
HAL Id: hal-00692223
https://hal.science/hal-00692223

Submitted on 7 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multiple level-set approach to prevent numerical
artefacts in complex microstructures with nearby

inclusions within XFEM
A. B. Tran, Julien Yvonnet, Qi-Chang He, C. Toulemonde, J. Sanahuja

To cite this version:
A. B. Tran, Julien Yvonnet, Qi-Chang He, C. Toulemonde, J. Sanahuja. A multiple level-set ap-
proach to prevent numerical artefacts in complex microstructures with nearby inclusions within
XFEM. International Journal for Numerical Methods in Engineering, 2011, 85 (11), pp.1436-1459.
�10.1002/nme.3025�. �hal-00692223�

https://hal.science/hal-00692223
https://hal.archives-ouvertes.fr


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2000; 00:1–6 Prepared using nmeauth.cls [Version: 2002/09/18 v2.02]

A multiple level-set approach to prevent numerical artefacts in
complex microstructures with nearby inclusions within XFEM

A.B. Tran1, J. Yvonnet1,∗†, Q-C. He1, C. Toulemonde2, J. Sanahuja2
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SUMMARY

In this paper, we highlight that, when the eXtended Finite Element Method (XFEM) is employed
to model a microstructure in which inclusions are involved and the distance between two inclusions is
small enough to be comparable with the mesh size, three numerical artefacts are induced, significantly
affecting the convergence and accuracy of the numerical solution to the problem with such a
microstructure. These artefacts are: a) an artificial percolation of nearby inclusions; b) an artificial
distortion of phase domains; c) an enrichment deficiency. We propose to improve the XFEM/Level-
set method so as to avoid these artefacts. The new technique leading to this improvement uses one
level-set function for each inclusion and adds additional enrichment in an element whose support is
cut by several interfaces. A local description of the multiple level-sets is provided to avoid the storage
of all level-set functions. A simple integration rule is employed for numerical quadrature in elements
cut by several interfaces. We show that the artefacts mentioned hereinbefore are circumvented in this
framework. The performances of the method are demonstrated through benchmarks and examples
applied to the homogenization of concrete materials in 2D and 3D cases.
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1. INTRODUCTION

Many materials such as concrete are strongly heterogeneous and contain high volume fractions
of inclusions with sizes spread over several spatial scales. Regarding the intensive use of these
materials, predicting and optimizing their effective properties from a microscopic description
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represents a considerable industrial interest. In view of the microscopic morphological
complexity, analytical homogenization approaches are limited, even in the linear case, to
bounds of the effective properties. Numerical homogenization techniques allow overcoming
these issues, but efficient strategies must be developed to avoid important computational
costs, especially in the case of complex three-dimensional models. Many numerical approaches
have been proposed over the last decades, mainly based on the finite element method. A
straightforward choice is the explicit meshing of all heterogeneities (see e.g. [2, 1, 12]).
It requires sophisticated three dimensional mesh softwares, and large computational times
related to the meshing operation. Another option is to project the phase properties on a
non-conforming mesh, without explicitly representing the interfaces (see e.g. [28, 24]). While
avoiding the burden of meshing the heterogeneities surfaces, this method requires fine volume
meshes to provide a reasonable description of the local fields in the vicinity of the interfaces.
More recently, the use of the Extended Finite Element Method (XFEM) [4, 16, 21] has been
proposed for modeling and computing the overall properties of complex microstructures [17].
A major advantage is to describe the interfaces implicitly through a level-set function, with an
enriched approximation of the finite element scheme to accurately model the different jumps
at the interfaces. In this context, it is also possible to model moving interfaces in fixed meshes
[15], cracks which do not coincide with the mesh [22, 6, 13], or surface and imperfect interfaces
effects in composite materials [25, 26, 27]. Recent advances within XFEM have been devoted
to prescribe constraints on the interface [11, 18, 19, 3] or to the treatment of issues related to
blending elements [9, 10].

In complex materials with high volume fraction of inclusions, such as concrete, the explicit
meshing of all heterogeneities is a challenging task, due to a large range of characteristic
dimensions and closeness of heterogeneities. However, the use of the XFEM/level-set method
with a single level-set function to construct the enrichment function induces several difficulties
for this class of problems. In this paper, we highlight different numerical artefacts induced by
the presence of nearby inclusions within XFEM. It yields a poor description of the local fields
as well as a slow convergence of the effective properties of the material with respect to the
mesh size. To overcome these limitations, we propose a modified XFEM/Level-set technique
which removes the aforementioned issues: each inclusion is associated with a single level-set
function and additional degrees of freedom are introduced for nodes whose support is cut by
more than one interface. The layout of this paper is as follows.

First, we recall the basic principles of the XFEM/level-set method in section 2. We then
describe the related different artefacts in section 3 in the case of microstructures involving
nearby inclusions. Section 4 presents the details of the proposed approach, coined as Multiple
Level-set eXtended Finite Element Method (µ−XFEM) which allows removing the different
numerical artefacts, as shown in section 5. Finally, different numerical examples are presented
in section 6 to demonstrate the advantage of this approach over the single level-set XFEM
approach in such situation. Benchmarks to applications involving three-dimensional models of
concrete representative volume element are presented in the small strains elastostatics context.

2. BASICS OF XFEM/LEVEL-SET

Modeling a domain containing interfaces with the finite Element Method (FEM) requires
a mesh conforming with all internal surfaces. This operation may be highly challenging for
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Figure 1. Interface Γ in a non-conforming mesh. Nodes ni whose support ωi is cut by the interfaces are
enriched (denoted by a circle). Elements with all enriched nodes are indicated in clear grey. Partially

enriched elements (blending elements) are filled with dark grey.

complex three-dimensional geometries. Examples of such problems can be found in crack
propagation, phase evolution or microstructure modeling. In contrast, the XFEM aims to avoid
the mesh generation issue by not requiring the finite element mesh to conform to interfaces. The
essence of the method is to enrich the finite element approximation with additional functions
to model interfaces or singularities independently of the background mesh. The idea follows
the Partition of Unity framework [14] by multiplying the enrichment functions that possess
desirable approximation by the nodal shape functions.

Consider a domain Ω ⊂ RD (D being the dimension of the domain) which is partitioned
into finite elements, and let S ⊂ N∗ (N∗) being the set of positive natural numbers) be a set of
N nodes indices in the mesh. Let ωi = supp(ni) being the support of the nodal shape function
Ni, which consists of the union of all elements connected to the node ni (see figure 1 b))

The XFEM displacement approximation can be expressed by:

uh (x) =
∑
i∈S

Ni(x)ui +
∑
j∈Se

N∗
j (x)ψ(x)aj . (1)

In the above equation, ui and aj are nodal unknowns, Ni(x) and N
∗
j (x) are finite element

shape functions, not necessarily the same. The nodal set Se is defined as

Se = {j|j ∈ S, ωj ∩ Γ ̸= ∅} , (2)

where Γ is an interface, that does not necessarily coincide with the mesh. The function ψ(x)
is an enrichment function with the desirable discontinuous properties.

If the enrichment function ψ(x) does not vanish on the boundary of Ω̃ defined as the union of
all enriched elements, some of them (called blending elements) are partially enriched (see figure
1) and the function ψ(x) cannot be accurately represented. To avoid this issue, two options are
possible. First, we can construct an enrichment function ψ(x) that does vanish on the boundary
of Ω̃ [17]. Another possible choice is to use a corrected approximation [9], [10] where a ramp
function is constructed in blending elements. In the present paper we will only consider weak
discontinuities that can be conveniently reproduced by Eq. (1) with the enrichment function
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Figure 2. A domain including an interface Γ. The related level-set function is negative inside Γ and
positve elsewhere.

proposed in [17]. Further, we will only consider the case N∗
j = Nj . An elegant methodology to

construct the enrichment function is the level-set method, briefly described as follows.
The level-set method [20] is a numerical technique for tracking moving interfaces. It is based

on the idea of representing a level-set curve of a high-dimensional function ϕ(x, t). The concept
is closely related to a general method in differential geometry (see e.g. Do Carmo [7], Thorpe
[23]). In the case of static interfaces, the two ideas coincide. In this paper, we consider only
static interfaces.

An interface Γ(x) ⊂ RD can be formulated as the level-set curve of a function ϕ : RD → R
where

Γ(x) =
{
x ∈ RD|ϕ(x) = 0

}
. (3)

One important example of such function would be the signed distance function:

ϕ (x) = s(x)min
xΓ

∥x− xΓ∥ = s(x) ∥x− x0∥ , (4)

where s(x) = ±1, the sign being chosen arbitrarily negative in Ω(1) and positive in Ω(2) (see
figure 2). We define the unit vector n ≡ n(x0) normal to Γ at x0 and directed from Ω(1) to
Ω(2).

Then, s(x) in Eq. (4) can be expressed by:

s(x) = sign (n(x0) · (x− x0)) = n(x0) ·
(x− x0)

∥x− x0∥
. (5)

In the case of several interfaces Γk with k = 1, 2, ..., Nint we can define for each associated
region Ω(1)k such as Ω(1) =

∪
k{Ω(1)k} a function

ϕk (x) = sk(x)min
xk
Γ

∥∥x− xk
Γ

∥∥ = sk(x)
∥∥x− xk

0

∥∥ , (6)

where
sk(x) = sign

(
n(xk

0) ·
(
x− xk

0

))
. (7)

Then the level-set function is finally given by

ϕ(x) = min
k=1,2,...,Nint

ϕk(x). (8)

A simple example that will be considered in this work is the case of several spherical
inclusions in 3D or circular inclusions in 2D. In that case, choosing Ω(1)k as the domain
contained within each sphere k, Eq. (8) particularizes to

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



XFEM WITH MULTIPLE LEVET-SET 5

b) d)

a) c)

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 3. a) Level-set function defining a circular interface; b) mesh and approximated interface
associated with the level-set function; c) level-set function defining four circular interfaces; d) mesh

and approximated interface associated with the level-set function.

ϕ (x) = min
k=1,2,...,nc

{∥∥x− xk
c

∥∥− rk
}
, (9)

where nc is number of spherical inclusions, xk
c is the center of inclusion k and rk is the radius

of inclusion k. An example of level-set function for one and four inclusions is provided in figure
3. An extension of this definition to general shapes, from ellipsoid to parallelepipeds can be
found for example in Yvonnet et al. [26].

Sukumar et al. [21] were the first ones to combine the XFEM with a level-set method to
construct the enrichment function related to interfaces. Two types of interfaces are generally
considered: a) interfaces implying weak discontinuities of the field, i.e. continuous field
approximation and discontinuous normal derivatives across Γ and b) strong discontinuities
related to a field discontinuous approximation across Γ. In this work we will only consider the
first case. Then, as mentioned above, ψ(x) can be chosen in the form proposed by Moës et al.
[17] and which does not require a special treatment for blending elements:

ψ (x) =
∑
i

|ϕi|Ni (x)−

∣∣∣∣∣∑
i

ϕiNi (x)

∣∣∣∣∣ . (10)

To carry out numerical integration, elements cut by the interfaces must be subdivided [21].
If a linear approximation is used for the zero level-set approximation, the interface will result
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Figure 4. a) One element containing two interfaces and level-set function related to interfaces; b)
theoretical interfaces of two nearby inclusions and background mesh. The ”+” and ”-” indicate the

sign of the level-set nodal values; c) Linear approximation of the zero-level-set.

in piece-wise linear geometrical elements (segments in 2D, triangles in 3D). Let ϕi and ϕj
denoting nodal level-set values at two vertices xi and xj of an element. An element edge is cut
by the zero level-set if ϕiϕj < 0. The resulting intersection point xp is then found by

xp = xi + ξ(xj − xi), ξ = − ϕi
ϕj − ϕi

. (11)

In the following, we call ”XFEM” the above approximation scheme or any other modified
enriched approximation using a single level-set to construct the enrichment function. An
alternative is proposed in the following, employing several level-set functions.

3. NUMERICAL ARTEFACTS

In this section, we show that several numerical artefacts can be produced by XFEM with a
single level-set related to the enrichment function to describe a microstructure in which the
distance between two inclusions is comparable with the typical size of the finite elements used.

3.1. Artificial percolation

The first artefact concerns the artificial percolation of two inclusions (or inhomogeneities)
which are close to each other. Precisely, whenever the surfaces of at least two inclusions in a
microstructure simultaneously cut one element, a bridge is created between the two inclusions
(see figure 4 b) and c)). This is because the nodal values of the level-set function do not change
from an inclusion to another, if a single element is cut by at least two interfaces. To explain
this point, let us consider a one-dimensional (1D) element containing two interfaces (see figure
4 a)) and let us use a single level-set function ϕ which is positive when evaluated at a point
within the central domain limited by the interfaces and negative when evaluated at a point
outside the central domain. Since the product of the nodal values ϕA and ϕB of ϕ at nodes
A and B is such that ϕAϕB > 0, the presence of the interfaces inside the element cannot be
detected.

We observe that the artificial percolation of inclusions in a microstructure occurs when
the mesh size is of the order of the distance between inclusions. As will be illustrated in the
numerical examples, this artefact can significantly affect the degree of accuracy with which the

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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XFEM WITH MULTIPLE LEVET-SET 7

effective properties of heterogeneous materials with inclusions are computed, especially when
the property contrast of constituent phases is high.

3.2. Artificial interface distortion

When the support of a node is cut by at least two interfaces (see figure 5), the linear
interpolation of a single level-set function causes an artificial distortion of the domains
delimited by the interfaces. To illustrate this point, we consider a 1D example described in
figure 5 a). A region is discretized by 6 elements defined by the nodal coordinates X1, X2, ...,
X7. We are interested in two inclusions of radius r, whose centers XC1 and XC2 are such that
X2 < XC1 < X3 and X5 < XC2 < X6.

Using (9), the nodal values of the level-set function ϕ are given by

ϕ(xi) = ϕ1 = min( |x1 − xC1 | − r, |x1 − xC2 | − r ) = xC1 − x1 − r ,
ϕ(x2) = ϕ2 = min( |x2 − xC1 | − r, |x2 − xC2 | − r ) = xC1 − x2 − r ,
ϕ(x3) = ϕ3 = min( |x3 − xC1 | − r, |x3 − xC2 | − r ) = x3 − xC1 − r ,
ϕ(x4) = ϕ4 = min( |x4 − xC1 | − r, |x4 − xC2 | − r ) = xC2 − x4 − r ,
ϕ(x5) = ϕ5 = min( |x5 − xC1 | − r, |x5 − xC2 | − r ) = xC2 − x5 − r ,
ϕ(x6) = ϕ6 = min( |x6 − xC1 | − r, |x6 − xC2 | − r ) = x6 − xC2 − r ,
ϕ(x7) = ϕ7 = min( |x7 − xC1 | − r, |x7 − xC2 | − r ) = x7 − xC2 − r.

(12)

The theoretical interfaces positions determined by ϕ(x) = 0 lie at xΓ1 = xC1−r, xΓ2 = xC1+r,
xΓ3 = xC2 − r and xΓ4 = xC2 + r.

Next, let us compute the linearly approximated position of the interface Γ1 with the aid of
the relations (11) and (12):

x̃Γ1 = x1 + ξ(x2 − x1) with ξ = − ϕ1

ϕ2 − ϕ1
. (13)

Substituting the expressions of ϕ1 and ϕ2 into (13) yields

x̃Γ1 = xC1 − r ≡ xΓ1 .

So, the approximated location of Γ1 turns out to be exact. Similarly, we can show that the
linear approximations of the positions of Γ3 and Γ4 are also exact. In contrast, we have

x̃Γ2 = x3 −
x3 − xC1 − r

xC2 + xC1 − x3 − x4
(x3 − x4) ̸= xΓ2 .

It is worth noting that even in this 1-D case where the interfaces positions would be expected
to be exactly reproduced, some interfaces suffer a position shift. This phenomenon is illustrated
in two dimensions in figure 5 b). For a complex microstructure with a high volume fraction
of inclusions, when the element size is not sufficiently small in comparison with the distance
between two inclusions, the resulting interface position shift artefact may induce a significant
error in calculating the inclusion volume fraction, which constitutes an additional source of
error in numerically evaluating effective properties.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 5. a) Level-set function of two nearby 1D-inclusions, associated with negative values of ϕ(x).
Nodes of 1D elements are indicated by circles; b) Theoretical (red solid lines) interfaces of several
circular inclusions and linear approximation (dotted lines) using a single level-set. Inclusions are
separated by one row of elements; c) Theoretical (red solid lines) interfaces of several circular inclusions
and linear approximation (dotted lines) using a single level-set. Artificial distortion of interface

approximation when two connected elements are each cut by one interface.

3.3. Enrichment deficiency

The aforementioned two artefacts being related to the level-set method, we now show an
artefact due to the enriched approximation scheme. Indeed, when the support of an element is
cut by more than one interface, the enriched approximation in XFEM using a single additional
d.o.f. for each spatial field component is not rich enough to approximate a piece-wise linear field
in the elements connected to the node. To show this, we consider a one-dimensional example
as illustrated in figure 6. A bar is discretized by two 1D linear elements. The material forming
the bar is piece-wise homogeneous, and the interfaces between the phases are located at points
M and N . A level-set function ϕ(x) is defined such as ϕ(x) > 0 for x in phase 1, ϕ(x) < 0

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



XFEM WITH MULTIPLE LEVET-SET 9

Interface 2Interface 1

u  ,a1 1 u  ,a2 2 u  ,a3 3

f(x)

A B C

a l-a b l-b

M N

b)

δ

a)

l l

Figure 6. a) Problem of piece-wise homogeneous bar, b) Level-set function and additional d.o.f. of two
1D linear elements cut by two interfaces within XFEM.

for x in phase 2 and ϕ(x) = 0 for x at an interface. In order to avoid the aforementioned two
artefacts, we construct an ad-hoc level-set function defined by

ϕ1 = − ca

l − a
, ϕ2 = c, ϕ3 = −c(l − b)

b
. (14)

Above, a and b are two lengths strictly smaller than the length l of an element and c > 0 is a
constant.

Let us define the coordinates of points A, M , B, N and C of the bar by xA, xM , xB,
xN and xC . Small strains are assumed, and phases 1 et 2 are taken to be linearly elastic
and characterized by Young’s moduli E1 and E2, respectively. The bar is clamped at xA and
subjected to a displacement δ at xC .

Applying the approximation (1) to the elements {xA − xB} and {xB − xC}, we obtain

uh (x) = u1N1 (x) + u2N2 (x) + [a1N1 (x) + a2N2 (x)]ψ (x) , x ∈ [xA, xB ] , (15)

uh (x) = u2N2 (x) + u3N3 (x) + [a2N2 (x) + a3N3 (x)]ψ (x) , x ∈ [xB , xC ] , (16)

where Ni(x) are 1D linear finite element shape functions. Concerning the boundary conditions,
we have u1 = 0 and u3 = δ. We first compute the energies for the segments {xA − xM},
{xM − xB}, {xB − xN} and {xN − xC} as

Wxi−xj =

∫ xj

xi

1

2
Ei

(
duh(x)

dx

)2

dx. (17)

We then minimize the total energy with respect to the unkowns u2, a1, a2 and a3. Choosing
the numerical values a = 0.5 m, b = 0.5 m and l = 1 m, it follows that

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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a1 = −δ 3(E1 − E2)

8c (E1 + E2)
, (18)

a2 = 0 , (19)

a3 = δ
3(E1 − E2)

8c (E1 + E2)
, (20)

u2 = δ/2. (21)

Introducing these expressions into the finite element formulae for the displacement and energy
yields the expressions

uAB (x) =
−δ ( −7E1x− E2x+ 3E1x |2x− 1|+ 3E1)

8 (E1 + E2)

+
−δ ( −3E1 |2x− 1| − 3E2x |2x− 1| − 3E2 + 3E2 |2x− 1|)

8 (E1 + E2)
, (22)

uBC (x) =
−δ ( −7E1x− E2x+ 3E1x |2x− 3|+ 3E1)

8 (E1 + E2)

+
−δ ( −3E1 |2x− 3| − 3E2x |2x− 3| − 3E2 + 3E2 |2x− 3|)

8 (E1 + E2)
, (23)

Wtotal =δ
2E

2
1 + 14E1E2 + E2

2

32(E1 + E2)
, (24)

where the displacement expressions uAB and uBC are valid for x ∈ [xA, xB] and x ∈ [xB, xC ],
respectively, and Wtotal stands for the approximated total energy of the bar.

It is easy to analytically obtain the exact energy of the bar:

W exact
total = δ2

E1E2

2(E1 + E2)
. (25)

From equations (24) and (25), we can calculate the relative energy error as

∆WXFEM =
W exact

total −Wtotal

W exact
total

=
(E1 − E2)

2

16E2E1
.

The displacement and strain distributions are plotted for the numerical values δ = 0.05 m,
E1 = 10 MPa and E2 = 100 MPa in figure 7. It is seen that the Level-set/XFEM approximation
cannot reproduce exactly the piece-wise linear exact solution, so that an enrichment deficiency
takes place. For a complex microstructure with a high volume fraction of inclusions, when the
mesh size is not small enough compared with the distance between inclusions, the enrichment
deficiency just shown constitutes a source of error in addition to the two previous ones.

4. MULTIPLE LEVEL-SETS/XFEM METHOD (µ−XFEM)

4.1. µ-XFEM approach

To avoid the aforementioned actefacts, we now propose an improved version of the
XFEM/level-set method, called ”multiple Level-Set XFEM” (µ-XFEM). Precisely, in the

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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enriched approximation, each interface is endowed with an individual enrichment, so that
the displacement approximation takes the form

uh (x) =
∑
i∈S

Ni (x)ui +

Nint∑
k

∑
j∈Sek

Nj (x)ψ
k
(
ϕk(x)

)
akj . (26)

In the above equation, akj are nodal unknowns, the nodal set Sek is defined as

Sek =
{
j|j ∈ S, ωj ∩ Γk ̸= 0

}
, (27)

and ψk(ϕk (x)) is an enrichment function (Eq. (10)) constructed via the level-set function ϕk

of inclusion k with boundary Γk. An illustration in the case of three interfaces cutting a linear
triangular element is provided in figure 8 a). The general level-set function ϕk takes the form

Γk =
{
x ∈ Rd | ϕk(x) = 0

}
. (28)

We can opt to choose the signed distance function for ϕk(x), which is given by Eq. (4). For a
spherical inclusion k, ϕk(x) is expressed by

ϕk (x) =
{∥∥x− xk

c

∥∥− rk
}
. (29)

The enriched approximation (26) allows us to treat several discontinuities present in a single
element, as depicted schematically in figure 8 b). It also removes all the numerical artefacts for
nearby inclusions, as shown in the following. However, this technique induces several difficulties:
a) the storage of the level-set functions in the case of a high number of inclusions; b) the
numerical integration over an element cut by more than one interface; c) the assembly of the
stiffness matrix. We propose simple solutions to avoid these difficulties in the next section.
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a) b)

u(x)

indices of vertex of the thiangle
indices of interfaces

Figure 8. a) Additional d.o.f. for a 2D element cut by three interfaces; ui and vi denote classical FEM
d.o.f., while ak

i and bki denote enrichment d.o.f. related to interfaces k; b) approximated discontinuous
displacement field in an element cut by three interface

4.2. Level-sets storage

When the domain contains a large number of inclusions, storing each level-set function ϕk

(defined at each node of the domain) requires very large memory capacities. It can be simplified
by storing the values of level-set function ϕk of interface Γk only at nodes whose support is
cut by Γk. In this situation, a sparse storage strategy may be used for reducing the memory
requiring.

An example of practical storage strategy is to define two sparse matrices LSnodes and
LSelements , where LSnodes(j, k) = ϕk(xj) if the support of node xj is cut by the interface
Γk and the line i of LSelements contains the indices of the interfaces cut by the element i.

4.3. Assembly of the stiffness matrix

Within XFEM, each node whose support is cut by an interface is associated with D × 2
d.o.f. However, in µ-XFEM, each node whose support is cut by Ninter interfaces is associated
with D × (1 + Ninter) d.o.f.. When connected elements do not contain the same number of
cutting interfaces, the assembly operation is not trivial. We propose a technique to overcome
this difficulty. For the sake of simplicity, we restrict the discussion to the 2D case (D = 2).
Let us consider a node i with two displacement components ui, vi and ni additional d.o.f.
a1i , a

2
i , .., a

Dni
i . The number ni is the number of non-zero indices in the i− th line of LVinter

array defined in section 4.2. One choice for storing the degrees of freedom in the global vector
of unknowns d in (41) is as follows. indices of nodal displacements are 2i − 1, 2i, while the
additional d.o.f. indices are A(i) + 1 to A(i) +Dni, where the vector A is defined as

A (i) = D

N +
i−1∑
j=1

L (LV inter (j))

 , (30)

with N being the total number of nodes in the mesh and L(.) is an operator defining the
number of non-zero values in vector (.).
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W
*

W
i

Wi

Figure 9. A tetrahedral element cut by three interfaces and partitioning of the element domain into
subdomains Ωi and Ω∗.

4.4. Numerical integration

In the XFEM/level-set method, if an element is cut by an interface, the element must be
decomposed into subdomains for numerical integration purpose. In the case of linear elements
cut by one interface, the different geometrical cases are restricted [5]. However, when an element
is cut by more than one interface, domain with complex polyhedral shapes can occur, leading to
non trivial geometrical partitioning. This issue is illustrated in figure 9. To avoid this difficulty,
we propose a simple strategy. The idea is to decompose the integration such as treating only
simple intersection problems: if we consider the case in figure 9, integration is easily carried
out in subdomains Ωi using a Gauss quadrature rule. The difficulty is associated with the
polyhedral domain Ω∗ = Ω\ (

∪
i Ωi), which shape depends on the number of interfaces cutting

the element and the number of intersection points between each vertex of the element.

We aim here to evaluate the integration over tetrahedral domain Ω of function f : Ω ⊂
R3 → R given as follows:

f (x) =

{
f∗ (x) if x ∈ Ω∗

fi (x) if x ∈ Ωi
. (31)

where the function fi (x) and f
∗ (x) are associated with the inclusions and matrix materials,

respectively. We can decompose this integration into∫
Ω

f (x)dΩ =
∑
i

∫
Ωi

fi (x)dΩ+

∫
Ω∗

f∗ (x)dΩ. (32)

To overcome numerical difficulties related to the integration of f∗ (x) over the domain Ω∗, we
use a simple superposition technique as follows:

∫
Ω∗

f∗(x) dΩ =

∫
Ω

f∗(x) dΩ−
∑
i

∫
Ωi

f∗(x) dΩ

 , (33)

where f∗ : Ω ⊂ Rd → R is extended over the domain Ω.

By introducing the above formula into Eq. (32), the integration of f(x) over the tetrahedral
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a) b) c)

Wi

W i

W i

Figure 10. Three possibilities for subdivision of subdomains Ωi into tetrahedra.

domain is expressed as:∫
Ω

f (x) dΩ =

∫
Ω

f∗(x) dΩ+
∑
i

∫
Ωi

(fi (x)− f∗(x)) dΩ

 . (34)

Both right-hand terms in Eq. (34) can be easily calculated, as Ωi are composed of only a
few tetrahedra. Then it only requires: (i) constructing intersections between the element Ωe

and the linear approximations of level-set functions ϕk; (ii) partitioning the domains Ωi into
tetrahedra. The intersection points xp are given by:

xp = xi + ξ(xj − xi), ξ = − ϕki
ϕkj − ϕki

, (35)

where xj are two edge points of an element, ϕki and ϕkj are values of the level-set function of
interface Γk at the points xi, and xj . We note that here an edge is cut by the interface Γk if and
only if ϕki ϕ

k
j < 0. In this framework, each subdomain can easily be associated with different

material properties according to the sign of ϕki (x). Once the domains Ωi are constructed, the
subdivision of Ωi into tetrahedra is easily obtained as explained in [5] by looping over the
interfaces cutting the tetrahedral domain Ω. The possibilities for the subdivision is illustrated
in the figure 10. The black tetrahedra belong to matrix and the gray ones to the inclusions.
The subdivision must be done in the gray subdomain. The figures 10 a) and b) correspond to
the case where the interface cuts three edges of element and the figure 10 c) shows the interface
cutting four edges of the element.

4.5. Governing equations

In this section, we present the governing equations of linear elastostatics, together with the
weak form and associated discrete system for µ-XFEM.

4.5.1. Strong form We consider a body which is described by an open bounded domain
Ω ⊂ Rd, with boundary ∂Ω. The latter is composed of two disjoint complementary parts ∂Ωu

and ∂Ωt, where the Dirichlet (displacement) and Neumann (tractions) boundary conditions
are prescribed, respectively. The field equations of elastostatics are:
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∇ · σ + b = 0 in Ω, (36)

σ = C : ε, (37)

where ε = (∇u+∇uT )/2 and C is the fourth-order tensor of elastic moduli. The essential and
natural boundary conditions are

u = ū on ∂Ωu, (38)

σn = t̄ on ∂Ωt, (39)

where n is the unit outward normal to ∂Ω.

4.5.2. Weak form and discrete system The weak form associated with Eqs. (36)-(39) is given
by finding u ∈ D = {u|u = ū on ∂Ωu, u∈ H1(Ω)} such that∫

Ω

σ : ε(δu)dΩ =

∫
∂Ωt

t̄ · δudΓ +

∫
Ω

δu · bdΩ ∀δu ∈ H1
0 (Ω), (40)

where H1
0 (Ω) = {δu|δu ∈ H1(Ω), δu = 0 on ∂Ωu}

By substituting the displacement field defined in (26) into the weak form (40) we obtain the
discrete system of linear ordinary equations:

Kd = f , d =
{

u a
}T , (41)

where d and a are nodal unknowns and K and f are the global stiffness matrix and external
force vector, respectively. More precisely, the matrix K and vector f are defined by

K =

∫
Ω

BTCBdΩ, f =

∫
Γt

NTt̄dΓ +

∫
Ω

NTbdΩ, (42)

where B and N are the matrices of shape function derivatives and shape functions associated
with the approximation scheme (26), and C is the matrix corresponding to the elasticity tensor
C.

5. TREATMENT OF NUMERICAL ARTEFACTS WITHIN µ-XFEM

In this section, we show how the different numerical artefacts pointed out above can be avoided
using µ−XFEM .

5.1. Artificial percolation

In µ-XFEM, each inclusion is associated with a single level-set function, as shown in figure 11.
Then the percolation artefact no longer occurs. To illustrate this, let us consider the simple
one-dimensional example depicted in figure 12 a). The interface Γ1 is related to the level-set
function ϕ1(x) while a second level-set function ϕ2(x) is used to described Γ2. Unlike the case
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Figure 11. Description of four interfaces within µ-XFEM: each inclusion is associated with a single
level-set function.
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Figure 12. A single element cut by two interfaces within µ-XFEM; each inclusion is associated with
one level-set function; b) theoretical interfaces of two nearby inclusions and background mesh. The
”+(k)” and ”-(k)” indicate the sign of the ϕk level-set nodal values; c) Linear approximation of the

zero-level-sets.

when a single level-set was used in section 3.1, figure 4 b) and 4 c), both interfaces are detected
in a single element, and the percolation is removed.

A two-dimensional example is described in figures 12 b) and 12 c). The nodal signs values
of the level-set functions ϕ1(x) and ϕ2(x) related to the interfaces 1 and 2 are indicated. Using
(35), intersections between the mesh and the linear approximation of the level-set functions
are indicated by square dots. It can be observed that, in contrast to the case of using a single
level-set function (figure 4 c), there is no bridge between the inclusions.

5.2. Artificial interface distortion

The artefact related to interface detection using a single level-set function is trivially removed
when employing several level-set functions. As an illustration, we consider the one-dimensional
example of figure 13: two connected elements each contain an interface. When appliying µ-
XFEM, the interfaces 1 and 2 are respectively deduced from the nodal values of the level-set
functions ϕ1(x) and ϕ2(x). Each interface detection is equivalent to the case of a single interface
using a level-set function, so no additional interface distortion is produced.
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Figure 13. Additional d.o.f. in two elements cut by two interfaces within µ-XFEM.

5.3. Enrichment deficiency

As new d.o.f. are introduced within the µ-XFEM, it is expected that the artefact highlighted
in section 3.3 will be removed. We consider the same problem studied in section 3.3 and show
that the exact solution is reproduced when applying µ-XFEM. The nodal values of level-set
functions ϕ1(x) and ϕ2(x) (see figure 13) defined in (29) are determined as follows:

ϕ11 = −a; ϕ12 = 1− a; ϕ22 = b; ϕ23 = b− 1. (43)

Applying the approximation (26) to the elements {xA − xB} and {xB − xC}, we obtain

uh (x) = u1N1 (x) + u2N2 (x) +
[
a11N1 (x) + a12N2 (x)

]
ψ1 (x) ∀x ∈ {xA, xB} , (44)

uh (x) = u2N2 (x) + u3N3 (x) +
[
a22N2 (x) + a23N3 (x)

]
ψ2 (x) ∀x ∈ {xB , xC} , (45)

where ψk(x) are the enrichment functions defined by

ψ1(x) =
∣∣ϕ11∣∣N1(x) +

∣∣ϕ12∣∣N2(x)−
∣∣ϕ11N1(x) + ϕ12N2(x)

∣∣ , (46)

ψ2(x) =
∣∣ϕ22∣∣N2(x) +

∣∣ϕ23∣∣N3(x)−
∣∣ϕ22N2(x) + ϕ23N3(x)

∣∣ . (47)

As in section 3.3, we apply the boundary conditions u1 = 0 and u3 = δ and minimize the total
energy with respect to the unknowns of the problem. Here, the free parameters are u2, a

1
1, a

1
2,

a22 and a23. Using a = 2/3 m, b = 2/3 m, l = 1 m, we obtain:

a1 = −1

2

(E1 − E2) δ

E1 + E2
, (48)

a12 = −1

2

(E1 − E2) δ

E1 + E2
, (49)

a22 =
1

2

(E1 − E2) δ

E1 + E2
, (50)

a23 =
1

2

(E1 − E2) δ

E1 + E2
, (51)

u2 =
1

3

(E1 + 2E2) δ

E1 + E2
. (52)

Introducing these values in the displacement fields and total energy expressions yields:
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Figure 14. Comparison between exact and µ-XFEM/level-set solutions for the 1D problem with two
interfaces: a) displacements and b) strains.

uµ−XFEM
AB (x) =

1

6

(3E1x+ 3E2x− 2E1 + E1 |3x− 2|+ 2E2 − E2 |3x− 2|) δ
E1 + E2

, (53)

uµ−XFEM
BC (x) = −1

6

( −3E1x− 3E2x− E1 + E1 |3x− 5|+ E2 − E2 |3x− 5|) δ
E1 + E2

, (54)

Wtotal = δ2
E1E2

2(E1 + E2)
. (55)

Using the expression of the exact total energy (25) we obtain the relative energy error

∆Wµ−XFEM =
W exact

total −Wtotal

W exact
total

= 0.

We show in figure 14 the displacement and strain along x, using the numerical parameters
δ = 0.05 m, E1 = 10 MPa and E2 = 100 MPa. The exact solutions are reached within
machining precision.

5.4. Remarks

(i) Note that the different artefacts hold only when a linear approximation is used for
the zero level-set approximation. Higher-order approximation scheme (e.g. quadratic
elements) may be used instead of the present method. However, the proposed technique
aims at keeping the simplicity of the linear method for numerical integration and interface
approximation.

(ii) When the distance between two inclusions is of the order of the mesh size, the µ-
XFEM yields exact solution for piece-wise linear functions, while XFEM induces errors.
When the mesh is fine enough, the numerical results given by both methods are
indistinguishable.
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Figure 15. Geometry of the problem and boundary conditions.

(iii) Approaches combining XFEM with mesh refinement have been proposed in [8]. It is
worth noting that in some cases when inclusions are close to each other, this kind of
technique might be useful to accurately describe the stress fields between two inclusions.
When microstructures are very complex as shown in the example of section 6.4.2, a
mesh refinement strategy would probably lead to a uniform refined mesh in the whole
domain. Nevertheless, for simpler cases the present method and mesh refinement are
fully compatible and could lead to an even more efficient XFEM strategy for describing
complex microstructures.

(iv) In the proposed approach, a different material can be assigned to each phase, which is
difficult using a single level-set function.

6. NUMERICAL EXAMPLES

6.1. Interphase patch test

In this first example, we propose a patch test where a thin interphase is located between two
phases. The geometry of the problem is depicted in figure 15. The aim of this benchmark is to
show that the proposed method allows reproducing a piece-wise linear solution in the presence
of nearby interfaces, while the XFEM/level-set fails in this case.

The square domain is clamped on one side and subjected to a homogeneous force distribution
q = qex on its opposite side. The exact solution of this problem reads

uex(x) =


q
E1
x 0 ≤ x ≤ a

qa
E1 + q

E2
(x− a) a ≤ x ≤ a+ h

qa
E1

+ qh
E2

+ q
E1

(x− a− h) a+ h ≤ x ≤ L

(56)

For the XFEM/Level-set method, the single level-set function ϕ(x) = min(ϕ1(x), ϕ2(x))
with ϕ1(x) = x − a and ϕ2(x) = a + h − x is used. For µ − XFEM , two level-set functions
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c) d)

Figure 16. a) Mesh with n = 6 (even). b) Mesh with n = 7 (odd). c) and d) unstructured meshes.

ϕ1(x) and ϕ2(x) (the same as defined for the single level-set) are respectively associated to
the two interfaces Γ1 and Γ2. The following numerical parameters are adopted: E1 = 1 MPa,
ν1 = 0, E2 = 100 MPa, ν2 = 0, q = 10 MPa/m, h = 0.05 m and a = 0.45 m. The indices 1
and 2 corresponding to the domains 1 and 2, respectively (see figure 15 a).

The RVE is meshed with linear triangles. We study two cases: (i) a regular mesh as illustrated
in figures 16 a) and 16 b); (ii) an unstructured mesh as shown in figures 16 c) and 16 d). We
compute the relative energy error norm defined by

e =

∥∥uex − uh
∥∥
E

∥uex∥E
=

(∫
Ω

(
εh − εex

)
: C :

(
εh − εex

)
dΩ

)1/2(∫
Ω
εex : C : εexdΩ

)1/2 (57)

for increasing element densities associated with a characteristic size h. For the regular mesh,
the results are depicted in figure 17. It can be noticed that using XFEM, an oscillating curve
is obtained until a single element is contained within the layer. As expected, the XFEM can
reproduce the solution roughly at the machine precision. The explanation for this oscillating
behaviour comes when we distinguish two cases of meshes: the case when a node is contained
within the layer (odd number of nodes in the x-direction) and the case with an even number
of nodes. The case of odd number of nodes corresponds to the artefact related to the lack
of d.o.f., as highlighted in section 3.3. We have plotted separately the convergence curves for
this case in figure 18 a). The case of an even number of nodes corresponds to the percolation
artefact described in section 3.1. The convergence curve for this case is presented in figure 18
b).

In contrast, the µ-XFEM can reproduce the solution exactly for any mesh. When the mesh
is fine enough both XFEM and µ-XFEM solutions coincide.

When an unstructured mesh is used, the different artefacts occur at the same time. We
study the convergence of the solution for this case in figure 19, the value h being defined by
h = 1√

N−1
with N being the number of nodes in the mesh. Here again, the XFEM cannot

reproduce the exact solution until a sufficient element density is reached to remove the different
artefacts. In contrast, the µ-XFEM can reproduce the solution at the machine precision for
any mesh.
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Figure 17. Convergence analysis for the interphase patch test using a regular mesh.
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Figure 18. Convergence analysis for the interphase patch test using a regular mesh: a) n odd; b n
even.

6.2. Two dimensional benchmark with nearby inclusions

We consider a square domain with 4 circular inclusions in a matrix, close to each other. The
geometry of the problem is depicted in figure 20. The objective here is to show that in a problem
involving nearby inclusions, µ-XFEM convergence is enhanced compared to XFEM. A mesh
of linear triangles is used, that does not coincide with the interfaces. With XFEM/level-set,
a single level-set function defined by (9) is employed. For µ-XFEM, each inclusion is defined
by a level-set function defined by (29). The materials forming the matrix and inclusions are
all assumed linear isotropic. The following numerical parameters are chosen: Em = 20 MPa,
νm = 0, Ei = 2000 MPa, νi = 0, the indices i andm being related to the inclusions and matrix,
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Figure 19. Convergence analysis for the interphase patch test using an unstructured mesh.

Figure 20. Domain with 4 nearby circular inclusions.

respectively. We compute the homogenized elastic tensor C̄ by prescribing linear displacement
conditions and using the classical homogenization procedure [12].

For this problem, an analytical solution is not available. We first study the convergence of
the values of the C̄1111 component, plotted in figure 21 a) with respect to the mesh size. A
reference solution is obtained by using a fine conforming mesh of triangular elements (24898

d.o.f.) which gives C̄ref
1111 = 34.7244 MPa. The relative error norm of C̄1111 defined by:

e =

∣∣∣C̄1111 − C̄ref
1111

∣∣∣
C̄ref

1111

(58)

is then analyzed as illustrated in the figure 21 b).

We can notice that the µ-XFEM solution converges rather quickly to the reference solution,
while the XFEM/level-set method leads to strongly oscillating and slower convergence rate.
Both curves coincide when the mesh is fine enough.
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Figure 21. a) Convergence of C̄1111 component and b) relative error norm of C̄1111 with respect to the
mesh size, comparison between XFEM and µ-XFEM.

6.3. 2D example with 100 inclusions

In this example, an RVE including 100 circular inclusions is considered and depicted in figure 22
a). The radii are randomly generated, with a uniform probability distribution between rmin =
19.76 mm and rmax = 59.26 mm. The minimum distance between inclusions is 5.897 mm. The
volume fraction of inclusions is f = 0.3703. Inclusions centers are randomly generated with a
non penetration algorithm. A mesh of linear triangles not matching the interfaces is used for
both XFEM and µ-XFEM computations.

The inclusion and matrix materials are assumed linearly elastic and isotropic with Em = 1
MPa, νm = 0.2, Ei = 100 MPa, νi = 0.2. We compute the effective elasticity tensor C̄ by
applying linear boundary conditions related to a constant strain field on the boundary. We
study the convergence of C̄1111 with respect to the mesh size in figure 23 a) for the both
methods. For a fair comparison, the values are plotted with respect to the same number of
degrees of freedom. The solution denoted by FEM is obtained via a standard FEM calculation
with a mesh conforming to the interfaces and 129540 d.o.f.. The relative error norm defined

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



24 A.B. TRAN, J. YVONNET, Q-C. HE, C. TOULEMONDE, J. SANAHUJA

1000

1
0

0
0

Figure 22. RVE with 100 circular inclusions.
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Figure 23. a) Convergence of C̄1111, b) the relative error norm of C̄1111 versus the total number of
d.o.f..

in (58) is also studied and depicted in figure 23 b).

We notice in figures 23 a) and b) that the µ-XFEM solution converges much faster to the
reference solution than XFEM. Though this method introduces a higher number of d.o.f. as
compared to XFEM, the gain in accuracy is significant for a given number of d.o.f..

6.4. Three-dimensional RVE

6.4.1. RVE containing 50 inclusions In this example, a three-dimensional RVE of idealized
concrete material is studied. Inclusions are taken to be spherical for the sake of simplicity.
A unit cubic domain contains 50 inclusions with random positions, as depicted in figure 24.
The radii of inclusions are randomly generated from a probability function deduced from a
practical sieving curve (provided by Electricité De France), with minimal and maximal radii
rmin = 0.0215 m and rmax = 0.0768 m. The total volume fraction of inclusions is f = 0.4194.
Though simplified and idealized in many aspects as compared to the real-life concrete material,
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a) b) c)

Figure 24. a) RVE containing 50 inclusions; b) the inclusions of RVE; c) the matrix of RVE.
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Figure 25. 3D RVE containing 50 inclusions: a) convergence of C̄1111; b) the relative error norm of
C̄1111 with respect to the total number of d.o.f..

this model constitutes a difficult problem, due to the presence of many nearby inclusions. The
purpose of this example is to compute the effective elasticity tensor C̄ associated with the
homogenized material. We use the classical XFEM/Level-set, µ−XFEM, and a fine 3D FEM
model with conforming meshes at the interfaces, for comparison.

Both the matrix and inclusion materials are assumed to be linearly elastic and isotropic
with the Young moduli and Poisson ratios Em = 1 MPa, νm = 0.2, Ei = 100 MPa, νi = 0.2.

The cubic domain is meshed with a regular mesh of tetrahedra not conforming with the
interfaces. The effective elastic tensor is computed as mentioned in the former example. For
this purpose, the additional d.o.f. of nodes which lie on the external boundary of the domain
are prescribed to zero for both XFEM and µ−XFEM. A convergence analysis is carried out,
using different meshes with increasing elements densities associated with a characteristic size
h. For each mesh, the effective elastic tensor C̄ is computed.

As no exact solution exists for this problem, we use as a reference solution fine FEM models
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Table I. Number of d.o.f. required to reach a given target error: comparison beteween XFEM and
µ-XFEM for the 3D problem with 50 inclusions

Target error XFEM (d.o.f.) µ-XFEM (d.o.f.)
5.0% 1294156 341289
2.5% 2369454 791259
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Figure 26. Convergence of effective elastic properties for the 3D RVE containing 2024 inclusions. Both
XFEM and µ-XFEM solutions are compared for same number of d.o.f. The FEM solution has been

obtained by using a conforming tetrahedral mesh to the interfaces and 9 million d.o.f.

with meshes of tetrahedra conforming to the interfaces. The reference solution corresponds to
a converged value with respect to several FEM mesh densities, as shown in figure 25 a). The
convergence analysis of component C̄1111 is shown in figure 25 b). We can notice that while
both XFEM and µ−XFEM converge to the reference solutions, the µ-XFEM converges faster.
In table I, we compare the number of degrees of freedom required to reach a given relative
error on C̄1111. We can note that for an error of 5 % the gain using µ-XFEM over X-FEM is
3.7 and for 2.5 % error 2.99.

6.4.2. RVE containing 2024 inclusions In this second test, the unit cube defining the RVE
contains 2024 inclusions. As previously, the radii of inclusions are randomly generated with
minimal and maximal radii rmin = 0.0214 m and rmax = 0.0833 m. The total volume fraction
of inclusions is f = 0.4. The mechanical model for the different phases is the same as in the
previous test. For that case, constructing a conforming mesh is a very difficult task. For this
reason, only one FEM solution was computed. It contains 9.106 d.o.f and was provided y B.
Bary, CEA, France [2]. As we do not have other solution for finer meshes, we can not conclude
that this FEM solution is a reference solution, it is in this example only indicative. In figure
26, we show the convergence analysis of the component C̄1111. We note that the µ-XFEM
converges faster than XFEM, as a function of the total number of d.o.f.

In figure 27 we show the interfaces approximated by the single level-set and multiple level-set
methods, for a mesh corresponding to 511104 elements. Qualitatively, it can be observed that
µ-XFEM avoids the artificial percolation. As it also removes the other artefacts, the faster
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b)a)

Figure 27. Approximated interfaces for the 3D model of concrete RVE: a) level-set; b) multiple level-
set; the same mesh with 511104 elements were used in both cases.

convergence of this method as compared to XFEM/level-set can be explained.

7. CONCLUSIONS

We have shown in this paper that when microstructures contain high volume fractions of
inclusions or very nearby inclusions, the use of XFEM/level-set method for the numerical
analysis induces numerical artefacts which affect significantly accuracy and convergence of the
solution. The first two artefacts are related to the level-set approximation: they induce artificial
percolation between inclusions and additional distortion of interfaces. The third one is related
to the enriched approximation scheme, which fails to reproduce a piece-wise linear field within
connected elements, if each of these elements contains at least one interface. We have proposed
a method to avoid these issues: each inclusion is associated to its own level-set and additional
d.o.f. are introduced. We have shown that the proposed approach avoids the aforementioned
issues and compared the gains with XFEM/level-set through different benchmark problems.
The results indicate that in applications aiming at determining the effective properties of
complex heterogeneous materials with high volume fractions of inclusions, the convergence
with respect to the mesh size is significantly enhanced, allowing the use of much coarser
meshes to predict the effective properties. Another advantage of this approach is the capacity
of treating the case where each phase is endowed with its own properties.
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