the vertical walls increases with the aspect ratio while the

opposite is observed at the bottom and top walls. The difference between the masses of

water at the top and bottom walls is maximum for A = 1 owing to the two Rayleigh-Bénard

cells below the top wall.

V. CONCLUSION

Transient wall evaporation and condensation in a cavity due to time variations in the

wall temperature were investigated by using a low-Mach number model and by taking into

account variations of the mixture properties. Despite the rather small temperature and

mixture density differences involved in the present study restricted to humid air, such a

modelling is required owing to large variations in thermodynamic pressure and possible

large variations in mixture properties. Extensions to other condensable species carried by

a non-condensable carrier gas are straightforward through changes in the formulae used

to evaluate the thermophysical properties of the mixture according to temperature and

mass (mole) fraction. The main limitations of the present study are the use of a laminar

flow model and that no fog formation is taken into account. Therefore, the modelling is

restricted to low local supersaturations.

The model allows however time-dependent computations of the mass and thickness distribu-

tions of thin liquid films at the walls during condensation as well as during evaporation. By

starting the computations from a well defined thermodynamic state, it has been shown that

the final state predicted by elementary thermodynamic calculations is reached, whatever

the time variations in the wall temperatures. These results and the discussed comprehensive

physical results obtained give confidence in the present computations.

The computations were first carried out for linear variations of the wall temperature in order

to shed light on the different flow structures occuring during condensation or evaporation.

These differences are mainly due to the change in the direction of the buoyancy forces,
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which are aiding in both cases owing to the lower molecular weight of water vapour. For

periodic variations in the wall temperature, the averaged field quantities oscillates between

the cases previously considered with small phase lags while the heat and mass transfers at

the walls exhibit rather different periodic behaviours.

Finally, the effects of the cavity aspect ratio on the increase rate of the liquid films

condensed at the walls are studied. When the cavity width is kept constant while the cavity

height is increased, the duration of the convective condensation period does not vary much

while the subsequent period of diffusive condensation is longer. For cavities of constant

volume but different aspect ratios, the thickness distributions of the water films greatly

varies according to the different convective patterns encountered.
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APPENDIX

A. Thermophysical properties

Air and water vapor

The properties of dry air and water vapor are calculated by using the following equations

given by Lide and Kehiaian [24] for the range [273K, 600K]

- Dynamic viscosity:

µ = A1T +A2T
2 +A3T

3 +A4T
4 (kg m−1 s−1) (1)

µ at 298.15 K A1 A2 A3 A4

Dry air 18.5 10−6 7.72488 10−8 −5.95238 10−11 2.71368 10−14 −−−
Water vapor 9.9 10−6 5.75100 10−8 −1.73637 10−10 3.90133 10−13 −2.69021 10−16

TABLE I: Coefficients of the polynomial expansion for dynamic viscosity.

- Thermal conductivity:

k = A1T +A2T
2 +A3T

3 +A4T
4 (Wm−1K−1) (2)

k at 298.1 K A1 A2 A3 A4

Dry air 26.1 10−3 0.965 10−4 −9.960 10−9 −9.310 10−11 8.882 10−14

Water vapor 18.6 10−3 0.349 10−4 1.511 10−7 −2.576 10−10 2.050 10−13

TABLE II: Coefficients of the polynomial expansion for thermal conductivity.

- Heat capacity:

+ Dry air:

Cp,a = 1000.0 + 2.5 10−7T 3 (JK−1kg−1) (3)
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+ Water vapor:

Cp,v = A0 +A1T +A2T
2 +A3T

3 (JK−1kg−1) (4)

Cp,v at 298.15K A0 A1 A2 A3

Water vapor 1866.1 1877.8 −0.4417 1.568 10−3 −7.286 10−7

TABLE III: Coefficients for water vapor heat capacity.

- Latent heat of condensation of water vapor at the wall temperature (thin film approxima-

tion):

hlv = 2.7554 × 106 − 3.464T 2
w (J kg−1) (5)

- Saturation vapor pressure :

PH20,sat = 105 exp(18.79 − 0.0075T − 5965.6

T
) (6)

where T is in Kelvin and PH20,sat in Pa.

- Dew point temperature corresponding to the partial pressure PH20 of the water vapor

Td = 66.67(B −
√
B2 − 178.968) (7)

where B = 18.79 − ln(10−5PH20), T in Kelvin and PH20 in Pa.

Mixtures

- Relative humidity :

RH =
Pv

Pv,sat

=
xvP

Pv,sat

(%) (8)

where xv is the mole fraction of vapor obtained from the mass fraction of vapor as

xv =
Wv

Wv +M∗(1−Wv)

The properties of the gas mixture are evaluated as functions of those of air and vapor by

using the following equations given by Rao et al. [3].
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- Dynamic viscosity:

µ =
(
√
18µvxv +

√
29µaxa)

(
√
18xv +

√
29xa)

(N s m−2) (9)

- Thermal conductivity:

k =
xvkv

(xv + xaA)
+

xaka

(xa + xvA)
(W m−1 K−1) (10)

where

A =
[0.8876(1 +

√

kv/ka)]
2

3.6

- Heat Capacity:

Cp = (1−Wv)Cp,a +WvCp,v (J kg−1 K−1) (11)

Since the fluctuating part of the motion pressure is assumed negligible in comparison with the

thermodynamic pressure when invoking the low-Mach number approximation, the diffusion

coefficient of water vapor in air, Dav, was calculated using the following equation as function

of the thermodynamic pressure P and local temperature T of the mixture

Dav =
1.87 × 10−10 × T 2.072

P
(m2 s−1) (12)
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TABLES

evaporation condensation
P0 = 101, 325 Pa P∞ = 134, 848 Pa P0 = 101, 325 Pa P∞ = 72, 591 Pa

T0 = 300 K T∞ = 350 K T0 = 350 K T∞ = 300 K
HR = 100% HR = 50% HR = 50% HR = 100%

Wv 0.0219 0.1016 0.1380 0.0308
xv 0.0348 0.1539 0.2048 0.0486

ρ (kg m−3) 1.1611 1.2640 0.9304 0.8274
µ (kg m−1 s−1) 1.8314 10−5 1.9736 10−5 1.9330 10−5 1.8219 10−5

k (W m−1 K−1) 0.0264 0.0306 0.0307 0.0265
Cp (kJ K−1 kg−1) 1025.6 1099.3 1131.1 1033.2

Dav (m2 s−1) 2.504 10−5 2.590 10−5 3.447 10−5 3.496 10−5

hlv (J kg−1) 2.444 106 2.331 106 2.331 106 2.444 106

TABLE I: Thermophysical properties of humid air for the four thermodynamic states corresponding

to the initial and steady-state conditions investigated.

Aspect ratio A = 0.25 A = 0.5 A = 1 A = 2 A = 4
Left or right wall 0.099 0.186 0.264 0.362 0.417

Top wall 0.494 0.444 0.372 0.230 0.151
Bottom wall 0.337 0.215 0.130 0.077 0.046

TABLE II: Overall masses of liquid water (in g/m) at the four walls according to the aspect ratio

for cavities of same volume (Ω = 10−2m3/m).
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FIGURE CAPTIONS

Figure 1. Schematic of the rectangular enclosure and temperature boundary conditions.

Figure 2. Evolution of the average mixture density (a) and Sherwood number (b) according

to the grid resolution.

Figure 3. Evaporation: variations versus time of the average mixture temperature (a) and

density (b) corresponding to the four cases investigated for evaporation. The filled circles

correspond to the density values at the times for T = 325 K.

Figure 4. Evaporation : streamlines [ψmin (4) ψmax], isotherms in Kelvin [Tmin (1K) Tmax],

mass fraction [Wmin (0.002) Wmax] and relative humidity isolines [RHmin (2%) RHmax] for

an average mixture temperature T = 325 K according to the duration of the increase in

wall temperatures.

Figure 5. Evaporation: evolutions of the mean Nusselt and Sherwood components (Eqs. 34

and 38) along the vertical walls for δt = 2 s and δt = 120 s.

Figure 6. Condensation : variations versus time of the average mixture temperature (a)

and density (b) corresponding to the four cases investigated for condensation (Fig. 3b).

Figure 7. Condensation : streamlines [ψmin (4) ψmax] , isotherms in Kelvin [Tmin (0.5K)

Tmax], mass fraction [Wmin (0.005)Wmax] and relative humidity isolines [RHmin (2%)RHmax]

for an average mixture temperature T = 325K according to the duration of the decrease in

wall temperatures.

Figure 8. Condensation : profiles of the liquid film thicknesses along the walls at steady

state for δt = 120s.

Figure 9. Condensation: evolutions of the mean Sherwood components along the vertical

walls for δt = 20 s and δt = 120 s.

Figure 10. Periodic evolutions of the wall and mean mixture temperatures (a), dimensionless

thermodynamic pressure and mean density (b), and mean Nusselt number components at

the vertical walls (c).

Figure 11. Streamlines [ψmin (1) ψmax], isotherms in Kelvin [Tmin (1K) Tmax], mass fraction

[Wmin (0.01) Wmax] and relative humidity isolines [RHmin (0.05%) RHmax] at four equally

spaced times along a period of oscillation.

Figure 12. Film thickness distributions along the walls at times t0 to t3 corresponding to
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the scalar fields shown in Fig. 13.

Figure 13. Time variations of the mass of liquid water at the walls and of the mixture mass

in one time period.

Figure 14. Time variation of the mass of liquid water condensed at the four walls according

to the aspect ratio for constant width of the cavity (L = 0.1 m. td and t∞ indicate the

beginning and the end of the diffusion period.

Figure 15. Steady-state thickness distribution of the liquid film at the top wall for five

aspect ratios and constant volume of the cavity (Ω = 10−2m3/m).
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FIGURES 

 

 
Figure 1: Schematic of the rectangular enclosure and boundary conditions. 
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(b) 

Figure 2. Evolution of the average mixture density (a) and Sherwood number (b) according to 

the grid resolution 
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(b) 

Figure 3. Evaporation: variations versus time of the average mixture temperature (a) and 

density (b) corresponding to the four cases investigated for evaporation (Fig.3a). The filled 

circles correspond to the density values at the times when T  = 325K. 

 



 

 

 

 
 

(a) δt = 20 s 

(|ψmin|= ψmax = 46.4), (Tmin = 319.6 K, Tmax = 333.1 K), (Wmin = 0.049, Wmax = 0.11), (RHmin= 

87%, RHmax = 114%) 

 

 

 
 

(b) δt = 60 s 

(|ψmin|= ψmax = 28.9), (Tmin = 322.8 K, Tmax = 328.1 K), (Wmin = 0.062, Wmax = 0.086), 

(RHmin= 87%, RHmax = 103%) 

 

 

 
 

(c) δt = 120 s 
(|ψmin|= ψmax = 24.1), (Tmin = 323.9 K, Tmax = 326.7 K), (Wmin = 0.066, Wmax = 0.080), 

(RHmin= 84%, RHmax = 100%) 

 

Figure 4. Evaporation : streamlines [ψmin (4) ψmax], isotherms in Kelvin [Tmin (1 K) Tmax], 

mass fraction [Wmin (0.002) Wmax] and relative humidity isolines (RHmin (2%) RHmax) for an 

average mixture temperature T  = 325 K according to the duration of the increase in wall 

temperatures. 
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Figure 5. Evaporation: evolutions of the mean Nusselt and Sherwood components (Eqs. 34 

and 35) along the vertical walls for δt = 20 s and δt = 120 s. 
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Figure 6.Condensation: variations versus time of the average mixture temperature (a) and 

density (b) corresponding to the four cases investigated for condensation (Fig. 3b). 



 

 

 

 
 

(a) δt = 20 s 

(|ψmin|= ψmax = 20.3), (Tmin = 319.6 K, Tmax = 329.1 K), (Wmin = 0.075, Wmax = 0.125), 

(RHmin= 100%, RHmax = 116%) 

 

 

 
 

(b) δt = 60 s 

(|ψmin|= ψmax = 13.9), (Tmin = 322.9 K, Tmax = 326.2 K), (Wmin = 0.094, Wmax = 0.120), 

(RHmin= 100%, RHmax = 114%) 

 

 
 

(c) δt = 120 s 
(|ψmin|= ψmax = 10.8), (Tmin = 324.5 K, Tmax = 325.2 K), (Wmin = 0.098, Wmax = 0.114), 

(RHmin= 100%, RHmax = 112%) 

 

Figure 7. Condensation: streamlines [ψmin (4) ψmax], isotherms in Kelvin [Tmin (0.5 K) Tmax], 

mass fraction [Wmin (0.005) Wmax] and relative humidity isolines (RHmin (2%) RHmax) for an 

average mixture temperature T  = 325 K according to the duration of the decrease in wall 

temperatures. 

 

 



 

 
 

Figure 8. Condensation: Profiles of the liquid film thicknesses along the walls at steady state 

for δt = 120 s. 

 

 

 

 

 

 

 
 

Figure 9. Condensation: evolutions of the mean Sherwood components along the vertical 

walls for δt = 20 s and δt = 120 s. 
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(c) 

 

Figure 10. Periodic evolutions of the wall and mean mixture temperatures (a), of the 

dimensionless thermodynamic pressure and mean density (b), and of the mean Nusselt 

number at the vertical walls (c). 

 



 
(a) t = t0 

(|ψmin|=  ψmax = 4.39), (Tmin = 345.5K, Tmax = 350 K), (Wmin = 0.08, Wmax = 0.305), (RHmin= 30%, 

RHmax = 100%) 

 

 
(b) t = t1 = t0 + tp/4 

(|ψmin|= ψmax = 14.84), (Tmin = 325.1K, Tmax = 338.3 K), (Wmin = 0.09, Wmax = 0.135), (RHmin= 60%, 

RHmax = 100%) 

 

 
(c) t = t2= t0 + tp/2 

(|ψmin|= ψmax = 8.9), (Tmin = 300K, Tmax = 302.15 K), (Wmin = 0.03, Wmax = 0.05), (RHmin= 

99.7%, RHmax = 146%) 

 

 
(d) t = t3= t0 + 3tp/4 

(|ψmin|= ψmax = 19.45), (Tmin = 316.6K, Tmax = 324.9 K), (Wmin = 0.055, Wmax = 0.107), (RHmin= 52.7%, 

RHmax = 100%) 

 

Figure 11. Streamlines [ψmin (1) ψmax], isotherms in Kelvin [Tmin (1 K) Tmax], mass fraction 

[Wmin (0.01) Wmax] and relative humidity isolines [RHmin (0.05%) RHmax] at four equally 

spaced times along a period of oscillation. 



 

 

 
(a) Top wall. 

 

 

 
(b) Vertical walls. 

 

 

 
(c) Bottom wall. 

 

Figure 12. Film thickness distributions along the walls at times t0 to t3 corresponding to the 

scalar fields shown in Fig. 13. 

 



 

 
 

 

 

Figure 13. Time variations of the mass of liquid water at the walls and of the mixture mass in 

one time period. 

 

 



 

 
 

 

Figure 14: Time variations of the mass of liquid water condensed at the four walls according 

to the aspect ratio for constant width of the cavity (L = 0.1 m). td and t∞ indicate the beginning 

and the end of the diffusion period. 

 

 

 

 

 

 
 

 

Figure 15: Steady-state thickness distribution of the liquid film at the top wall for five aspect 

ratios and constant volume of the cavity (Ω =10
-2

m
3
/m) 

 


