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Abstract In a nanostructured material, the interface-
to-volume ratio is so high that the interface energy, which
is usually negligible with respect to the bulk energy in
solid mechanics, can no longer be neglected. The inter-
faces in a number of nanomaterials can be appropriately
characterized by the coherent interface model. According
to the latter, the displacement vector field is continuous
across an interface in a medium while the traction vector
field across the same interface is discontinuous and must
satisfy the Laplace-Young equation. The present work
aims to elaborate an efficient numerical approach to deal-
ing with the interface effects described by the coherent
interface model and to determining the size-dependent
effective elastic moduli of nanocomposites. To achieve
this twofold objective, a computational technique com-
bining the level set method and the extended finite el-
ement method is developed and implemented. The nu-
merical results obtained by the developed computational
technique in the two-dimensional context are compared
and discussed with respect to the relevant exact analyt-
ical solutions used as benchmarks. The computational
technique elaborated in the present work is expected
to be an efficient tool for evaluating the overall size-
dependent elastic behaviour of nanomaterials and nano-
sized structures.

Keywords Nanomaterials · Extended Finite Element
Method · Level-set · Microstructures · Percolation ·
Multiple Level-Sets

1 Introduction

Nanostructured materials and systems are of fundamen-
tal interest. Indeed, as compared with their microstruc-
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tured counterparts, they often exhibit superior mechan-
ical and physical performances [1]. The main tool cur-
rently used to study the mechanical behaviour of nano-
materials and nanosystems is the molecular dynamics
(MD) simulation [2; 3; 4], which is suitable for studying
objects consisting of only a few atoms or when the phe-
nomena under investigation occur at a so small length
scale that the standard framework of continuum mechan-
ics is no longer valid. At the same time, there is a range
of fine scales where the number of atoms involved is rela-
tively important, so that the mechanical fields of interest
are smooth enough to fall within the scope of contin-
uum mechanics upon taking into account additional ef-
fects which are negligible at the usual macroscopic scale.
Such enriched continuum approaches have the definite
advantage of avoiding the treatment of large clusters of
atoms, which is computationally expensive, and of pre-
serving the applicableness of widespread powerful nu-
merical techniques such as the finite element method
(FEM). One of the non-classical effects which should be
taken into account in the continuum mechanics mod-
elling of nanomaterials and nanostructures is the inter-
face (or surface) effect. In fact, the high interface-to-
volume ratio of a nanomaterial or nanostructure makes
its interface energy comparable to or dominant over its
bulk energy. One consequence of this fact is that the
overall behaviour of a nanomaterial or nanostructure be-
comes size-dependent [5; 6]. The objective of the present
work is twofold. First, it has the purpose of elaborating
an efficient computational approach to modelling sur-
face/interface effects by combining the extended finite el-
ement method (XFEM) and the level set method (LSM).
Second, it aims to apply the elaborated computational
approach to determine the size-dependent effective elas-
tic properties of a composite made of a matrix reinforced
by nanoparticles or nanofibers.

A wide range of interface effects can be suitably de-
scribed by imperfect interface models. By definition, an
interface in a medium is perfect if both the displacement
and traction vector fields across it are continuous; oth-
erwise, it is said to be imperfect. Among a great number
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of imperfect interface models constructed and justified
to account for different interface effects [7], the coher-
ent and spring-layer interface models are the two most
important ones and also the mostly widely used ones.
In the coherent interface model, the displacement vector
field is continuous across an interface while the traction
vector field across the same interface is discontinuous
and has to verify the Laplace-Young equation [5]. In the
spring-layer interface model [8], the traction vector field
is continuous across an interface and proportional to the
jump of the displacement vector field across the same in-
terface. In the present work, the coherent interface model
is adopted since it is appropriate for modelling the inter-
face effect in nanomaterials [9; 10; 11; 12].

Different works using the coherent interface model
have recently been carried out to estimate the overall
elastic properties of nanocomposites and nano-sized struc-
tural elements. In [9; 10; 13; 14], Sharma and Ganti ex-
tended Eshelby’s original formalism to nano-inclusions
and obtained the closed-form expressions of Eshelby’s
tensor for spherical and circular cylindrical nano-inclusions.
Le Quang and He proposed an extended version of the
classical generalized self-consistent method to determine
the size-dependent effective thermoelastic properties of
nanocomposites with cylindrical and spherically anisotropic
phases [15; 16]. In [12] Duan et al. derived closed-form
expressions for the bulk and shear moduli as functions
of the interface properties, and analyzed the dependence
of the elastic moduli on the size of the inhomogeneities.
Chen et al. [11] showed that exact size-dependent con-
nections exist between the overall elastic moduli of uni-
directional nanocomposites. Dingreville et al. have de-
veloped a framework to calculate analytically the size-
dependent overall properties of nano-sized structural ele-
ments [17]. In all the works reported in the literature and
aiming at determining analytically the overall properties
of nanomaterials and nano-sized structural elements, the
shapes of nano inhomogeneities and structural elements
are required to be very simple and the sizes of nano in-
homogeneities have to be uniform. The computational
approach elaborated in this paper is a general one, which
has not these limitations.

In [18], Gao et al. proposed a finite element method
using surface elements to take into account for the sur-
face effects. Nevertheless, a major concern in dealing
with a strongly inhomogeneous material is the genera-
tion of a mesh matching the interfaces. Within the stan-
dard framework of FEM and especially in the 3D case,
such an operation is numerically very difficult when in-
homogeneities are numerous or/and of arbitrary shapes.
To avoid this burden, the present work uses the level-
set method [19] to describe every interface in a regular
mesh as the zero-level set of a scalar field. In implement-
ing the coherent interface model, the term associated to
the traction vector jump is then introduced by enrich-
ing the finite element approximation with discontinuous
functions constructed on the level-set basis. This novel

way of dealing numerically with imperfect interfaces is
reminiscent of the XFEM proposed by Belytschko and
Black [20], Moës et al. [21] and Sukumar et al. [22; 23]
to treat cracks and perfect interfaces. However, the co-
herent imperfect interfaces treated in our work are rather
different from cracks in nature. First from the mechan-
ical point of view, the imperfect interfaces studied by
us are characterized by the continuity of the displace-
ment vector (which implies the continuity of the sur-
face strains owing to Hadamard’s theorem) and the jump
of the traction vector which is governed by the Young-
Laplace equations; the cracks as treated in previous pa-
per on XFEM are characterized by by the discontinuity
of the displacement vector and the discontinuity of the
tractions. From the numerical standpoint, the imperfect
interfaces treated in our work give rise to a contribution
to the stiffness matrix while this contribution is absent
in the case of cracks. To our knowledge, it is the first
time that the coherent imperfect interface is treated by
XFEM/level-set.

The paper is organized as follows. In section 2, a
curved interface is geometrically defined as a level set
and some projection and differential operators associ-
ated to the interface are introduced in a coordinate-free
way. In section 3, we consider a solid made of a linearly
elastic inhomogeneous material with the interfaces be-
ing described by the coherent interface model. The local
equations governing the boundary value problem of the
solid are first specified and a variational formulation of
the problem suitable for a finite element approximation
is then provided. Due to the coherent interfaces between
the matrix and inhomogeneities, an additional stiffness
term appears. In section 4, we present the discretisation
technique combining level-set method and XFEM. For
simplicity, the technique is specified and implemented in
the two-dimensional context and more precisely for plane
strain and axisymmetric problems. In section 5, the nu-
merical approach elaborated in the previous sections is
applied to computing the size-dependent effective elas-
tic properties of nanocomposites. A good few numerical
examples are provided and compared with the relevant
analytical exact solutions taken as benchmarks for test-
ing the validity of the developed numerical approach.
Further applications are illustrated for size-dependent
overall properties of nanostructures with random distri-
butions or shapes. In section 6, a few concluding remarks
are drawn.

2 Geometric preliminaries

Let ΓI be an interface between two neighbouring do-
mains, which is taken to be a smooth 2D or 3D sur-
face. A general method in differential geometry to de-
scribe such a smooth surface is to define it by an im-
plicit function (see e.g. Do Carmo [24], Thorpe [25]).
This method is in close relation with the level-set method
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[19], which is a numerical technique for tracking moving
surfaces/interface and which is based on the idea of rep-
resenting a surface as a level set of a higher dimension
function. In the case of static interfaces, the two ideas
coincide. In the present work we only consider static in-
terfaces. In this context, ΓI is defined as the zero level-set
of a function ϕ : Rd → R:

ΓI =
{
x ∈ Rd | ϕ(x) = 0

}
, (1)

where d is the dimension of the space under considera-
tion. In the following, ϕ is assumed to be continuously
differentiable and to have the property that ∇ϕ(x) ̸= 0
for all x ∈ ΓI . Thus, the unit normal vector field n(x)
on ΓI is defined by

n(x) =
∇ϕ(x)
∥∇ϕ(x)∥

, (2)

where ∥.∥ denotes the Euclidian norm and ∇(.) denotes
the gradient operator. Next, we introduce two orthogonal
complementary projection operators:

P⊥(x) = n(x)⊗ n(x) , P(x) = I− n(x)⊗ n(x). (3)

where I is the second order unit tensor. Geometrically,
P⊥(x) describes the projection along the unit vector
n(x) normal to ΓI at x while P characterizes the pro-
jection on the plane tangent to ΓI at x.

Then, any vector function w admits the following
decomposition:

w = wn +ws , (4)

with

wn = P⊥w, ws = Pw. (5)

Furthermore, when w is differentiable,

∇w = ∇nw +∇sw , ∇nw = ∇wP⊥ , ∇sw = ∇wP. (6)

Given any second-order tensor function T, one de-
fines its normal and tangential parts by

Tn = P⊥TP⊥, Ts = PTP . (7)

Whenever T is differentiable, the divergence of T admits
the following decomposition:

div(T) = divn(T) + divs(T) , (8)

where

divn(T) = ∇(T) : P⊥ , divs(T) = ∇(T) : P . (9)

Wherever applicable, the indices n and s will de-
note normal and surface (tangential) components, re-
spectively. It is worth noting that the operator P does
not involve any basis change: the reader has to keep in
mind that ws and Ts denote the components of the pro-
jection of the associated vector and tensor, respectively,
on the surface ΓI . Thus ws and Ts do not denote the
components relative to the basis of the tangent plane to
the surface. This projection tensor elegantly allows one
to mix bulk and surface quantities in an equation.

3 Governing equations

In this section, we present the governing equations of
linear elastostatics, together with the weak form and the
discrete system for the µ-XFEM.

3.1 Strong form

We consider a bodu which is described by an open bounded
domain Ω ⊂ RD, with boundary ∂Ω. The boundary ∂Ω
is composed of two disjoint complementary parts ∂Ωu

and ∂Ωt, where the Dirichlet (displacement) and Neu-
mann (tractions) boundary conditions are prescribed, re-
spectively. The field equations of elastostatics are:

divn(T) = ∇(T) : P⊥ , divs(T) = ∇(T) : P . (10)

Without loss of generality, we assume that ΓI divides
Ω into several domains Ω(i), i = 1, 2, ...,M such that
Ω =

∪
i=1,...,M

Ω(i) ∪ ΓI ,
∩

i=1,...,M

Ω(i) = Ø. Let ∂Ω be the

external boundary of Ω and ∂Ω(i) the external boundary
of each subdomain Ω(i), such that ∂Ω(i) = ¯∂Ω(i) ∪ ΓI .
Let n(i) the unit vector normal to ∂Ω(i) pointing into
Ω(i). Thus, n(i) is also the normal to ΓI pointing into the
domainΩ(i). For the sake of simplicity, we consider in the
following only two domains. The equilibrium equations
are then given by

div(σ(i)) + b = 0 in Ω(i) , (11)

divsσs = −JtK = (σ(2) − σ(1))n(1) on ΓI . (12)

In the above, σ denotes the bulk Cauchy stress tensor,
b being a volumetric force term. Equation (11) is as-
sociated with bulk equilibrium, while Eq. (12) refers to
the Laplace-Young equation resulting from the interface
equilibrium. In particular, σs is the surface stress tensor
and divs(.) is defined in Eq. (10). The notation J.K de-
notes the jump across ΓI . The boundary conditions are
described by{
σn = −F on ∂ΩF ,
u = ū on ∂Ωu ,

(13)

where F and ū are prescribed tractions and displace-
ments, respectively, and ∂ΩF and ∂Ωu are the Dirichlet
and Neumann boundaries, respectively, such that ∂Ω =
∂ΩF ∪ ∂Ωu, ∂ΩF ∩ ∂Ωu = Ø.

According to the coherent interface model, the dis-
placement jump across ΓI is null:JuK = 0 on ΓI , (14)

The displacement vector is continuous across the inter-
face but the strain tensor is discontinuous according to
the Hadamard relation:JϵK = a⊗ n+ n⊗ a , (15)

where ϵ is the infinitesimal strain tensor, and a is a real-
valued vector. It follows from Eq. (15) that tangent or
surface strains are continuous across ΓI :JϵsK = JPϵPK = 0 . (16)
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Fig. 1 (a) Closed interface ΓI ; (b) open interface ΓI .

3.2 Weak form

The weak form associated with Eq. (11-13) is given in
each domain as follows:

Find u ∈ D =
{
u = ū on ∂Ωu, u ∈ H1(Ω(i))

}
, such

that∫
Ω(i)

σ(i)(u) : ϵ(i)(δu)dΩ +

∫
Γ

(i)
I

σ(i)n(i) · δudΓ

−
∫
Ω(i)

b · δudΩ −
∫
∂Ω̄

(i)
F

F · δudΓ = 0 (17)

for all δu ∈ H1
0 (Ω

(i)) =
{
δu ∈ H1(Ω(i)) , δu = 0 on ∂Ωu

}
.

In the above, Γ (i) is the side of ΓI associated with the
domain Ω(i).

Adding the contributions of both the domains Ω(1)

and Ω(2), and by using n(1) = −n(2) and JδuK = 0 on
ΓI , we obtain∫

Ω

σ(u) : ϵ(δu)dΩ +

∫
ΓI

(σ(1) − σ(2))n(1) · δudΓ =

=

∫
Ω

b · δudΩ +

∫
∂ΩF

F · δudΓ . (18)

Invoking the Laplace-Young equation, it yields∫
Ω

σ(u) : ϵ(δu)dΩ −
∫
ΓI

divs(σs(u)) · δudΓ =

∫
Ω

b · δudΩ +

∫
∂ΩF

F · δudΓ . (19)

By using the relation:

divs (Tw) = divs

(
TT

)
·w +TT : ∇sw , (20)

where T and w are continuously differentiable second-
order tensor and vector functions, respectively, we ob-
tain, by the symmetry of σs,∫

ΓI

divs(σs) · δudΓ

=

∫
ΓI

divs(σsδu)dΓ −
∫
ΓI

σs : ∇s(δu)dΓ . (21)

Due to the fact that P acts as the identity operator
for (.)s quantities, we have:

divs(σsδu) = divs(PσsPδu)

= divs(Pσsδus) = divs(σsδus) (22)

Applying Stokes’ theorem, we obtain:∫
ΓI

divs(σsδus)dΓ =

∫
∂ΓI

σsm · δusdl

=

∫
∂ΓI

F̂ · δusdl =

∫
∂ΓI

F̂ ·Pδudl . (23)

In the case where the interface ΓI is closed (see figure
1 (a)), the term (23) is equal to zero. Otherwise, for an
open interface as depicted in figure 1 (b), ∂ΓI is the (d−
2)-dimensional boundary of ΓI with m a unit outward
vector normal to ∂ΓI , and tangent to ΓI (see figure 1

(b)), F̂ being an applied force on ∂ΓI .
Now, let us express the second term on the right-hand

of expression (21). We have

σs : ∇s(δu) = [PσsP] : ∇(δu)P . (24)

Setting [∇(δu)]ij = ∇ij and using the symmetry of P

and the identity P2 = P, expression (24) can be written
as:

[Pikσ
s
klPlj ]∇ikPkj = σs

kl (Pki∇ikPkjPjl) =

= σs : (P∇(δu)P) = σs :
1

2

(
P∇(δu)P+ [P∇(δu)P]

T
)

= σs : ϵs , (25)

as σs is symmetric. Finally, the weak form is given by∫
Ω

σ(u) : ϵ(δu)dΩ +

∫
ΓI

σs(u) : ϵs(δu)dΓ

=

∫
Ω

b · δudΩ +

∫
∂ΩF

F · δudΓ +

∫
∂ΓI

F̂ ·Pδudl. (26)

3.3 Constitutive equations

Here we assume that the solid undergoes small displace-
ments. In the context of a linear elastic model, the bulk
constitutive law is given by:

σ(u) = C(i) : (ϵ(u)− ϵ∗) , (27)

where C(i) is the fourth-order elastic stiffness tensor as-
sociated with domain Ω(i) and ϵ∗ is an eigenstrain pre-
scribed on Ω∗ ⊂ Ω.

According to [26], the surface stress σs is related to
the surface-strain energy γ by Schuttleworth’s equation:

σs = τ0I2 +
∂γ(ϵs)

∂ϵs
, (28)
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where τ0 is the strain-independent surface/interfacial ten-
sion and I2 is the unit tensor for surfaces. In the context
of isotropic linear elastic interfaces, we have:

σs = σ0 + Cs : ϵs ,

with

Cs
ijkl = λsPijPkl + µs (PikPjl + PilPjk) (29)

where λs and µs are Lamé’s constants characterizing the
interface ΓI and σ0 = τ0P. With this model, the weak
form is finally given by:∫

Ω

ϵ(δu) : C : ϵ(u)dΩ +

∫
ΓI

Pϵ(δu)P : Cs : Pϵ(u)PdΓ

=

∫
Ω

δu · bdΩ +

∫
∂ΩF

δu · FdΓ +

∫
∂ΓI

Pδu · F̂dl

+

∫
ΓI

Pϵ(δu)P : σ0dΓ +

∫
Ω

ϵ(δu) : C : ϵ∗dΩ . (30)

In [27], Chessa and Belytschko have taken into ac-
count surface tension with XFEM. In fluid mechanics,
a surface tension, which can also be derived from a sur-
face energy, is an isotropic surface stress tensor and must
verify the classical Laplace equation. The surface energy
involved in our paper is associated to a solid surface and
its derivation with respect to the surface strain tensor
gives a surface tensor which is in general not isotropic
and must satisfy the Young Laplace equation. From a
numerical point of view, in [27], the surface tension acts
through en external forces energy term as it acts through
an additional rigidity matrix in our work, as it will ap-
pear in the next section.

4 Level-set/extended finite element
discretization

4.1 Evaluation of the unit vector normal to the interface

The domain Ω is discretized by n nodes ni that do not
necessarily match the interface ΓI . Here we use a mesh
of triangles, whereas other types of elements can be em-
ployed. Regular meshes can then be adopted for paral-
lelepipedic domains, even if the interface has a complex
geometrical shape.

In the present context, ΓI is defined as the zero level-
set of a function ϕ(x), whose value is known at avery
node ni, i.e. ϕ(xi) = ϕi.

Wherever needed, the components of n(x) can be
evaluated by:

n(x) =
∇ϕ̃(x)∥∥∥∇ϕ̃(x)∥∥∥ , (31)

ΓI
ni

Fig. 2 Zero level-set of the function ϕ(x) and node ni whose
support is cut by the interface ΓI .

where

∇ϕ̃(x)i =
n∑

j=1

∂Nj(x)

∂xi
ϕj . (32)

Here Nj(x) are the standard finite element shape func-
tions, ϕj are the nodal value of the level-set function,
and n is the number of nodes of the elements. In the
present paper, we use simple linear finite element shape
functions, though higher-order shape functions can be
used [28], this interpolation being independent of the dis-
cretization of the weak form (30). The above approxima-
tion for n can then be used to evaluate the components
of the projector P needed in the weak form (30).

4.2 Discrete system

For the coherent interface model, the displacements must
be continuous at the interface whereas the strains must
follow the Hadamard relation described in Eq. (15). These
conditions can be enforced by superposing to the stan-
dard finite element field an enrichment term that pos-
sesses the above continuity conditions (XFEM method
[21]). In this context, the approximation is defined at a
particular point x lying in an element Ωe by:

uh(x) =

n∑
i=1

Ni(x)ui +

m∑
j=1

Nj(x)ψ(x)aj , (33)

where Ni are the standard finite element shape functions
associated with the nodes ni of the elements, Nj(x) are
the shape functions of the nodes of the elements whose
support are cut by the interface (see figure 2) and ψ(x)
is a function with the required continuity. Due to the
enrichment term in Eq. (33), the unknowns ui become
arbitrary coefficients, as well as the unknowns aj , and
lose their kinematical meanings. To meet the Hadamard
condition (15), we use the enriched approximation pro-
posed in [29], which ensures good convergence properties,
preserves the interpolant character of the approximation,
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and removes the issue of partially enriched elements [29].
Precisely, the enrichment function is defined by:

ψ(x) =

n∑
i=1

|ϕi|Ni(x)−

∣∣∣∣∣
n∑

i=1

ϕiNi(x)

∣∣∣∣∣ . (34)

The numerical integration in the bulk is performed
by using Gauss integration on subtriangles near the in-
terface (see figure 3). The strain and stress tensors are
then expressed in the vector forms,

ϵ =

 ϵ11ϵ22αϵ33
2ϵ12

 , σ =

σ11σ22
ασ33
σ12

 , (35)

with α = 0 for plane strain problems and α = 1 for
axisymmetric problems. In the foregoing, the indices 1, 2
and 3 are associated with directions ex, ey and ez and er,
ez and eθ, according as a plane strain or an axisymmetric
problem is concerned. The vector forms of surface strain
and stress take the same form as in (35).

The specificity of the present problem is the presence
of the internal virtual work term related to the implicit
surface (not discretized by nodes) in Eq. (30). To evalu-
ate the associated surface integral, we first approximate
the interface by piece-wise linear segments in 2D (see
figure 3). For this purpose, we first find the intersection
between the level-set function ϕ(x) and the triangular
mesh. The triangles cut by the interface ΓI are easily
detected, as the values of ϕ evaluated at the two nodes
of a given edge have opposite signs. The intersection be-
tween ϕ(x) = 0 and the edges of the mesh can then
be approximated by using a linear interpolation of ϕ(x)
based on the mesh. Once again, the linear interpolation
is adopted, though higher-order approximation schemes
could be used [28]. It is worth noting that despite the
fact that the surface is implicit, its description accuracy
depends on the local nodal density.

We then perform a Gauss integration on each edge
of the 2D interface approximation. In the following ex-
amples, we have used three Gauss points in the triangles
cut by the interface, one in the remaining triangles and
two on each linear segment of the approximated inter-
face. On substituting the trial and test functions from
Eq. (33) in Eq. (30), and using the arbitrariness of nodal
variations, the following discrete system of linear equa-
tions is obtained:

(K+Ks)d = f (36)

where

KIJ =

∫
Ω

BT
I C

(i)BJγdΩ , (37)

f =

∫
Ω

NTbγdΩ +

∫
∂ΩF

NTFγdΓ +

∫
Ω

BTC(i)ϵ∗γdΩ

+

∫
∂ΓI

NTPF̂γdl +

∫
ΓI

BTMT
p σ0γdΓ , (38)

with γ = 1 for plane strain problems and γ = 2πr for ax-
isymmetric problems. In the above equations, the matrix
BI is given by:

BI =


∂N̂I(x)
∂x1

0

0 ∂N̂I(x)
∂x2

α N̂I(x)
x1

0
∂N̂I(x)
∂x2

∂N̂I(x)
∂x1

 , (39)

where N̂I ≡ NI for a finite element displacement degree
of freedom, and N̂I ≡ ψNI for an enriched degree of
freedom. In the above equations, C(i) is the bulk stiff-
ness matrix associated with the elasticity tensor of phase
i. To determine the phase associated with a particular
bulk integration point, we simply use the sign of ϕ(x)
computed by the linear finite element discretization:

ϕ(x) =

n∑
i=1

Ni(x)ϕi . (40)

The matrix C(i) is defined according to:

C =

 (λ+ 2µ) λ αλ 0
λ (λ+ 2µ) αλ 0
αλ αλ α(λ+ 2µ) 0
0 0 0 µ

 , (41)

where the superscripts i have been omitted. The matrix
Ks is the interface rigidity matrix, expressed by:

Ks
IJ =

∫
ΓI

BT
I M

T
p C

SMpBJγdΓ , (42)

with Cs the surface stiffness matrix expressed by:

Cs =

 (2µs + λs)P
2
11 λsP11P22 + 2µsP

2
12

λsP11P22 + 2µsP
2
12 (2µs + λs)P

2
22

αλsP11 αλsP22

(2µs + λs)P11P12 (2µs + λs)P12P22

αλsP11 (2µs + λs)P11P12

αλsP22 (2µs + λs)P12P22

α(2µs + λs) αλsP12

αλsP12 λsP
2
12 + µs(P11P22 + P 2

12)

 . (43)

The matrix Mp is constructed such that ϵs = Mpϵ and
is defined according to:

Mp =

 P 2
11 P 2

12 0 P11P12

P 2
12 P 2

22 0 P12P22

0 0 α 0
2P11P12 2P12P22 0

(
P 2
12 + P11P22

)
 (44)
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Fig. 3 (a) Approximated interface using interpolated level-set function on triangle edges; (b) triangulation of the elements
cut by the interface and integration points.
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Fig. 4 First Eshelby problem model with imperfect coherent
interface (a) Geometry; (b) Mesh, zero level set, and enriched
nodes.

5 Numerical examples

5.1 Cylindrical inclusion under plane strain and with
the coherent interface model

A cylindrical inclusion with an imperfect coherent inter-
face in an infinite medium is submitted to a dilatational

eigenstrain ϵ∗. The exact strain solution of this problem
is given in [9; 13] by:

ϵrr(r) = ϵθθ(r) = A , r < R0 (45){
ϵrr(r) = −AR2

0

r2

ϵθθ(r) = A
R2

0

r2

, r > R0 (46)

A =
3K

′M ϵ∗ − τ0/R0

2µM + 3K ′M +K ′S/R0
, (47)

where R0 is the radius of the cylindrical inclusion (see

figure 4), κ
′M = 2(λM + µM )/3, κ′s = (λS + 2µS) is

the plane strain surface modulus, and ϵ∗ is a prescribed
dilatational eigenstrain in cylindrical inclusion with ϵ∗ =
ϵ∗11 = ϵ∗22, ϵ

∗
33 = 0.

By using the kinematical relations ϵrr = ∂ur/∂r and
ϵθθ = ur/r we obtain the displacement field as:

ur(r) =

{
Ar , 0 ≤ r ≤ R0

A
R2

0

r , r ≥ R0 .
(48)

We consider an axisymmetric model in a finite square
domain by imposing the exact displacement solution on
the external boundary. Then, the interface does not co-
incide with the mesh. To examine the size effect, we pro-
pose the following indicator:

β =

∣∣∣∫ΓI
σs(u) : ϵs(u)dΓ

∣∣∣∣∣∣∫ΓI
σs(u) : ϵs(u)dΓ

∣∣∣+ ∣∣∫
Ω
σ(u) : ϵ(u)dΩ

∣∣
=

|Es|
|Es|+ |Eb|

, (49)

where Es denotes the surface energy and Eb stands for
the bulk energy. The following numerical parameters were
used for the bulk material : E = 3 GPa, ν = 0.3, ϵ∗ = 0.5,
τ0 = 0. A regular mesh of 40 × 40 nodes is used. The
surface parameters can be obtained through molecular
dynamics computations. Here, we use those obtained by
Miller and Shenoy in [1]: (a) λs = 6.842 N/m, µs =
−0.375 N/m, which gives a positive κ′s = 6.091 N/m,
(b) λs = 3.48912 N/m, µs = −6.2178 N/m, which gives
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Fig. 5 Size effect indicator versus inclusion radius.

a negative plane-strain surface modulus κ′s = −8.94948
N/m, and (c) the classical case where λs = 0 N/m,
µs = 0 N/m, κ′s = 0 N/m.

As noted by Shenoy in [30], the surface elastic tensor
Cs

ijkl needs not to be positive definite, i.e. the quadratic
form Cs

ijklϵ
s
ijϵ

s
kl need not to be non-negative. At first

glance it may suggest a violation of basic thermodynamic
postulates. It must be noted that positive definiteness of
the bulk elastic modulus tensor which guarantees the sta-
bility of the solid cannot be applied to the surface elastic
tensor. This is due to the fact that a surface cannot ex-
ist independently of the bulk, and only the total energy
(bulk+surface) needs to satisfy the positive definiteness
condition.

As seen from figure 5, the presence of the surface term
on the left-hand of Eq. (26) introduces size effects, when
the internal surface energy surface becomes important
compared to the internal volume energy.

Next we compare the exact solution with the solution
computed from the proposed numerical approach for f =
0.2. For a fair comparison between the different sets of
parameters, we chose the inclusion radius R0 in each
simulation such as β = 0.4. Thus for the set (a), we chose
R0 = 1 nm, and for the example (b) we chose R0 = 1.8
nm. Computations are performed for different regular
triangular meshes with increasing nodal density, ranging
from 10 × 10 nodes to 80 × 80 nodes. The convergence
results about the relative energy norm∥∥uh(x)− u(x)

∥∥
E(Ω)

∥u(x)∥E(Ω)

=

(∫
Ω

(
ϵh(x)− ϵ(x)

)
: C(i) :

(
ϵh(x)− ϵ(x)

)) 1
2(∫

Ω
ϵ(x) : C(i) : ϵ(x)

) 1
2

, (50)

are reported in figure 6.
For κ′s = 0 (no surface effects), an expected rate of

convergence r ≈ 1 is appreciated. For κ′s < 0 and κ′s > 0,
the proposed approach leads to a convergent solution,
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Fig. 6 Convergence analysis for the cylindrical inclusion
problem with the coherent interface model.

but without an optimal rate of convergence. Though it
is adequate for most purposes, it indicates that there is
room for improvement of the method.

It is worth pointing out that for κ′s < 0, the con-
tribution of the negative-definite surface stiffness matrix
Ks in (36) influences the condition number of the total
stiffness matrix, which may consequently tend to be ill
conditioned. This issue has also been reported by Gao
et al. in [18]. When the ill condition leads to inaccurate
results, special numerical methods should be applied to
improve the precision of solutions. In the present work,
we have used an iterative solver, the biconjugate gradi-
ents methods [31] (bicg in Matlab).

5.2 Size-dependent overall properties of a material with
cylindrical nanovoids

In this example, we compute the effective bulk modulus
of an aluminium material containing nano voids. For this
purpose, we perform numerical linear homogenization on
a RVE containing a coherent interface whose geometry is
depicted in figure 4 (b). For a constant volume fraction,
we vary the void radius and compute for each size the ef-
fective bulk modulus. Estimated effective properties for
long cylindrical nanofibers with coherent interfaces have
been provided in [15]. We then compare the results ob-
tained by the present XFEM approach with the reference
normalized effective bulk modulus κeff/κM , κM being
the matrix bulk modulus. In this example, we have used
a regular 80 nodes grid. The material parameters of the
matrix are E = 70 MPa and ν = 0.32. The results are
depicted in figure 7 for a volume fraction f = 0.2. Good
agreement between the reference solution and the nu-
merical computations is noticed.

We obtain the expected effects, i.e. the effective prop-
erties are not sensitive to the nanovoid radius value for
relatively large sizes, but the values of effective bulk mod-
ulus clearly deviate for small sizes of nanovoids.
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Fig. 8 plane-strain bulk modulus for R = 1 nm versus void
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Now for a fixed radius R = 1 nm (at which size ef-
fects are predominant for the used set of parameters),
we vary the volume fraction by changing the size of the
enclosing square domain. Due to the implicit description
of the interface, generating different geometries only re-
quires changing the equation describing the level set, and
does not involve any mesh generation. We compute the
effective properties of the RVE using the aforementioned
approach for volume fractions ranging from 0 (no inter-
face) to 0.6. The results comparing the present XFEM
approach and the reference solution computed from [15]
are provided in figure 8. Very good agreement between
theory and numerical solutions is noticed, and the sur-
face effects are clearly shown up.

R0

R1

(a) (b)

Fig. 9 Spherical inclusion with imperfect interface; (a) ge-
ometry; (b) finite axisymmetric domain, zero level-set and
enriched nodes.

5.3 Spherical inclusion

Here we test the proposed XFEM methodology through
an axisymmetric problem. A spherical inclusion with an
imperfect coherent interface in an infinite medium is
submitted to a dilatational eigenstrain ϵ∗. We model
the spherical inclusion using axisymmetric triangular ele-
ments (see figure 9). For this problem, the exact solution
is given by [10; 14]:

ϵrr(r) = ϵθθ = ϵϕϕ(r) = A , r < R0 (51){
ϵrr(r) = −2A

R3
0

r3

ϵθθ(r) = ϵϕϕ(r) = A
R3

0

r3

, r > R0 (52)

A =
3κM ϵ∗ − 2τ0/R0

4µM + 3κM + 2κS/R0
, (53)

where κM = λM + 2µM/3, κS = 2(λS + µS), ϵ∗ = ϵ∗11 =
ϵ∗22 = ϵ∗33. The displacement field is given by:

ur(r) =

{
Ar , 0 ≤ r ≤ R0 ,

A
R3

0

r2 , r ≥ R0 .
(54)

We chose E = 10 MPa, ν = 0.3 and ϵ∗ = 0.5, and
τ = 0. The radius is set as R0 = 1 nm, and the ra-
dius of the cylindrical box R1 (see figure 9) is fixed such
that a given volume fraction f = 0.2 is met, according

to R1 =
(√

πR2
0/f

)
/2. For these parameters, the sur-

face effects indicator has the value β = 0.4. Symmetry
conditions are applied on the boundary r = 0 and exact
displacement solution is imposed on the external bound-
ary of the domain. Convergence results in energy norm
error for κs = 0, κs > 0, and κs < 0 using the same sur-
face parameters as in previous examples are presented in
figure 10. The indicated rate of convergence is the one of
a linear polynomial fit on the last four point of the curve.
Here again, We note that the XFEM solution is conver-
gent, though not at an optimal rate. When no surface
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Fig. 10 Convergence analysis for the spherical inclusion
problem with stiff coherent imperfect interface.

effects occur (κs = 0), the computed solution converges
to the exact one at the expected rate of convergence.

For spherical void with a coherent surface, the effec-
tive modulus can be evaluated according to [12]:

κeff =
3κI

(
3κM + 4fµM

)
3 [3 (1− f)κI + 3fκM + 2µM (2 + κSr − fκSr )]

+
2µM

[
4fµMκSr + 3κM

(
2− 2f + κSr

)]
3 [3 (1− f)κI + 3fκM + 2µM (2 + κSr − fκSr )]

, (55)

with κSr = κS/
(
R0µ

M
)
, the superscripts M and I de-

noting the matrix and inhomogeneity, respectively.
In figure 11 we compare the normalized effective ref-

erence bulk modulus κeff/κM for f = 0.5 for different
radii of the spherical void. In figure 12 we compare the
normalized effective reference bulk modulus for a fixed
radius R0 = 1 nm while varying the volume fraction
f . Excellent agreement with the reference solution is no-
ticed and here again the surface effects are clearly shown.

5.4 Random nanostructure

Next we explore the effective properties of aluminium
containing randomly distributed nanopores with constant
radii, in order to investigate its size-effects on effective
properties. For this purpose, we use 30 circular voids
randomly distributed, by choosing the size of the square
domain such that the volume fraction is f = 0.3, and we
vary the radius of the pores. A uniform mesh of 80× 80
nodes is used, and the level-set function was defined ac-
cording to

ϕ(x) = min
xi
c∈Ωi

c

{
∥x− xc

i∥ − ric
}
, i = 1, 2, ..., nc , (56)

where Ωi
c is the domain of the ith void, nc is the number

of circular voids, and xi
c and r

i
c are the center and radius

of the ith void, respectively.
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Fig. 11 Normalized effective bulk modulus for different
spherical void radius.
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Fig. 12 Normalized effective bulk modulus for different void
volume fractions, R0 = 1 nm.

Different distributions are shown in figure 13. Note
that avoiding the construction of a conforming mesh for
each generation of a random microstructure by means of
the level set technique greatly simplifies the analysis.

For each radius of nanopore, we generate random mi-
crostructures and compute the homogenized bulk mod-
ulus until we have reached statistical convergence on the
mean value of the effective bulk modulus. Examples of
statistical convergence are shown in figure 14. The re-
sults for the effective bulk modulus are presented in fig-
ure 15. The size effects with different nanovoid radii can
be clearly observed.

5.5 Shape of nano inclusion

In this example, we investigate the influence of the shapes
of nanovoid on the effective properties and their possible
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Fig. 13 Level set function for the different randomly dis-
tributed nanopores.
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Fig. 14 Statistical convergence of the effective bulk modulus
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influence on the size effects. For this purpose, different
shapes are generated, as depicted in figure 16.

With the proposed procedure, it is easy to introduce
an imperfect interface for an arbitrary geometry, without
requiring any surface elements. In figure 17, we present
the effective bulk moduli associated with the different
shapes, for different sizes. For each shape, we have chosen
the size parameters such as its volume is equal to the one
of the circular void. For polygonal shapes, the level-set
function was constructed using Eq. (56), and replacing
rc by the distance between the center xci and xI defined
as the intersection between {xci − x} and the boundary
of the polygonal shape. For the non-convex shapes, we
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Fig. 15 Size effects in bulk modulus for randomly dis-
tributed nanopores.

Fig. 16 Zero level-set function of different shapes of nanos-
tructures with same volume fractions f = 0.2.

have used the following function describing their radius
in cylindrical coordinates:

R(θ) = R0 +Asin(Bθ) , (57)

where R0 is the reference radius, B denotes the number
of oscillations and A is the amplitude of oscillations. In
the example, we have chosen B = 4 and B = 8, and
A = 0.4R0.

The associated volume area can be derived by:

V =
4A2Bπ + 8AR0 + 8BπR2

0 − 8AR0cos(2Bπ)

8B

+
A2sin(4Bπ)

8B
, (58)
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Fig. 17 Size and shape dependent properties of the nanos-
tructures.

which allows to chose the size of the square box in order
to meet the desired volume fraction, which here is chosen
to be f = 0.2.

Results for the normalized effective bulk modulus are
reported in figure 17. We notice that size effects oc-
cur independently of the shape of the nanostructures.
As expected, we note that the shape greatly influences
the effective bulk modulus. The circular shape offers the
best stiffness against compression, while the non convex
shapes do not resist well to compression.

6 Conclusion

In this work, a numerical procedure has been proposed
to compute the overall elastic properties of nanomate-
rials and nanostructures with surface/interface effects.
For this purpose, the coherent interface model has been
adopted, leading to an additional stiffness matrix. Since
the ratio between the surface and bulk strain energies
is not preserved when the volume fraction of the nano-
inhomogeneities in a material remains fixed but their
sizes or/and shapes change, the effective properties of the
material depend on the sizes and the shapes of the nano-
inhomogeneities. To handle efficiently complex and arbi-
trary nano-inhomogeneities only through regular meshes,
we have developed a level-set approach in tandem with
an extended finite element method. This approach al-
lows the generation of complex microstructures in an
automatic manner without the burden of meshing, and
hence constitutes an efficient numerical tool for ana-
lyzing highly inhomogeneous materials. The proposed
XFEM/level set approach has been validated in the 2D
context by applying it to different problems with known
exact analytical solutions. The proposed approach has
also been employed to determine the effective elastic
moduli of materials with randomly distributed nanopores.
As expected, the effective elastic moduli are not only

size-dependent but also shape-dependent with respect to
nanopores.

The implementation and application of the proposed
XFEM/level set approach in the three-dimensional con-
text are in progress. Note that this approach can also be
extended to other mechanical and physical phenomena
involving imperfect interfaces.
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