B. E. Mcdonald and W. A. Kuperman, Time domain formulation for pulse propagation including nonlinear behavior at a caustic, The Journal of the Acoustical Society of America, vol.81, issue.5, pp.1406-1417, 1987.
DOI : 10.1121/1.394546

J. J. Ambrosiano, D. R. Plante, B. E. Mcdonald, and W. A. Kuperman, Nonlinear propagation in an ocean acoustic waveguide, The Journal of the Acoustical Society of America, vol.87, issue.4, pp.1473-1481, 1990.
DOI : 10.1121/1.399444

K. Castor, P. Gerstoft, P. Roux, B. Mcdonald, and W. Kuperman, Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide, The Journal of the Acoustical Society of America, vol.116, issue.4, 2004.
DOI : 10.1121/1.1756613

F. Van-der-eerden and E. Védy, Propagation of shock waves from source to receiver, Noise Control Eng, J, vol.53, pp.87-93, 2005.

K. Attenborough, P. Schomer, E. Védy, and F. Van-der-eerden, Overview of the theoretical development and experimental validation of blast sound-absorbing surfaces, Noise Control Eng, J, vol.53, issue.3, pp.70-80, 2005.

T. Leissing, Nonlinear outdoor sound propagation ? A numerical implementation and study using the nonlinear progressive wave equation, Master's thesis, 2007.

B. E. Mcdonald, P. Caine, and M. West, A tutorial on the Nonlinear Progressive wave Equation (NPE)???Part 1, Applied Acoustics, vol.43, issue.2, pp.159-167, 1994.
DOI : 10.1016/0003-682X(94)90059-0

P. Caine and M. West, A tutorial on the nonlinear progressive wave equation (NPE) -Part 2. derivation of the three dimensional cartesian version without use of perturbation expansions, Applied Acoustics, pp.45-155, 1995.

B. E. Mcdonald, Weak shock interaction with a free???slip interface at low grazing angles, The Journal of the Acoustical Society of America, vol.91, issue.2, pp.718-733, 1992.
DOI : 10.1121/1.402534

G. P. Too and J. H. Ginsberg, Cylindrical and Spherical Coordinate Versions of NPE for Transient and Steady-State Sound Beams, Journal of Vibration and Acoustics, vol.114, issue.3, pp.420-424, 1992.
DOI : 10.1115/1.2930279

G. P. Too and S. T. Lee, Thermoviscous effects on transient and steady???state sound beams using nonlinear progressive wave equation models, The Journal of the Acoustical Society of America, vol.97, issue.2, pp.867-874, 1995.
DOI : 10.1121/1.412131

B. E. Mcdonald, High-angle formulation for the nonlinear progressive-wave equation model, Wave Motion, vol.31, issue.2, pp.31-165, 2000.
DOI : 10.1016/S0165-2125(99)00044-X

P. Blanc-benon, B. Lipkens, L. Dallois, M. F. Hamilton, and D. T. Blackstock, Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation, The Journal of the Acoustical Society of America, vol.111, issue.1, pp.487-498, 2002.
DOI : 10.1121/1.1404378

A. Krylov, S. Sorek, A. Levy, and G. Ben-dor, Simple Waves in Saturated Porous Media. I. The Isothermal Case., JSME International Journal Series B, vol.39, issue.2, pp.294-298, 1996.
DOI : 10.1299/jsmeb.39.294

E. Védy, Simulations of flows in porous media with a flux corrected transport algorithm, Noise Control Eng, J, vol.50, pp.211-217, 2002.

O. Umnova, K. Attenborough, and A. Cummings, High amplitude pulse propagation and reflection from a rigid porous layer, Noise Control Eng, J, vol.50, pp.204-210, 2002.

E. M. Salomons, R. Blumrich, and D. Heimann, Eulerian time-domain model for sound propagation over a finite impedance ground surface. Comparison with frequency-domain models, Acta Acustica United With Acustica, vol.88, pp.483-492, 2002.

T. Leissing, P. Jean, J. Defrance, and C. Soize, Nonlinear parabolic equation model for finite???amplitude sound propagation in an inhomogeneous medium over a nonflat, finite???impedance ground surface, Proceedings of EuroNoise 08, 2008.
DOI : 10.1121/1.2935953

URL : https://hal.archives-ouvertes.fr/hal-00691718