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Université Paris-Est, Laboratoire de mecanique physique, CNRS UMR 7052 B2OA, France

The purpose of this paper is the construction of an uncertain probabilistic model for the me-

chanical properties of the cortical bone. The main objective is firstly to propose a probabilistic

simplified model adapted to the ultrasonic axial transmission technique and secondly to present

an experimental identification using this technique. The simplified model is constructed as a

fluid-solid semi-infinite multilayered system in which the solid layer (the cortical bone) is a

homogeneous anisotropic elastic material and the two others semi-infinite layers are fluids.

This model is a rough approximation of the real biomechanical model and it can be improved

by taking into account the uncertainties related to the elasticity tensor with a probabilistic

model. In this paper, the parameters of the probabilistic model are the mean elasticity tensor

and a dispersion coefficient. A complete application is presented for the human cortical bone

for which an experimental database is available.

1. Introduction

Biomechanical systems such as the cortical bone, are very complex systems which are diffi-

cult to model in regard to their constitutive material at the microscopic scale. Such a biomechanical

system can be modeled using a mechanical model which can be more or less sophisticated using

or not a multiscale approach. Nevertheless, assumptions yielding modeling simplifications and ap-

proximations are introduced and therefore the developed model is always a rough approximation of

the real biomechanical system. In this paper, such sources of uncertainties are taken into account in

order to extend the domain of validity of a simplified model and, therefore, a probabilistic model is

constructed to take into account uncertainties in the model of elasticity tensor of the cortical bone.
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This construction is carried out using Information Theory with the available information derived from

the mechanical and probabilistic properties for the random elasticity tensor. The parameters of the

probabilistic model are the mean elasticity tensor and a dispersion parameter characterizing the level

of uncertainties. The identification of these parameters is performed by using in vivo measurements

obtained with the axial transmission technique: an acoustic pulse is applied on the skin layer in the

ultrasonic range and the velocity of the first arriving signal is measured. Thus, the purpose of this

paper is the experimental identification and validation of the probabilistic model developed to take

into account uncertainties in the elasticity tensor of the cortical bone using the ultrasonic axial trans-

mission technique. In this paper, the simplified mechanical model is constructed as a fluid-solid

semi-infinite multilayered system in which the solid layer (representing a cortical bone) is a homoge-

neous anisotropic elastic material and the two others semi-infinite layers are fluids (representing the

skin and the marrow bone). This model is obviously quite simple in regard to the real biomechanical

system for which the cortical layer is, for instance, heterogeneous. Thus, uncertainties related to the

cortical bone have to be taken into account to improve the validity domain of such a simplified model

that allows the velocity of the first arriving signal to be accurately predicted. The solver used for this

problem is presented in [1]. The experimental database is obtained by in vivo ultrasonic axial trans-

mission on cortical bones of a given set of patients. A computational optimization problem is then

introduced, consisting in minimizing a cost function with respect to the parameters of the probabilis-

tic model. This cost function is defined by taking into account the type of experimental observations.

The stochastic solver used to solve the optimization problem is based on the Monte Carlo method for

which the simplex algorithm is used at each iteration. The complete stochastic model is presented

with its experimental validation.

2. Experimental database

Figure 1. Experimental configuration

The ultrasonic axial transmission technique is used to construct an experimental database (see

for instance [3-5]). The experimental configuration is described by Fig. 1. A device has been de-

signed and is made up of several receivers and transmitters. A coupling gel is applied at the interface

between the device and the skin of the patient. Each transmitter generates an acoustical impulse in

the ultrasonic range that propagates in the coupling gel, the skin, the muscle, the cortical bone and

the marrow. The axial transmission technique consists in recording these signals at several receivers

located in the device. The first arriving contribution of the signal (FAS) is considered. Following

the signal processing method used with the experimental device, the velocity of FAS is determined

from the time of flight of the first extremum of the contribution. Figure 2 shows a part of a sim-

ulated signal and the FAS. Each velocity measurement is considered as a realization of a random

variable V exp corresponding to the random variable V mod obtained with the stochastic simplified

model. The mean value of V exp is vexp = E{V exp} and its coefficient of variation ∆exp is defined by

(∆exp)2 = E{(V exp)2}/(vexp)2 − 1 in which E{·} is the mathematical expectation.

2



16th International Congress on Sound and Vibration, 5–9 July 2009, Kraków, Poland

Figure 2. First arriving signal

3. Simplified model

A simplified model of the biomechanical system made up of the coupling gel, the skin, the

cortical bone and the marrow has been developped in [1, 2]. This simplifed model is composed of

an elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers (see Fig. 3). The

Figure 3. Geometry of the multilayer system

thicknesses of the layers are denoted by h1, h and h2. Let u be the displacement field of the solid

elastic and let p1 and p2 be the pressure fields in the two acoustic fluid layer for which the masses

density are denoted by ρ1, ρ2 and the celerities are denoted by c1 and c2. Let ρ be the mass density

of the solid. Let [C] be the effective elasticity matrix of the solid layer for which the components

are the coordinates of the elasticy tensor. A line source modeling the acoustical impulse is applied

in the top acoustic fluid layer at a distance xS
3 from the interface between the top acoustic fluid layer

and the elastic solid layer. The central frequency of the impulse is fc = 1 MHz. In Fig.4, the time

history and the modulus of its Fourier transform are shown. At time t = 0, the system is assumed to

be at rest. For a given effective elasticity matrix [C], the displacement field in the solid layer and the

pressure fields in the two fluids are calculated using the fast and efficient hybrid solver presented in

[1]. For a given mean elasticity matrix [C], this solver allows the displacement field u in the elastic

solid layer and the pressure fields p1 and p2 in the two acoustic layers respectively, to be calculated.

Then, the velocity vvelo of the first arriving signal is deduced. Consequently, it is possible to construct

a mapping gvelo such that

vmod = gvelo([C]) . (1)
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Figure 4. Time history (right) and modulus of the Fourier transform of the pulse (left): horizontal axis in

seconds (right) and in MHz (left)

4. Stochastic simplified model

It is assumed that uncertainties are only related to the components of the effective elasticity ten-

sor. The introduced probabilistic model is presented in [2]. Then, the construction of the probabilistic

model consists in substituting [C] by a random matrix [C] for which the probability density function

is constructed using the information theory (see [6, 7]) with the available information defined as fol-

lows: (1) the random matrix [C] is a second-order random variable with values in the set +(!) of

all the (6 × 6) real symmetric positive-definite matrices; (2) the mean value of random matrix [C] is

the mean elasticity matrix [C]; (3) the norm of the inverse matrix of [C] is a second-order random

variable. It has been shown in [8, 9] that the random matrix [C] can then be written as

[C] = [L]T [G][L] , (2)

in which the (6 × 6) upper triangular matrix [L] corresponds to the Cholesky factorization [C] =
[L]T [L] and where the probability density function p[G] of random matrix [G] is written as

p[G]([G]) = "
 

+(!)([G]) c (det[G])b exp{−atr[G]} , (3)

where a = 7/(2δ2), b = a(1 − δ2), "
 

+(!)([G]) is equal to 1 if [G] belongs to +(!) and is equal

to zero if [G] does not belong to +(!), tr[G] is the trace of matrix [G] and where positive constant

c is such that

c =
(2π)−15/2a6 a

∏6
j=1 Γ(αj)

, (4)

in which αj = 7/(2δ2) + (1 − j)/2 and where Γ is the Gamma function. The parameter δ allows the

dispersion of the random matrix [C] to be controlled. Thus, the parameters of the probabilistic model

of uncertainties for the elasticity matrix are the components of [C] and the coefficient δ. The velocity

of the FAS constructed using this stochastic simplified model is a random variable denoted by V mod

that corresponds to the random experimental velocity V exp introduced in Section 2 and we have (see

Eq. (1))

V mod = gvelo([C]) . (5)
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5. Optimization problem for the identification

The mean elasticity matrix of the simplified mechanical model is assumed to be related to

a transverse anisotroopic elastic medium. Such a medium is defined by (1) the longitudinal and

transversal Young moduli eL and eT , (2) the longitudinal and transversal shear moduli gL and gT

and (3) the longitudinal and transversal Poisson coefficients νL and νT that are such that gT =
eT /2(1 + νT ). We then have [C] = [C(a)]. Let a be the vector such that a = (ρ, eL, νL, gL, eT , νT ).
The identification problem consists in finding vector a and coefficient δ such that the stochastic model

can represent the experimental database in a statistical sense. The optimal values (aopt, δopt) for (a, δ)
is given by solving the following optimization problem

(aopt, δopt) = arg min
(a,δ)

F cost(a, δ) , (6)

in which F cost(a, δ) is the cost function which has to be defined. The cost function F cost adapted to

the optimization problem is written as

F cost(a, δ) =
(vexp − vmod(a, δ))2

(vexp)2
+

(∆exp − ∆mod(a, δ))2

(∆exp)2
, (7)

in which vmod(a, δ) = E{V mod(a, δ)} and

∆mod =

√

E{(V mod(a, δ)2}

(vmod(a, δ))2
− 1 . (8)

The optimization problem defined by Eq. (6) is solved by the simplex algorithm. For each

iteration of the simplex algorithm, the cost function is calculated in solving the stochastic equations

with the Monte Carlo numerical simulation method (see for instance [1, 2]).

6. Experimental validation of the stochastic simplified model

This section is devoted to the experimental validation of the stochastic simplified model. The

stochastic simplified model must be able to simulate the experimental database in a statistical sense.

The experimental validation is performed with the in vivo experimental database presented in Sec-

tion 2 and is made up of N = 2747 mesurements V exp(θ̂1), . . . , V
exp(θ̂N) plotted in Fig. 5. The

identification of the vector a = (ρ, eL, νL, gL, eT , νT ) and the coefficient δ is carried out using the

method presented in Section 5 with h1 = 10−2m, h = 4 × 10−3m, h2 = 10−2m, ρ1 = ρ2 =
1000 kg.m−3 and c1 = c2 = 1500 m.s−1 The solution a

opt =
(

ρopt, eopt
L , νopt

L , gopt
L , eopt

T , νopt
T

)

and

δopt are such that ρopt = 1598.8 kg.m−3, eopt
L = 17.717 GPa, νopt

L = 0.3816, gopt
L = 4.7950 GPa,

eopt
T = 9.8254 GPa, νopt

T = 0.4495 and δopt = 0.1029. For a = a
opt and δ = δopt, the realiza-

tions V mod(θ1), . . . , V
mod(θN) of random velocity V mod are constructed with the stochastic simpli-

fied model and then, the probability density function v 7→ pV mod(v) of V mod is estimated. Figure 6

compares the graphs of the probability density function v 7→ pV exp(v) of the random variable V exp

estimated with the N = 2747 experimental realizations V exp(θ̂1), . . . , V
exp(θ̂N) and the graph of

v 7→ pV mod(v) in logarithm scale. This figure shows that the stochastic simplified model is able to

predict in a statistical sense the velocity of the first arriving signal in a good accordance with the

experimental tests.

7. Conclusion

A simplified elastoacoustic model has been developed to simulate the ultrasonic wave prop-

agation in a complex biomechanical system made up of multilayered media. In order to improve
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Figure 5. Graph of the realizations V exp(θ̂1), . . . V
exp(θ̂N )

Figure 6. Graphs of v 7→ log(pV exp(v)) and v 7→ log(pV exp(v;aopt, δopt)).

the simplified model, the uncertainties related to the solid layer have been taken into account using

a probabilistic approach. A method has been presented to identify the parameters of the stochastic

simplified model. The capability of the proposed stochastic simplified model to predict the velocity

of the first arriving signal in the statistical sense has been demonstrated using a large experimental in

vivo database.
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