Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration

Abstract : A fruitful approach for solving signal deconvolution problems consists of resorting to a frame-based convex variational formulation. In this context, parallel proximal algorithms and related alternating direction methods of multipliers have become popular optimization techniques to approximate iteratively the desired solution. Until now, in most of these methods, either Lipschitz differentiability properties or tight frame representations were assumed. In this paper, it is shown that it is possible to relax these assumptions by considering a class of non-necessarily tight frame representations, thus offering the possibility of addressing a broader class of signal restoration problems. In particular, it is possible to use non-necessarily maximally decimated filter banks with perfect reconstruction, which are common tools in digital signal processing. The proposed approach allows us to solve both frame analysis and frame synthesis problems for various noise distributions. In our simulations, it is applied to the deconvolution of data corrupted with Poisson noise or Laplacian noise by using (non-tight) discrete dual-tree wavelet representations and filter bank structures.
Document type :
Journal articles
Liste complète des métadonnées
Contributor : Jean-Christophe Pesquet <>
Submitted on : Sunday, April 29, 2012 - 4:42:32 PM
Last modification on : Wednesday, April 11, 2018 - 12:12:03 PM

Links full text



Nelly Pustelnik, Jean-Christophe Pesquet, Caroline Chaux. Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2012, 60 (2), pp.968--973. ⟨10.1109/TSP.2011.2173684⟩. ⟨hal-00692256⟩



Record views