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Abstract. A probabilistic model is proposed to model uncertainties for local nonlinearities. The
model is applied to a slender structure that turns and drills into rocks in search of oil, called
drill-string, in which the local nonlinearity is the bit-rock interaction. The Maximum Entropy
Principle is used to construct a probabilistic model for the nonlinear operator related to the
bit-rock interaction model. A numerical model is developed using the Timoshenko beam theory
and it is discretized by means of the Finite Element Method. The nonlinear dynamics analyzed
considers a imposed rotation at the top, weight-on-hook, a ¯uid-structure interaction (that takes
into account the drilling ¯uid that ¯ows downwards the column and upwards the annulus),
impact and rubbing between the column and the borehole, and ®nite strains (what couples axial,
torsional and lateral vibrations). The development presented corresponds to a new approach to
take into account model uncertainties in local nonlinearities using a probabilistic approach.
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1 INTRODUCTION

In this work the drill-string problem is used to show an approach to take into account un-
certainties in a local nonlinearity which, for the system considered, is the bit-rock interaction.
Previous works have studied a stochastic modeling for local uncertainties in linear dynamical
systems, as, for instance, boundary conditions [9] and coupling [10]. Speci®cally in [9, 10],
a nonparametric probabilistic approach [19] was employed so that both data and model uncer-
tainties could be taken into account. The aim and novelty of this paper is to model uncertainties
in a local nonlinearity using the nonparametric probabilistic approach.

Drill-strings are slender structures used to dig into the rock in search of oil. The drill-string
dynamics must be controlled to avoid failures [8], see a general vibration perspective of the oil
and gas drilling process in [23]. We consider a vertical well for which the length of the column
may reach some kilometers. The drill-string is composed by thin tubes called drill-pipes and
some thicker tubes called drill-collars. The thicker tubes are in the bottom region which is
known as the Bottom-Hole-Assembly (BHA). Figure 1 shows the general scheme of the system
analyzed. The forces taking into account are: the motor torque (as a constant rotation speed at
the top­ x ); a constant supporting forcef hook; the torquetbit and forcef bit at the bit; the weight
of the column; the ¯uid forces; the impact and rubbing between the column and the borehole;
the forces due to the stabilizer; plus the elastic and kinetic forces due to the deformation and to
the motion of the structure.

Figure 1: General scheme.

In the literature, the nonlinear dynamics of a drill-string is modeled in several different ways,
e.g.[2, 26, 7, 25, 16]. These models are able to quantify some effects that occur in a drilling op-
eration, as the stick-slip oscillations, for instance, but they cannot correctly predict the dynamic
response of a real system. This is explained, ®rst, because the above models are too simple
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compared to the real system and, second, because the uncertainties are not taken into account.
Moreover, a ¯uid-structure interaction that takes into account the drilling ¯uid that ¯ows

inside and outside the column is not considered in any of the above mentioned works. This
kind of ¯uid-structure interaction model was proposed in [12] for a plane problem in another
context, and it was extended for our problem [14]. To model the column, the Timoshenko beam
model is employed and the Finite Element Method is used to discretize the system. Besides,
it is considered: ®nite strain with no simpli®cations (higher order terms are not neglected);
quadratic terms derived from the kinetic energy; impact and rubbing between the column and
the borehole; stabilizers; ¯uid-structure interaction; and a bit-rock interaction that models how
the bit penetrates the rock.

The uncertainty analysis of this paper is focused on the bit-rock interaction because it is a
local nonlinearity and one of the most important sources of uncertainties of this problem. A
probabilistic approach is used to model the uncertainties in the nonlinear operator.

The bit-rock interaction model chosen was the one developed in [26] basically for two rea-
sons: (1) it is able to reproduce the main phenomena (as stick-slip oscillations); (2) it describes
well the penetration of the bit into the rock (so we can analyze the rate-of-penetration-ROP).
Usually the bit is considered ®xed, [7, 16], or an average rate of penetration is assumed, [2].

The nonparametric probabilistic approach [19, 20, 21] is used to model the uncertainties in
the bit-rock interaction which is represented by a nonlinear operator. Note that a new strat-
egy has to be developed to take into account uncertainties in a local nonlinear operator. The
probability density function is derived using the Maximum Entropy Principle [18, 5, 6]. Two
probabilistic models are analyzed: one that allows only change in the parameters (called non-
coupled model) and another that permits changes in the model (the usual nonparametric model).
Then, by perturbing the bit-rock operator, the robustness of the models used is analyzed.

The paper is organized as following. In Section 2 the mean model is presented and in Section
3 the probabilistic model of the bit-rock interaction model is developed. The numerical results
are shown in Section 4 and the concluding remarks are made in Section 5.

2 MEAN MODEL

In this Section the equations used to model the problem are presented. The Total Lagrangian
(TL) formulation is used, six degrees of freedom are considered in the points of discretization
(three translations,u, v andw, and three rotationsµx , µy andµz), the stress tensor is the second
Piola-Kirchhoff tensor and ®nite strains are considered (Green-Lagrange strain tensor). The
main hypothesis are the following: (1) the drill-string is axisymmetric aboutx-axis; (2) the
following strain components are neglected:eyy » ezz » ° yz » ° zy » 0; (3) the rotationsµy and
µz are small, i.e,sin(µy) » µy, sin(µz) » µz andcos(µy) » cos(µz) » 1; (4) the stress-strain
relationship is linear; and (5) the rotationµx is ®nite (the rotational speed_µx , of course, is not
constant over the element).

The strategy used in this work is, in some respects, similar to the one used in [7], but there are
several important additional features, such as (1) impact and rubbing between the column and
the borehole; (2) shear (Timoshenko beam model); (3) ®niteµx ; (4) ¯uid-structure interaction;
(5) all the terms of the strain energy are used in the analysis; (5) a bit-rock interaction model that
allows the simulation of the bit penetration is used; and (6) constant force at the top (supporting
force or weight-on-hook).

To derive the dynamic equations, the extended Hamilton Principle is used. De®ning the
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potential¦ by

¦ =
Z t2

t1

(U ¡ T ¡ W)dt ; (1)

whereU is the potential strain energy,T is the kinetic energy andW is the work done by the
nonconservative forces and by any force not accounted for in the potential energy. The ®rst
variation of¦ must vanish

±¦ =
Z t2

t1

(±U¡ ±T ¡ ±W)dt = 0 : (2)

2.1 General equations

In the discretization by means of the Finite Element Method, a two-node approximation with
six degrees of freedom per node is chosen. The nodal displacement is written as

ue = N uue ; ve = N vue ; we = N wue ; (3)

µx e = N µx ue ; µye = N µy ue ; µze = N µz ue ; (4)

whereN are the shape functions (see [14]);ue, ve andwe are the displacements inx, y andz
directions;µxe, µye andµze are the rotations aboutx, y andz axis. The element coordinate is
» = x=le, and

ue =
¡
u1 v1 µz1 w1 µy1 µx 1 u2 v2 µz2 w2 µy2 µx 2

¢T
; (5)

where(¢)T means transpose. After assemblage, the ®nal discretized system is written as

([M ] + [ M f ])Äu + ([ C] + [ Cf ]) _u + ([ K ] + [ K f ])u = fNL (t; u; _u; Äu) + fc + fg + f f : (6)

Whereu is theRm -valued response for whichm is the number of degrees of freedom of the
system.[M ], [C] and[K ] are the usual mass, damping and stiffness matrices;[M f ], [Cf ], [K f ]
are the added ¯uid mass, damping and stiffness matrices, andf f is the ¯uid force vector;fg is
the gravity force;fc is a concentrated reaction force at the bit;fNL (t; u; _u; Äu) is the nonlinear
force vector that is decomposed in

fNL (t; u; _u; Äu) = fke(Äu; _u; u) + fse(u) + f ip (u) + fbr( _u) + g(t) : (7)

wherefke(u; _u; Äu) is composed by the quadratic terms of the kinetic energy;fse(u) is composed
by the quadratic and higher order terms of the strain energy;f ip (u) are the forces due to the
impact and rubbing between the column and the borehole;fbr( _u) are the forces due to the
bit-rock interactions, see section 2.3; andg(t) is the force that corresponds to the Dirichlet
boundary condition (rotation imposed at the top). For a detailed explanation of each term of the
nonlinear force see [14].

The dynamics is computed from a prestressed con®guration,uS = [ K ]¡ 1(fg + fc + f f ), then
Eq. (6) becomes

([M ] + [ M f ])Ä¹u + ([ C] + [ Cf ]) _¹u + ([ K ] + [ K f ] + [ K g(uS)]) ¹u = f NL (t; ¹u; _¹u; Ä¹u ) ; (8)

in which ¹u = u ¡ uS andfse(u) was split inf se(u) and[K g(uS)] ¹u, where[K g(uS)] is the
geometric stiffness matrix.
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2.2 Fluid-structure interaction

The drilling ¯uid (mud) is responsible to transport the cuttings (drilled solids) from the bot-
tom to the top to avoid clogging of the hole. It also plays an important role in cooling and
stabilizing the system [1]. The rheological properties of the mud are complexes, see [3] for
instance. There is no doubt that the drilling ¯uid in¯uences the dynamics of a drill-string, but
to solve the complete problem would be too expensive computationally. There are some works
that study only the drilling ¯uid ¯ow, as, for example, [4, 13]. In this work a linear ¯uid-
structure coupling model similar to [12] is used. In this simpli®ed model there are the following
hypotheses,

1. The inside ¯uid is inviscid, while the outside ¯ow is viscous.

2. The ¯ow induced by the rotation speed aboutx-axis is not considered in the analysis.

3. The pressure varies linearly withx.

4. The ¯uid is added in the formulation as a constant mass matrix[M f ], a constant stiffness
matrix [K f ], a constant damping matrix[Cf ] and a constant forcef f (see Eq. (9)).

For short, the element equations are presented. These equations are an extension and an
adaptation of the model developed in [12].

[M f ](e) =
Z 1

0
(M f + Â½f Ao) (N T

wN w + N T
v N v)led» ;

[K f ](e) =
Z 1

0

¡
¡ M f U2

i ¡ A i pi + Aopo ¡ Â½f AoU2
o

¢
(N 0T

wN 0
w + N 0T

v N 0
v)

1
le

d»+

+
Z 1

0

µ
¡ A i

@pi
@x

+ Ao
@po
@x

¶
(N T

µy
N µy + N T

µz
N µz )led» ;

[Cf ](e) =
Z 1

0
(¡ 2M f Ui + 2Â½f AoUo) (N T

µy
N µy + N T

µz
N µz )led»+

+
Z 1

0

µ
1
2

Cf ½f DoUo + k
¶

(N T
wN w + N T

v N v)led» ;

f (e)
f =

Z 1

0

µ
M f g ¡ A i

@pi
@x

¡
1
2

Cf ½f DoU2
o

¶
N T

u led» :

(9)

in which,

M f is the ¯uid mass per unit length,
½f is the density of the ¯uid,

Â =
(Dch=Do)2 + 1
(Dch=Do)2 ¡ 1

(> 1),

Dch is the borehole (channel) diameter,
D i ; Do are the inside and outside diameters of the column,
Ui ; Uo are the inlet and outlet ¯ow velocities,
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pi ; po are the pressures inside and outside the drill-string,
A i ; Ao are the inside and outside cross sectional area of the column,
Cf ; k are the ¯uid viscous damping coef®cients.

It is assumed that the inner and the outer pressures (pi andpo) vary linearly withx

pi = ( ½f g) x + pcte ; (10)

po =
µ

½f g +
Ffo

Ao

¶
x ; (11)

wherepcte is a constant pressure andFfo is the friction force due to the external ¯ow given by

Ffo =
1
2

Cf ½f
D 2

oU2
o

Dh
: (12)

In the above equation,Dh is the hydraulic diameter (=4Ach=Stot ) andStot is the total wetted
area per unit length (¼Dch + ¼Do). Note that the reference pressure ispojx=0 = 0. Another
assumption is that there is no head loss when the ¯uid passes from the drill-pipe to the drill-
collar (and vice-versa). The head loss due to the change in velocity of the ¯uid at the bottom (it
was going down, then it goes up) is given by

h =
1
2g

(Ui ¡ Uo)2 : (13)

Note that if the geometry and the ¯uid characteristics are given, only the inlet ¯ow atx = 0
can be controlled because the ¯uid speed is calculated using the continuity equation and the
pressures are calculated using the Bernoulli equation.

Examining Eq. (9), it can be seen that the mass matrix due to the ¯uid is the usual added mass
that, in our case, represents a signi®cative part of the total mass (in norm). For example, using
representative values (used in our simulations), the added mass is around 50%, what changes
the natural frequencies in about 20%.

The stiffness matrix due to the ¯uid depends on the speed of the inside and outside ¯ow, on
the pressure and on the pressure derivatives. Analyzing the signs in the equation (Eq. 9) it can
be seen see that the outsize pressure tends to stabilize the system while the inside pressure and
the ¯ow tends to destabilize the system. The term(¡ pi A i + poA0) plays a major role on the
stiffness of the system because, even thoughpi is close topo, in the drill collar region (in the
bottom)A0 is around ten timesA i what turns the system stiffer at the bottom.

The damping matrix due to the ¯uid depends on the ¯ow velocity as well as in the viscous pa-
rameter of the ¯uid, which are not well established values. There are uncertainties to determine
the damping characteristics and a stochastic model should be developed to the damping, but in
this work a detailed analysis will not be addressed. Finally, the force vector (f f ) represents the
buoyancy induced by the ¯uid and it is the only force in the axial direction (x-direction).

2.3 Bit-rock interaction

The model used in this work is the one developed by [26], which can be written as

_ubit = ¡ a1 ¡ a2f xbit + a3
_µbit

txbit = ¡ DOCa4 ¡ a5

DOC =
_ubit

_µbit

,
(14)
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wheref xbit is the axial force (also called weight-on-bit),txbit is the torque aboutx-axis and
a1; : : : ; a5 are positive constants that depend on the bit and rock characteristics as well as on
the weight-on-bit. Note that_ubit (=ROP) depends linearly onf xbit and on_µbit (=! bit ), andtxbit

depends linearly on the depth-of-cut (DOC). Equation (14) is rewritten as

f xbit = ¡
_ubit

a2Z( _µbit )2
+

a3
_µbit

a2Z( _µbit )
¡

a1

a2

txbit = ¡
_ubit a4Z( _µbit )2

_µbit

¡ a5Z( _µbit )

(15)

whereZ( _µbit ) is the regularization function so that when_µbit approaches to zerotxbit and _ubit

vanish. The regularization function is plotted in Fig. 2(a).

Z ( _µbit ) =
_µbitq

( _µbit )2 + e2
: (16)
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Figure 2: Regularization function (a) and torque at the bit in function of! bit = _µbit (b).

Equation (15) was derived in a stable operation with_µbit » 100RPM and withf xbit » 100
kN. In this model the bit exerts only an axial force (f xbit ) and a torque (txbit ) aboutx-axis (see
how the torque varies with_µbit in Fig. 2(b)). These forces done by the rock at the bit depend on
the axial speed (_ubit ). Note that these forces at the bit couple axial and torsional vibrations.

2.4 Reduced model

Usually the ®nal discretized FE system have big matrices (dimensionm £ m) and the dy-
namic analysis may be time consuming, which is the case of the analysis presented. One way
to reduce the system is to project the nonlinear dynamical equation on a subspaceVn 2 Rm ,
with n << m . In this paper, the basis used to generateVn for the reduction basis is formed
by the normal modes, but, as it will be pointed out later, these normal modes have to properly
be chosen (they can not be taken simply in the order that they appear). The normal modes are
obtained from the following generalized eigenvalue problem,

([K ] + [ K f ] + [ K g(uS)])Á = ! 2([M ] + [ M f ])Á ; (17)
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whereÁ i is thei -th normal mode and! i is thei -th natural frequency. Using the representation

u = [©] q ; (18)

and substituting it in the equation of motion yield

([M ] + [ M f ])[©]Äq + ([ C] + [ Cf ])[©] _q + ([ K ] + [ K f ] + [ K g(uS)])[©]q = f NL (t; ¹u; _¹u; Ä¹u) : (19)

where[©] is a (m £ n) real matrix composed byn normal modes obtained using the prestressed
con®guration. Projecting the equation on the subspace spanned by these normal modes yields

[©]T ([M ] + [ M f ])[©]Äq + [©] T ([C] + [ Cf ])[©] _q+

+[©] T ([K ] + [ K f ] + [ K g(uS)])[©]q = [©] T f NL (t; ¹u; _¹u; Ä¹u) ,
(20)

which can be rewritten as

[M r ] Äq(t) + [ Cr ] _q(t) + [ K r ] q(t) = [©] T f NL (t; ¹u; _¹u; Ä¹u) ; (21)

in which
[M r ] = [©] T ([M ] + [ M f ])[©]; [Cr ] = [©] T ([C] + [ Cf ])[©]

[K r ] = [©] T ([K ] + [ K f ] + [ K g(uS)])[©] (22)

are the reduced matrices.

3 PROBABILISTIC MODEL OF THE BIT-ROCK INTERACTION MODEL

Figure 3 shows a general system with a local nonlinearity. We should identify the local non-
linear operator (which, in the present case, is the nonlinear operator of the bit-rock interaction
model) and then construct a probability density function for it. Note that the operator changes
with time, but this is not a problem for the strategy adopted.

Figure 3: Local nonlinearity.

The parametric probabilistic approach allows physical parameter uncertainties to be mod-
eled. It should be noted that the underlying deterministic model de®ned by Eq. (15) exhibits
parameters (a1, a2, a3, a4 anda5) which are obtained by an identi®cation process, so it would
be dif®cult to propose a stochastic model for each one, moreover they are not independent from
each other. We then proposed to use the nonparametric probabilistic approach of uncertainties
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[19] consisting in globally modeling the operator of the constitutive equation, Eq. (15), by a
random operator.

In the early works, the nonparametric probabilistic approach was applied for linear operators
[21]. Recently is was extended to geometrically nonlinear dynamical systems [11], but the type
of problem studied here is completely different. We are dealing with a nonlinear operator that
is an interaction model (bit-rock interaction), therefore it requires a different methodology, and
we propose to use the nonparametric idea.

For convenience Eq. (15) is rewritten in the matrix form as

fbit ( _x) = ¡ [Ab( _x)] _x ; (23)

in which [Ab( _x)] is the positive-de®nite matrix depict by:

[Ab( _x)] =

0

B
B
B
B
@

Ã
a1

a2 _ubit
+

1

a2Z( _µbit )2
¡

a3
_µbit

a2Z( _µbit ) _ubit

!

0

0

Ã
a4Z( _µbit )2 _ubit

_µ2
bit

+
a5Z( _µbit )

_µbit

!

1

C
C
C
C
A

;

(24)
and

fbit ( _x) =
µ

f bit

tbit

¶
and _x =

µ
_ubit
_µbit

¶
:

The ®nal form of[Ab( _x)] is not obvious, but analyzing the virtual power of the system, which
can be written as:

±Pbit ( _x) = < fbit ( _x); ±_x > = < ¡ [Ab( _x)] _x; ±_x > ; (25)

we see that to recover the forcefbit ( _x) one should do:

fbit ( _x) = r ±_x ±Pbit ( _x) ; (26)

fbit ( _x) = ¡ [Ab( _x)] _x = ¡

0

B
B
B
B
@

a1

a2
+

_ubit

a2Z( _µbit )2
¡

a3
_µbit

a2Z( _µbit )

a4Z( _µbit )2 _ubit

_µbit

+ a5Z( _µbit )

1

C
C
C
C
A

: (27)

To verify the positive-de®niteness of[Ab( _x)], in our case, we simply check if the diagonal
terms are greater than zero, and this is true for the range of values that we are working with.

The nonparametric probabilistic approach consists, for all deterministic vector_x, in model-
ing the matrix[Ab( _x)] by a random matrix[A b( _x)] with values in the setM+

n (R) of all positive-
de®nite symmetric(n £ n) real matrices, withn = 2. Note that for each instant the matrix
[A b( _x)] will be different because it depends on_x that changes with time.

In order to apply the nonparametric probabilistic approach for the operator[Ab( _x)], we have
to de®ne the available information and in a second step construct the probability density func-
tion of the random matrix using the Maximum Entropy Principle. The available information is
made up of

9
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1. 8 _x, random matrix[A b( _x)] is positive de®nite almost surely,

2. Ef [A b( _x)]g = [ Ab( _x)] ,

3. Efjj [A b( _x)]¡ 1jj 2
F g = c1 ; jc1j < + 1 ,

in whichEf¢g is the mathematical expectation,jj ¢ jjF denotes the Frobenius norm of the matrix
(jj [B ]jjF = ( tr f [B ][B ]T g)1=2) and [Ab( _x)] is the matrix of the mean model. Following the
methodology of the nonparametric probabilistic approach, the mean value is written, using the
Cholesky decomposition, as

[Ab( _x)] = [ Lb( _x)]T [Lb( _x)] ; (28)

and the random matrix[A b( _x)] is de®ned by

[A b( _x)] = [ Lb( _x)]T [Gb][Lb( _x)] : (29)

In the above equation,[Gb] is a random matrix satisfying the following available information,

1. random matrix[Gb] is positive de®nite almost surely,

2. Ef [Gb]g = [ I ] ,

3. Efjj [Gb]¡ 1jj 2
F g = c2 ; jc2j < + 1 ,

in which [ I ] is the identity matrix. It should be noted that, in this construction, the random
matrix[Gb] neither depends on_x nor on time. Taking into account the available information and
applying the Maximum Entropy Principle yields an explicit expression [20] of the probability
density functionp[G b] which is written as

p[Gb]([Gb]) = 1M+
n (R)([Gb])CGbdet([Gb])

(n+1) (1 ¡ ±2 )
2±2 exp

½
¡

(n + 1)
2±2

tr [Gb]
¾

; (30)

in which det(¢) is the matrix determinant,tr (¢) is the matrix trace and± is the dispersion pa-
rameter of the distribution. The constant of normalization is written as

CGb =
(2¼)¡ n(n¡ 1)=4

¡
n+1
2±2

¢n(n+1)(2 ±2 ) ¡ 1

nQ n
j =1 ¡

¡
n+1
2±2 + 1¡ j

2

¢o ; (31)

where¡( z) is the gamma function de®ned forz > 0 by ¡( z) =
R+ 1

0 tz¡ 1e¡ tdt and the disper-
sion parameter± is given by

± =
½

1
n

Efjj [Gb ] ¡ [I ]jj 2
F g

¾1
2

: (32)

The random generator of independent realizations of random matrix[Gb], for which the
probability density function is de®ned by Eq. (30), is given in appendix A. Attention with
the stochastic solver because while matrix[Ab( _x)] changes with time, random matrix[Gb] is
constant in time.

In the deterministic equation, we have

L NL (u(t); _u(t); Äu(t)) = fbr( _u(t)) ; (33)

10
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whereL NL represents all the terms in Eq. (8) except the bit forcesfbr . The only nonzero
components offbr are related to the axial and torsional d.o.f. atx = L, which are represented
by fbit , Eq. (23). For the stochastic equation, we have

L NL (U (t); _U (t); ÄU (t)) = Fbr(
_U (t)) ; (34)

whereU (t) is the random response andFbr is the random force at the bit for which the only
nonzero components are related to the axial and torsional d.o.f. atx = L. This force isFbit

which is the random variable related tofbit and is written asFbit = [ Lb( _x)]T [Gb][Lb( _x)] _x. Let

[Gb(s1)]; : : : ; [Gb(sº )] (35)

beº independent realizations of random matrix[Gb]. For each realizationsj , we have to solve
the deterministic equation

L NL (U (t; sj );
_U (t; sj );

ÄU (t; sj )) = Fbr(
_U (t; sj )) : (36)

Two probabilistic models are then analyzed.

(1) Nonparametric probabilistic model

In the nonparametric probabilistic model presented above there are statistical coupling terms
induced by the model uncertainties and the random matrix[Gb] is written as:

[Gb] =
µ

[Gb]11 ³
³ [Gb]22

¶
(37)

where³ = [ Gb]21 = [ Gb]12.

(2) Approximation without the statistical coupling terms

What is called here the non-coupled probabilistic model is the previous model without the
extra coupling terms that appear in the extra-diagonal elements (³ = 0). The idea is not to
randomize all the operator, but to investigate how a global change in the parameters affects the
system response. To do so, we simply set the extra-diagonal terms of[Gb] equal to zero,

[Gb] =
µ

[Gb]11 0
0 [Gb]22

¶
: (38)

Doing so, there is no extra coupling between_ubit and _µbit . But note that even in the deter-
ministic system_ubit depends on_µbit and vice-versa.

4 NUMERICAL RESULTS

The drill-string was discretized using56 ®nite elements. For the dynamics analysis it was
used10 lateral modes,10 torsional modes,10 axial modes and also the two rigid body modes
of the structure (axial and torsional), so matrix[©] is composed by32 modes. For the time
integration procedure, a scheme based on the Newmark method has been implemented with a
procedure to equilibrate the system response in each time step. The system parameters used are
representative values that are found in the literature [2, 26, 7], see appendix B.
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4.1 Deterministic response

Fig. 4 shows a comparison of the dynamic response with and without the ¯uid-structure
interaction.
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Figure 4: Response with ¯uid£ without ¯uid. (a) axial speed atx = L , or rate of penetration (ROP); (b) rotation
speed atx = L (! bit ); (c) radial displacement atx = 1560 m; and (d) torque at the bit.

The main difference in the dynamic response with and without the ¯uid-structure interaction
model is in the lateral dynamic response, see Fig. 4(c). The model used for the ¯uid has a
major in¯uence in the lateral frequencies and lateral mode shapes, but the axial and torsional
frequencies are unaffected, which is not a surprise since in the formulation used (see Section
2.2) the axial movement is only affected by a constant forcef f . However, the dynamics is
nonlinear and the vibrations are all coupled, see that after 20 seconds of simulation the two
dynamics (with and without ¯uid) separate. Comparing the lateral vibration, in a general way
(see Fig. 4(c)), the amplitude of vibration in the BHA region is smaller when the ¯uid is
considered because the lateral stiffness of the system increase in the presence of the ¯uid.

Fig. 4 (a) shows the ROP which is can be taken as a measure of the performance of the
system. In a drilling operation we want to maximize the ROP to minimize the drilling time,
since the ROP is inversely proportional to the well cost (the higher the ROP the lower the cost).
Fig. 4 (b) and (d) shows the self excited response os the system which has a dominant frequency
of 0:22 Hz. This frequency is a little higher than the ®rst torsional natural frequency which is
0:21Hz.

4.2 Stochastic analysis using the non-coupled nonparametric probabilistic model

Fig. 5 shows 50 Monte Carlo simulations and the95%envelope (that is to say the con®dence
region constructed with a probability level of 0.95) for the rate-of-penetration using a small
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