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Abstract. This paper deals with the construction of a simplified elastoacoustic model which
allows the ultrasonic wave propagation to be simulated in a complex biomechanical system. This
simplified model consists in a fluid-solid multilayer system. In this simplified model, the main
source of uncertainties is due to the constitutive equation for the solid layer which is chosen as a
homogeneous transverse isotropic elastic medium. In order to improve this simplified model, a
probabilistic model of the effective elasticity tensor of the solid medium is developped. A method
is presented for the experimental identification in a statistical sense of the model parameters
using the ultrasonic transmission technique. A complete application is presented for the human
cortical bone for which an experimental database is available.

1. Introduction

A biomechanical system such as the human cortical bone is often very complex to model in
regard to the microstructure of the materials made up of live tissues. Simplifications concerning
the geometry and the constitutive equations are used to construct a simplified mechanical model
(see for instance [1, 2, 3]) which allows the response of the biomechanical system to be predicted.
Nevertheless, this simplified model is a rough approximation of the real biomechanical system
and the main source of uncertainties is related to the constitutive equations. In order to improve
the simplified model, these uncertainties have to be taken into account. In this paper, the
biomechanical system under consideration is the human cortical bone, with the skin and the
marrow. The simplified mechanical model presented in [2, 3] is used to predict the transient
response of the cortical bone in the ultrasonic range. The skin, the muscle, the cortical bone and
the marrow are modeled as a fluid-solid semi-infinite multilayers system. In addition, the mean
model of the constitutive equation of the solid is represented by an effective elasticity tensor
that corresponds to a homogeneous transverse isotropic solid medium. In order to validate
this simplified mechanical model, an experimental database has been constructed using the
axial transmission technique [4-6]. The biomechanical system is submitted to an acoustical
impulse in the ultrasonic range and the velocity of the first arriving signal is experimentally
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measured. Each element of the experimental database is a realization of a random tensor whose
probabilistic model is presented in this paper. Then a stochastic simplified model is developped
by modeling the effective elasticity tensor with a random tensor whose probabilistic model
is presented in [7, 8]. The stochastic simplified model parameters that have to be identified
are the mechanical properties of the solid layer i.e, the mass density, the coefficients of the
transverse isotropic tensor (the lateral and transversal Young moduli, the lateral and transversal
Poisson coefficients and the lateral and transversal shear moduli) and a dispersion coefficient
describing the uncertainties level of the tensor. This identification is carried out by solving a
stochastic inverse problem. A computational optimization problem is then introduced, consisting
in minimizing a cost function with respect to the stochastic simplified model parameters. This
cost function is defined by taking into account the type of experimental observations obtained by
using the axial transmission technique. The simplex algorithm is used to solve the optimization
problem. At each iteration of the simplex algorithm, the value of this cost function is calculated
using a stochastic solver based on the Monte Carlo method. Thus, for each realization of the
random effective elastic tensor, it is necessary to predict a transient elastic wave response of
a fluid-solid semi-infinite multilayer system submitted to an acoustical impulse. Nevertheless,
the numerical cost for constructing such a transient elastic wave can be prohibitive for the
sotchastic inverse problem if usual computational methods are used. Consequently, in order
to decrease the computational cost of the optimization problem, a new fast, hybrid numerical
method developped in [2] is used. This mechanical solver is based on a time-domain formulation
associated with a space Fourier transform for the infinite dimensions and a finite element
approximation for the finite dimension. A complete numerical application concerning the human
cortical bone is presented.

2. Experimental database
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Figure 1. Experimental configuration

The ultrasonic axial transmission technique is used to construct an experimental database.
For this, a device has been designed and is made up of several receivers and transmitters. A
coupling gel is applied at the interface between the device and the skin of a patient. Each
transmitter generates an acoustical impulse in the ultrasonic range that propagates in the
coupling gel, the skin, the muscle, the cortical bone and the marrow. Each receivers records the
signal at different positions allowing the velocity of the first arriving signal to be experimentally
obtained (see Fig. 2). Such experiments are applied to a given set of patient yielding an
experimental database that consists of 2747 measurements of the velocity of the first arriving
signal on 168 human radii. For each specimen, the velocity of the first arriving signal is a
realization of a random variable V exp. Thus, the database is made up of N = 2747 statistical
independent realizations V exp(θ̂1), . . . , V

exp(θ̂N ) of random variable V exp. Let V exp be the
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Figure 2. First arriving signal

experimental mean value defined as

V exp =
1

N

N
∑

j=1

V exp(θ̂k) .

Let δexp be the experimental coefficient of variation such that

δexp =

√

∑N
k=1(V

exp(θ̂k) − V exp)2
√

NV exp
.

We then construct the random variable V exp such that E{V exp} = V exp and such that
the coefficient of variation δexp of V exp is δexp = δexp and where E{·} is the mathematical
expectation.

3. Simplified model

A simplified model of the biomechanical system made up of the coupling gel, the skin, the
cortical bone and the marrow has been developped in [2, 3]. This simplifed model is composed
of an elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers (see Fig. 3).
Let 7(O, %1, %2, %3) be the reference Cartesian frame where O is the origin of the space and
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Figure 3. Geometry of the multilayer system
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(%1, %2, %3) is an orthonormal basis for this space. The coordinate of the generic point 9 in  3 is
(x1, x2, x3). The thicknesses of the layers are denoted by h1, h and h2. The first acoustic fluid
layer occupies the open unbounded domain Ω1 , the second acoustic fluid layer occupies the
open unbounded domain Ω2 and the elastic solid layer occupies the open unbounded domain Ω.
Let ∂Ω1 = Γ1∪Σ1, ∂Ω = Σ1∪Σ2 and ∂Ω2 = Σ2∪Γ2 (see Fig. 3) be respectively the boundaries
of Ω1, Ω and Ω2 in which Γ1,Σ1,Σ2 and Γ2 are the planes defined by

Γ1 = {x1 ∈  , x2 ∈  , x3 = z1}
Σ1 = {x1 ∈  , x2 ∈  , x3 = 0}
Σ2 = {x1 ∈  , x2 ∈  , x3 = z}
Γ2 = {x1 ∈  , x2 ∈  , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore, the domains Ω1, Ω and Ω2 are
unbounded along the transversal directions %1 and %2 whereas they are bounded along the
vertical direction %3. Let 4 be the displacement field of the solid elastic and, for k = 1, 2,
let pk be the pressure field in the fluid occupying the domain Ωk. We then have (see for instance
[9, 10])

ρ
∂24

∂t2
− div! = 0 , 9 ∈ Ω , t > 0 , (1)

1

c2
k

∂2pk

∂t2
− ∆pk =

∂Qk

∂t
, 9 ∈ Ωk , t > 0 , (2)

where ρ and ! are the mass density and the Cauchy stress tensor field of the solid; div is the
divergence operator with respect to 9; ck is the wave velocity of the fluid occupying domain Ωk;
∆ is the Laplacian operator with respect to 9; Qk is the source density applied in domain Ωk

such that

∂Q1

∂t
(9, t) = ρ1 F (t)δ0(x1 − xS

1 )δ0(x3 − xS
3 ) , (3)

Q2(9, t) = 0 , (4)

in which F (t) = F1 sin(2πfct)e
−4(t fc−1)2 where fc = 1MHz is the center frequency and

F1 = 100N; ρk is the mass density of domain Ωk; δ0 is the Dirac function at the origin and
xS

1 and xS
3 are the coordinates of a line source modeling the acoustical impulse. The boundary

conditions at time t > 0 are written as !(1 = −p1 (1 in Σ1, !(2 = −p2 (2 in Σ2, pk = 0 in Γk

and ∇ pk · (k = −ρk 4̈ · (k in Σk with (1 = (0, 0, 1) and (2 = (0, 0,−1). The initial conditions
at time t = 0 are written as 4 = 0 and 4̇ in Ω∪Σ1∪Σ2 for the displacement field and pk = 0 and
ṗk in Ωk ∪ Γk ∪Σk for the pressure fields. The constitutive equation of the solid elastic medium
is written as !(9, t) =

3
∑

i,j,k,h=1

cijkh εkh(9, t) %i ⊗ %j (5)

in which
∑3

i,j,k,h=1 cijkh%i ⊗ %j ⊗ %k ⊗ %h is the effective elasticity tensor of the medium and

εkh = 1
2 (∂uk

∂xh
+ ∂uh

∂xk
) are the components of the linearized strain tensor on basis (%1, %2, %3). Let

[C] be the effective elasticity matrix such that

[C] =



















c1111 c1122 c1133

√
2c1123

√
2c1131

√
2c1112

c2211 c2222 c2233

√
2c2223

√
2c2231

√
2c2213

c3311 c3322 c3333

√
2c3323

√
2c3331

√
2c3312√

2c2311

√
2c2322

√
2c2333 2c2323 2c2331 2c2312√

2c3111

√
2c3122

√
2c3133 2c3123 2c3131 2c3112√

2c1211

√
2c1222

√
2c1233 2c1223 2c1231 2c1212



















. (6)
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For a transverse isotropic homogeneous medium, all the components [C]ij are zeros except the
following

[C]11 =
e2
L(1 − νT )

(eL − eLνT − 2eT ν2
L)

, [C]22 =
eT (eL − eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

, (7)

[C]12 =
eT eLνL

(eL − eLνT − 2eT ν2
L)

, [C]23 =
eT (eLνT + eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

, (8)

[C]44 = gT , [C]55 = gL , (9)

with [C]22 = [C]33, [C]12 = [C]13 = [C]21 = [C]31, [C]23 = [C]32 and [C]55 = [C]66 and
where (1) eL and eT are the longitudinal and transversal Young moduli, (2) gL and gT are the
longitudinal and transversal shear moduli and (3) νL and νT are the longitudinal and transversal
Poisson coefficients such that gT = eT /2(1 + νT ). For a given effective elasticity matrix [C], the
displacement field 4 and the pressure fields p1 and p2 are calculated using the solver presented
in [2]. Then, the velocity vvelo of the first arriving signal is deduced. Consequently, there exists
a mapping gvelo such that

vmod = gvelo([C]) . (10)

4. Stochastic simplified model

It is assumed that uncertainties are only related to the components cijkh of the effective elasticity
tensor. The stochastic simplified model is constructed by substituting matrix [C] in Eq. (10)
by a random matrix [.] for which a probabilistic model is constructed using the information
theory. The available information on [.] is defined as follows: (1) the mean value of random
matrix [.] is the effective elasticity matrix [C]; (2) random matrix [.] is a second-order random
variable with values in the set of all the (6×6) real symmetric positive-definite matrices; (3) the
inverse matrix of [.] exists almost surely and is assumed to be a second-order random variable.
Thus, random matrix [.] belongs to the set SE+ (see [7, 8]) and is written as

[.] = [L]T [:][L] , (11)

in which the (6×6) upper triangular matrix [L] corresponds to the Cholesky factorization of the
elasticity matrix [C] and where random matrix [:] belongs to the set SG+ introduced in [7, 8].
Moreover, it is shown in [7, 8] that probabilistic model of random matrix [:] only depends on a
dispersion coefficient denoted by δ. The probabilistic model of random matrix [.] is completely
defined with matrix [C] (that depends on eL, νL, gL, eT and νT ) and δ. The velocity of the first
arriving signal constructed using this stochastic simplified model is a random variable denoted
by V mod that corresponds to the random experimental velocity V exp introduced in Section 2
and we have (see Eq. (10) )

V mod = gvelo([.]) . (12)

5. Optimization problem for the identification

The stochastic simplified model parameters that have to be identified are the coefficients eL,
νL, gL, eT and νT relative to [C], the mass density ρ and the coefficient δ. Let ' be the
vector such that ' = (ρ, eLνL, gL, eT , νT ). The identifiction problem consists in finding vector '
and coefficient δ such that the stochastic model can represent the experimental database in a
statistical sense (see for instance [11, 12]). The optimal values ('opt, δopt) for (', δ) is given by
solving the following optimization problem

('opt, δopt) = arg min
(',δ)

F cost(', δ) , (13)
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in which F cost(', δ) is a cost function which has to be defined. The cost fuction F cost adapted
to the optimization problem is written as

F cost(', δ) =
(V exp − V mod)2

(V exp)2
+

(δexp − δmod)2

(δexp)2
,

in which

δmod =

√

E{(V mod − V mod)2}
V mod

.

The optimization problem defined by Eq. (13) is solved by the simplex algorithm. For each
iteration of the simplex algorithm, the cost function has to be calculated which requires to solve
the stochastic equations with an appropriate method such as the Monte Carlo method.

6. Experimental validation of the stochastic simplified model

This section is devoted to the experimental validation of the stochastic simplified model. The
stochastic simplified model must be able to simulate the experimental database in a statistical
sense. The experimental validation is performed with the in vivo experimental database
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Figure 4. Graph of the realizations V exp(θ̂1), . . . V
exp(θ̂N )

presented in Section 2 and is made up of N = 2747 mesurements V exp(θ̂1), . . . , V
exp(θ̂N ) plotted

in Fig. 4. The probability density function v 7→ pV exp(v) of the random variable V exp estimated

with the N = 2747 experimental realizations V exp(θ̂1), . . . , V
exp(θ̂N ) is shown in Fig. 5. The

identification of the vector ' = (ρ, eL, νL, gL, eT , νT ) and the coefficient δ is carried out using
the method presented in Section 5 with h1 = 10−2m, h = 4 × 10−3m, h2 = 10−2m, ρ1 = ρ2 =

1000 kg.m−3 and c1 = c2 = 1500 m.s−1 The solution 'opt =
(

ρopt, eopt
L , νopt

L , gopt
L , eopt

T , νopt
T

)

and

δopt are such that ρopt = 1598.8 kg.m−3, eopt
L = 17.717 GPa, νopt

L = 0.3816, gopt
L = 4.7950 GPa,

eopt
T = 9.8254 GPa, νopt

T = 0.4495 and δopt = 0.1029. For ' = 'opt and δ = δopt, the realizations
V mod(θ1), . . . , V

mod(θN ) of random velocity V mod are constructed with the stochastic simplified
model and then, the probability density function v 7→ pV mod(v) of V mod is estimated. Figure 6
shows the graphs of v 7→ pV mod(v). Figure 7 compares the graphs of v 7→ pV mod(v) and
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Figure 5. Graph of the probability density function v 7→ pV exp(v)
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Figure 6. Graph of the density probability density functions v 7→ pV mod(v; 'opt, δopt) with
' = 'opt and δ = δopt

v 7→ pV exp(v) in logarithm scale. This figure shows that the stochastic simplified model is
able to predict in a statistical sense the velocity of the first arriving signal in a good accordance
with the experimental tests.

7. Conclusions

A simplified elastoacoustic model has been developped to simulate the ultrasonic wave
propagation in a complex biomechanical system made up of multilayer media. In order to
improve the simplified model, the uncertainties related to the solid layer have been taken into
account using a probabilistic approach. A method has been presented to identify the parameters
of the stochastic simplified model. The capability of the proposed stochastic simplified model
to predict the velocity of the first arriving signal in the statistical sense has been demonstrated
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Figure 7. Graphs of v 7→ log(pV exp(v)) and v 7→ log(pV exp(v; 'opt, δopt)).

using a large experimental in vivo database.
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