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Abstract

In this paper, first-order shear deformation plate models for modelling structures made of functionally graded materials are proposed.
Identification of transverse shear factors is investigated through these models by energy equivalence. The transverse shear stresses are
derived from the expression of membrane stresses and equilibrium equations. Using the obtained transverse shear factor, a numerical
analysis is performed on the examples of a simply supported square plate and of a cylindrical bending sandwich plate clamped at both
ends. The material properties are assumed to be isotropic at each point and vary through the thickness according to a power law dis-

tribution. The numerical results of the static analysis are compared to available solutions from previous studies.
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1. Introduction

The multilayered materials are used in many structures.
In conventional laminated composite structures, homoge-
neous elastic laminae are bonded together to obtain
enhanced mechanical and thermal properties. The main
inconvenience of such an assembly is to create stress concen-
trations along the interfaces, more specifically when high
temperatures are involved. This can lead to delaminations,
matrix cracks, and other damage mechanisms which result
from the abrupt change of the mechanical properties at the
interface between the layers. One way to overcome this
problem is to use functionally graded materials within which
material properties vary continuously. The concept of func-
tionally graded material (FGM) was proposed in 1984 by the
material scientists in the Sendai area of Japan [13]. The
FGM is a composite material whose composition varies
according to the required performance. It can be produced
with a continuously graded variation of the volume fractions
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of the constituents. That leads to a continuity of the material
properties of FGM: this is the main difference between such
a material and an usual composite material. The FGM is
suitable for various applications, such as thermal coatings
of barrier for ceramic engines, gas turbines, nuclear fusions,
optical thin layers. biomaterial electronics, etc.

The composite plates are studied widely in the literature
(a review of the plate theories can be found in Ghugal and
Shimpi [9]). Plate models for the functionally graded mate-
rials have been studied with analytical and numerical meth-
ods. Various approaches have been developed to establish
the appropriate analysis of the functionally graded (FG)
plates. The model based on classical plate theory (CPT) of
Love-Kirchhoff was applied by Chi and Chung [5.6] for
the FGM. They developed the analytical solution for simply
supported FG plates subjected to mechanical loads. A finite
element formulation based on the CPT was studied by He
etal.[12]to control the shape and vibration of the FG plate
with integrated piezoelectric sensors and actuators. In prac-
tice. this model is not used for thick plates which have an
important contribution of the shear deformation energy.
Several authors studied the behavior of thick FG plates.



They suggested models that take into account the transver-
sal shear effect, by using the first-order shear deformation
theory (FSDT) [19,16] and higher-order shear deformation
theories [20.21]. Praveen and Reddy [17] examined the non-
linear static and dynamic responses of functionally graded
ceramic-metal plates using the first-order shear deforma-
tion theory (FSDT) and the von Karman strain (see Reddy
[20.21]). Croce and Venini [15] formulated a hierarchic fam-
ily of finite elements according to the Reissner-Mindlin the-
ory. The model of FSDT plate is the simplest model that
accounts for the transverse shear strains. It requires shear
correction coeflicients to compute transverse shear forces.
To avoid this difficulty, several authors proposed the
higher-order shear deformation theory and applied it to
FGM. Reddy [22] developed the Navier’s solutions for
functionally graded plates using the third-order shear defor-
mation plate theory (TSDT) and an associated finite ele-
ment model. Cheng and Batra [3] used also the theory of
Reddy (TSDT) for studying the buckling and steady state
vibrations of a simply supported functionally graded polyg-
onal plate. Moreover. the sinusoidal shear deformation the-
ory (SSDT) of Zenkour [34-36] was used for FG plates. By
using the theory himself, Zenkour [33] presented Navier’s
analytical solution of FG plates. Furthermore, he presented
the analysis of FG sandwich plates for the deflection, stres-
ses, buckling and free vibration in [37.38]. In the higher-
order shear deformation theory, the transverse shear stres-
ses are taken into account throughout the thickness and
consequently no transversal shear correction factors are
needed. For the thick FG plates whose thickness is not neg-
ligible, when compared to the side length, the three-dimen-
sional models for static and dynamic problems can be used.
Cheng and Batra [4] studied thermomechanical deforma-
tions of the FG plates. Elishakoff et al. [7] used the Ritz’s
method to derive the three-dimensional governing equation
for the all-round clamped FG plates. A discrete layer
approach was proposed by Ramirez et al. [18] for the static
analysis of three-dimensional FG plates. For analysis of
functionally graded beams, Reddy [23] also presented a
FG finite element beam model by using the FSDT (Timo-
shenko beam) and the TSDT. Satchi and Bhavani [26] ana-
lyzed the sandwich beam with a functionally graded core for
which they proposed an elasticity solution.

The models based on the first-order shear deformation
theory (FSDT) are very often used owing to their simplicity
in analysis and programming. It requires however a conve-
nient value of the shear correction factor. In practice, this
coeflicient has been assumed to be given by 5/6 as for
homogeneous plates. This value is a priori no longer appro-
priate for functionally graded material analysis due to the
position dependence of elastic properties.

The primary objective of this paper is thus to identify
the shear correction coeflicients for the FSDT models made
of functionally graded materials. Applications are pre-
sented for a simply supported plate and for a sandwich
panel which is clamped at both ends. The influence of this
factor on the static response is then presented. The material

elastic properties are supposed to be isotropic and varying
through the thickness according to a power-law function of
the position.

2. Theoretical formulation

Consider a FSDT plate model (Fig. 1) having a thick-
ness /1 which is located within a domain Q = wx|—4 4,
h € R". e R*isaarea possessing a boundary with a suit-
able regularity 0w. The top and bottom surfaces of the
plate are denoted by I*=wx{ti ={xyeQ
z = +%}. The plate is made of a functionally graded mate-
rial which is constituted by a mixture of ceramic and metal-
lic components. The material properties vary through the
plate thickness according to the volume fractions of the
constituents. All formulations are performed under the
assumption of a linear elastic behavior and small deforma-
tions of materials. The gravity is not taken into account.

2.1. Stress fields

The displacement field of the first-order shear deforma-
tion theory (FSDT) and the basic equations of the plate
model can be found in [20,21.29]. This section presents
the steps used in order to compute the shear stiffnesses of
the FG plates. The appropriate shear correction factors
will then be obtained. The sandwich panel model will be
studied as a special case. In this section, the Greek indices
are assumed to range within {1,2} while the Latin indices
take values {1,2,3}.

2.1.1. In-plane stresses
The generalized stresses associated to the in-plane stress
field a,4( N. M) can be defined as follows:

W2
Nag(x,y) = / aup(x,y,z)dz,
()

M p(x,y) =/ zo,p(x,p, z)dz.
—h/2

The generalized strains are given by,

enplx.y) = 5 (g + upa)(x. ),

(Orp + 0p)(x.¥).

o] —
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Fig. 1. Geometry of the functionally graded plate.



where the comma indicates partial differentiation with re-
spect to the coordinate subscript that follows, u and 0 the
displacement and rotation of the FSDT. The strain is as-
sumed to be linear through the thickness of the FG plate.

€xp(x,v,2) = 62,,(.\’.'\') + 2 (X, ). (3)

The membrane strains and in-plane stresses are related
by the constitutive equation,

Oup(x.y,2) = meg(:)(('gé (e, ) +z2,5(x. ). 4)

where C,g,5(z) are the components of the reduced elasticity
tensor at location z. Substituting (4) into (1) leads to:
Nap(x.3) = Aupyols(x,3) + Bapystys(x. ).

)
Mop(x,3) = Bups€5(X,3) + Dapis 1,5(x. ),

where A,p.s5. Byps. Dypys are the stiffnesses of the plate
which are given by,
W2
(Aapys s Bapyss Dapys) = /1 ’(]~5~ ) Capyi(2)dz. (6)
—h/2
It can be noticed that. unlike for a homogeneous sym-
metrical isotropic plate where the coupling stiffnesses B4,
are null, the B, ; are present in the constitutive equation
for the non-symmetrical functionally graded plates. The
membrane strains are finally:

62”(.\‘. .V) = (lzﬂ-";N.’.g(.\‘.)') + h,/{-{.ﬁM;.(s(.\”. .l') s (7)
Lap(X: ¥) = bapysN (X, 9) + doprsM5(x, ),

where (a.p,5. bapys. dapys) are the components of the com-
pliance matrix. The matrices C, A, B, D, a. b and d can
be explicitly expressed in terms of the functions E(z)
and v(z) describing the Young modulus and the Poisson’s
ratio at z, respectively. Moreover, it appears that the ma-
trix b is symmetric owing to the fact that the material
elastic properties are isotropic. Substituting (7) in (4)
leads to:

Oup(X,1.2) = Nupys ()N 5 (X, ¥) + mgps(2) M ys(x, ). (8)

where n,4,5(2). m,p,s5(z) are the components of the localiza-
tion tensors that are expressed as:

"1[!‘,-6(:) = Cx[iap(:)("ﬁwé + .'.'b,:(p-,vé)-

)
mz/f-,'a'(:) = Ciﬁap(:)(hs(pr,'(i + :dmpyd')-

2.1.2. Transverse shear stresses

The calculation of the transverse shear stresses from the
constitutive equation is not realistic because of the assump-
tion of a constant shear strain through the thickness of the
plate. The transverse shear stresses are derived classically
from the equilibrium equation. The equilibrium equation
in Q allows to determine the shear stresses a,3 which are
given by:

T3 = —/ Uz/fﬁdf~ (10)

2

where the integration coeflicients have been selected to sat-
isly the boundary condition for shear stresses at the upper
and lower faces of the plate. By substituting (8) into (10),
the following relationship is obtained:

023 = NMapys (2)N 35 (X, ) + My (2) My 5 (x, v), (11)
where,
hxﬁ;'d(:) = _/ Cz[!mp(é)[“w}'ﬁ + éhf(médé

—h/2
o : . L (12)
”llﬂ}‘5(~) = Cxﬁmp(g)[hr.w;‘d + Cd;ur,t)dg

—h/2

Nypys = Mysap = Npayss  Mapys = Mysap = Mpys

It is noted that the expression (12) is obtained due to the
uniform properties of the material in the plane of the
laminate (n,p,55 = 0, myps5 =0).

A direct computation of the shear stresses within Eq.
(10) will require the second-order derivatives of the dis-
placement. For finite element methods, several authors
(Lee and Lee [14]. Sze [28], Zenkiewicz and Zhu [40],
Rolfes and Rohwer [24.25]) used a method of postpro-
cessing based on the three-dimensional equilibrium equa-
tions or a predictor-corrector approach or simplified
assumptions. A simplifying assumption [24.25] which is
used thereafter. enables the computation of shear stresses
from transverse shear forces. This process allows to com-
ply to boundary conditions on the transverse shear stres-
ses and to save an order of derivation. A last
simplification is achieved by using a cylindrical bending
assumption. Assuming cylindrical bending around the
axis y, using the equilibrium equations of the plate
(Napp = 0. Mypp— Q, = 0) and omitting the weak terms
(N321 and My, ;). leads to:

G (x,z) = my(2) O (x), (13)

with myy;(z) given in (12). Practically, this relation is very
often used to compute the shear stress of the homogeneous
model with a quadratic form of 1y, (z), especially when
commercial finite element packages are used.

2.2. Shear correction factors

It is well-known that the models based on the first-order
shear deformation theory require a correct value of the
shear correction factors to compute the shear force. Several
authors made contributions in order to improve the models
used for the FSDT. Hutchinson [11], Gruttmann and Wag-
ner [10] presented a new formula in order to compute the
shear coeflicients of different cross-sections of a Timo-
shenko’s beam. The discussion of this topic for the plate
and shell problems can be found in [1.2,25,27.32]. In this
paper, the shear coeflicients are studied by considering
the shear deformation energy.

The shear forces (Q,. Q,) are related to the average
shear strains (y,-. 7,:) by.



{9 [l o] (14)
0, His Hss] |92 [’
where H; (i.j=4.5) are the shear stiffnesses. For isotropic
materials, there is no coupling between the shear deforma-
tions in two directions, i.e.. Hys = 0 and H44 = Hss. There-
fore, it is sufficient to identify only one of the components
1]55 or 1144

By using the shear stress defined in (13). the shear defor-
mation energy per unit middle surface area is then given by
the following expression:

. — lgz/h’/2 [mnn () Zd_ (15)
T2 e Glo) - )
where G(z) = E(z)/(2(1 + v(z))) is the transverse shear
modulus at location z. Furthermore, the shear deformation
energy per unit middle surface area is expressed by using

the average shear deformation,

1 1 ¢
n,\-m Z;Q')'O _g

r.r:ZZH“'

The balance of the shear energy enables us to deduce,

W2 (s 12 -
Y= [ (2)
Hss = —dz] . 17
s (/, GG (1)
where Hss is the improved shear stiffness for FG plates.
The shear correction coeflicients are finally obtained from:

Hss
[, G=)dz

(16)

kss = (18)

The shear correction factor is equal to 5/6 for homoge-
neous plates assuming a parabolic variation of the shear
stress and a priori relations (18), (17) and (12) will lead
to different values for the FGM. Moreover, the use of the
improved shear stiffnesses in Eq. (17) will provide a better
evaluation of transverse shear forces in (14).

3. Applications

The numerical applications of the FSDT model are per-
formed with two examples. The first test is the study of the
cylindrical bending of a clamped-clamped sandwich panel.
A comparison is performed with solutions obtained from
discrete finite element model and other cylindrical bending
plate models. In the second example, a simply supported
plate is studied. Navier’s analytical solution is achieved
and compared to the FSDT, TSDT, SSDT solutions and
to a three-dimensional discrete finite element solution.

3.1. Sandwich panel with functionally graded faces

3.1.1. Material distribution

Consider the 3-layers sandwich strip shown in Fig. 2.
The face layers are made of a ceramic-metal isotropic
material whose properties vary smoothly through the

Qo Coramic

LTI T T TIITT]
j‘l _L 1L Metal by X
g | ;

Fig. 2. Geometry of the sandwich panel with the functionally graded
faces.

thickness according to the volume fractions of the constit-
uents. The core layer is constituted by the metal isotropic
homogeneous material. The vertical positions of the bot-
tom and top faces, and of two interfaces between the layers
are respectively denoted by hy= —h/2, hy,hy.hy = h/2.
which are directly related to e,. ¢y, ¢; being the thicknesses
of the core, of the bottom and top faces respectively.

The distribution of elastic properties through the thick-
ness of the sandwich plate is assumed by a power-law
relation:

EW(2) = (Ew — E)V(2) + E., (19)

where E. and E,, are the Young's moduli of ceramic and
metal, ¥,¥) being given by :

e = ()" for = cim
iz =1 for z €[, h] (20)
20 () o e

where p is a material parameter which is positive, /1 is the
thickness of the plate and z < [—4/2./h/2]. The implicit
assumption within (19) is that the mixture of the two mate-
rials is taken into account by the “Voigt model”. It can be
shown that this assumption is convenient if the contrast be-
tween the phases is not too large. Many more approxima-

0.2
—4— p=0.1
©- p=0.5
01} 7- p=1
o p=2
=6
£ 0 < p )
-0.1
-0.2

05 06
volume fraction of Metal

Fig. 3. Variation of ¥, through the thickness of the plate according to p.
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tions of the effective elastic properties can be found within
the literature [8.31,39]. The material variation profiles un-
der consideration are shown in Fig. 3 for different values
of p.

3.1.2. Numerical results

A sandwich panel that is clamped at two opposite ends
and subjected to the uniformly distributed load acting
downward ¢, (Fig. 2) is now considered. The closed-form
expression of the displacement field within a FG sandwich
panel is given in appendix. In this section, the effect on the
deflection of the plate due to changing the shear correction
factors is shown. In the following, the Poisson’s ratio is
assumed to be constant. The study of its effect on the static
response of the plate can be found in [5.6.30]. The follow-
ing parameters are used for numerical computations,
v=03,¢,=10" ¢, =0.01,e5 = 0.01.

Figs. 4 and S present the variation profile of the shear
correction factors according to the ratio of elastic moduli
ny = E./E, and to the power-law parameter p. where p is
within the range [0-20], while n, is within the range [1-
20]. The ratio e./es is within the range [1-40]. The values
of the shear correction factors for every couple (p.ny) and
(p.edes) are given in Tables 1 and 2. It is important to
notice that the shear correction factor k depends strongly
on the values of p and on the ratio of E./E,, and e./es. It
can be seen that the shear correction factors decrease when
the ratio of the elastic moduli increases (Figs. 4 and 5). On
the other hand, the shear correction factor increases when
the ratio of thickness between the core and face increases
(Fig. 6). The shear correction factor is equal to 5/6 as for
a homogeneous plate for p =0 and ny = | and is smaller
than 5/6 in other cases.

Table 2 and Fig. 6 represent the variation of the shear
correction factor in terms of the ratio of the thickness of
the homogeneous core and of the thickness of the function-
ally graded faces. When the ratio e./ey is very large, the
shear factor tends to the value obtained for homogenous

20 S
Material parameter, p plates (Plg' 6)'
To consider the effect on the deflection of the sandwich
Fig. 5. Variation of the shear factor according to p, e./eq = 4. panel induced by changing the shear correction factor, the
Table |
Shear correction factors, e./e; = 4
P Ec/Ep
1 2 3 4 5 6 8 10 15 20
0 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6
0.2 5/6 0.8137 0.7921 0.7699 0.7478 0.7262 0.6851 0.6474 0.5672 0.5037
0.4 5/6 0.7973 0.7589 0.7214 0.6860 0.6532 0.5949 0.5454 0.4505 0.3832
0.6 5/6 0.7843 0.7338 0.6865 0.6437 0.6051 0.5393 0.4859 0.3887 0.3237
1.0 5/6 0.7654 0.6993 0.6409 0.5902 0.5464 0.4749 0.4196 0.3245 0.2645
2.0 5/6 0.7395 0.6552 0.5855 0.5281 0.4805 0.4065 0.3520 0.2633 0.2102
4.0 5/6 0.7184 0.6215 0.5450 0.4843 0.4353 0.3616 0.3080 0.2263 0.1784
6.0 5/6 0.7093 0.6074 0.5284 0.4667 0.4175 0.3443 0.2926 0.2126 0.1669
8.0 5/6 0.7043 0.5996 0.5194 0.4572 0.4078 0.3350 0.2840 0.2055 0.1609
10.0 5/6 0.7011 0.5947 0.5137 0.4512 0.4018 0.3292 0.2786 0.2011 0.1572
15.0 5/6 0.6966 0.5877 0.5057 0.4428 0.3934 0.3212 0.2712 0.1950 0.1522
20.0 5/6 0.6942 0.5840 0.5014 0.4384 0.3890 0.3171 0.2674 0.1919 0.1496




Table 2

Shear correction factors, E, /E,, = 6

3
0‘0

ec/oﬁ

P ec/en
1 2 4 6 8 10 15 20 30 40
0 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6
1 0.4591 0.4819 0.5464 0.5990 0.6392 0.6701 0.7215 0.7520 0.7848 0.8012
2 0.3981 0.4158 0.4805 0.5368 0.5815 0.6171 0.6790 0.7177 0.7615 0.7844
4 0.3583 0.3719 0.4353 0.4929 0.5399 0.5780 0.6462 0.6903 0.7420 0.7700
6 0.3429 0.3547 0.4175 0.4754 0.5231 0.5620 0.6326 0.6787 0.7335 0.7635
8 0.3347 0.3454 0.4078 0.4659 0.5139 0.5533 0.6250 0.6723 0.7287 0.7599
10 0.3294 0.3397 0.4018 0.4599 0.5081 0.5478 0.6203 0.6682 0.7257 0.7576
compared in a first step to that of the model using the cor-
L ! " ! ! ! ! ! rection factor k= 5/6. The measurement of a “‘relative
error’” is defined by the relationship:
0.9k .
0.8F 5004
x 600 gﬁggﬁ“
§' e fe8ts
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Fig. 6. Variation of the shear factors in terms of the ratio of e/ey.

E./E, =6.

value k = 0.3547 is taken (Table 2). This value corresponds
to p=6, E./E, =6 (SiC, E,=420GPa and aluminum,

E,=70G

Pa) and e./e; = 2. The obtained deflection is
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Fig. 8. Relative error of maximal deflection according to the ratio of
length-thickness, e./eq = 2, p=6.
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Fig. 9. Variation profile of deflection for various model, E./E,, = 6, p = 6,
alh =10, e./es =2.



Table 3

Deflection and relative error in a clamped sandwich strip, E./E, =6, p =6, ¢ /e, =2

alh FEM FSDT
k=1 k=5/6 k=0.3547
5 6.023e—8 3.495¢—08 (—41.97%) 3.791e—8 (—37.06%) 6.183e—8 (2.66%)
10 4.822e-7 3.820e—07 (—20.78%) 3.938e—7 (—18.33%) 4.895¢—7 (1.51%)
20 5.868¢e—6 5.403e—06 (—7.92%) 5.450e—6 (—7.12%) 5.833e—6 (—0.60%)
30 2.794e—5 2.669¢—05 (—4.47%) 2.679e—5 (—4.12 %) 2.765¢—5 (—1.04%)
40 8.636e—5 8.360e—05 (—3.20%) 8.379e—5 (—2.98%) 8.532e—5 (—1.20%)
50 2.086e—4 2.033e—04 (—2.54%) 2.036e—4 (—2.40%) 2.060e—4 (—1.25%)
o M.—-M : isc i A y .
error (%) = ™ 100% @1) discrete finite element model, dpd M, that of the other
M, models). The errors can be seen in Table 3 and are shown

where M, is the value of the maximum deflection obtained
from the present model. and M, is that of other models.

Figs. 7 and 8 show the variation profile of the relative
error of the maximal deflection at the center of the plate
for the corrected shear coeflicient using the five-sixth fac-
tor. It can be observed that the difference increases with
the value ny and the plate thickness. That is explained by
the fact that the correction factor decreases strongly in
those cases. The difference between the maximal deflection
for the case of the five-sixth factor compared to the present
model is 37.5% for ny = 6 (SiC-Al) and p = 6. This devia-
tion is higher for a larger value of n.

The validation of the solution of the present model is
performed by comparison with that of a finite element
model. The finite element computation is performed with
five discrete layers through the layer-thickness of the plate.
The 3D solution is obtained by using Abaqus software and
linear quadrilateral elements CPE4R (plane strain). In
comparison, the deflection obtained by the finite element
model is approximately equal to that of the model using
the corrected shear factor (Fig. 9). The relative error in
comparison with the finite element solution is determined
by using (21) (where M,, is the magnitude given by the

—=- FSDT (k=1)

Relative error (%)

5 10 15 20 25 30 35 40 45 50
ah

Fig. 10. Relative error of the maximal deflection, E./E, =6, p =6,
e./eq=2.

in Fig. 10. It is seen that the corrected FSDT solution is in
a good agreement with the finite element solution, whereas
the results obtained by the FSDT model taking the factor
of correction k = 5/6 are different even for a thin plate.

p=1

Non—dimensional thickness, z/h

p=05

0 0.1 02 03 04 05 0.6 0.7 08 0.9 1
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Fig. 11. Variation of ¥V, through plate thickness for various values of p.
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3.2, Functionally graded simply supported plate

3.2.1. Material distribution

The distribution of a functionally graded material within
a non-symmetrical plate is now considered. The plate is
made of a mixture of ceramic and metallic components
(Fig. 1).

The effective modulus through the plate is defined in (19)
where V,,(z) =1 -V, (z).

N
Vo) = (‘*2) . (22)

h

The distribution of the materials under consideration
(22) is presented in Fig. 11. It can be seen that the V, varies
quickly near the lowest surface for p <1 and increases
quickly near the top surface for p > 1.
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Fig. 13. Variation of the shear correction factor according to p.

In this part, the effect on the deflection of the plate due
to changing the shear correction factors will be shown.
Moreover, some results for the static analysis of a squared,
simply supported FG plate under uniformly distributed
load of intensity ¢, are presented. They are compared to
the third-order shear deformation plate model (TSDT) of
Reddy [22]. the sinusoidal shear deformation plate model
(SSDT) of Zenkour [33] and a discrete three-dimensional
finite element model. The following parameters are used
for numerical computations, v=0.3,a=5b=1,¢, = 10*.
The deflection and stress fields within the plate are
obtained by the Navier’s solution given in the appendix.
The following non-dimensional parameters are used:
W =w/h,a=ah®/(q,a").

Figs. 12 and 13 present the variation of the shear correc-
tion factors according to ny and p, where the parameters p
and ng are changed as for the previously studied sandwich
panel. The shear correction factors are equal to 5/6 as for a
homogeneous plate for p = 0 or ny = 1 and approximately
this usual value for p =1. They are higher than 5/6 for
p <L

Table 4 gives the values of shear correction factors
related to every couple (p.ng). It can be seen that, with
the same material distribution of FGM (SiC-Al), the shear
factor of the plate (k = 0.6595) is larger than for the case of
a symmetric sandwich plate (k = 0.3547, see Table 2).

The relative error is obtained by formula (21) where M,,
is the magnitude obtained by the corrected FSDT model
and M, the value taken from FSDT model. Fig. 14 presents
the variation of the relative error on the maximal deflection
in terms of the parameters (p, np). This difference is shown
in Fig. 15 as a function of the ratio length-thickness of the
plate. It can be seen in this case that the variation of the
shear correction factor does not affect the deflection of
the thin and medium-thick plates. This is due to the fact

Table 4
Shear correction factors for the FG plate
r Ee/En
1 2 3 4 6 8 10 15 20
0 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6
0.2 5/6 0.8396 0.8418 0.8429 0.8435 0.8440 0.8445 0.8448 0.8453 0.8455
04 5/6 0.8411 0.8439 0.8453 0.8462 0.8467 0.8474 0.8478 0.8483 0.8486
0.6 5/6 0.8396 0.8420 0.8433 0.8441 0.8446 0.8453 0.8457 0.8461 0.8463
0.8 5/6 0.8364 0.8374 0.8381 0.8386 0.8389 0.8395 0.8399 0.8404 0.8406
1.0 5/6 0.8320 0.8309 0.8305 0.8304 0.8305 0.8308 0.8312 0.8319 0.8323
20 5/6 0.8095 0.7924 0.7804 0.7720 0.7662 0.7593 0.7563 0.7555 0.7580
30 5/6 0.7961 0.7666 0.7433 0.7247 0.7099 0.6882 0.6738 0.6556 0.6498
4.0 5/6 0.7905 0.7547 0.7248 0.6997 0.6786 0.6451 0.6203 0.5810 0.5599
5.0 5/6 0.7891 0.7506 0.7175 0.6890 0.6643 0.6238 0.5923 0.5381 0.5046
6.0 5/6 0.7899 0.7507 0.7163 0.6861 0.6595 0.6150 0.5794 0.5158 0.4741
7.0 5/6 0.7917 0.7530 0.7183 0.6875 0.6600 0.6132 0.5751 0.5053 0.4581
8.0 5/6 0.7940 0.7563 0.7221 0.6912 0.6634 0.6155 0.5759 0.5020 0.4508
9.0 5/6 0.7964 0.7602 0.7267 0.6962 0.6685 0.6202 0.5799 0.5032 0.4492
10.0 5/6 0.7989 0.7642 0.7316 0.7017 0.6743 0.6262 0.5856 0.5073 0.4513
15.0 5/6 0.8090 0.7820 0.7551 0.7293 0.7048 0.6602 0.6210 0.5419 0.4823
20.0 5/6 0.8157 0.7947 0.7729 0.7511 0.7300 0.6902 0.6540 0.5780 0.5183
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Fig. 15. Relative error of maximal deflection, p = 6.

that the contribution of the shear deformation energy is
negligible compared to the bending deformation energy.
The effect of the shear correction factor is non-negligible
only for the thick plate (a/h < 10). However, the effect of
the shear correction factor becomes more significant when
the ratio of elastic moduli increases (see Fig. 15).

In order to validate the results of the model, a compar-
ison is made with previous results of the literature and with
a finite element solution. To do this, a three-dimensional
finite element computation with element C3DSR is per-
formed as explained in the previous section. An appropri-
ate meshing comprising 8 discrete layers in the thickness
direction is used.

It can be seen in Fig. 16 that the deflection obtained
from the present study is identical to that of the discrete
three-dimensional finite element model and to the higher-
order shear deformation models (TSDT. SSDT). The dif-
ference between these results and the result received from
the model using the five-sixth shear correction factor is

= cpT
o FSOT
S FSDT (corrected)
| — TSOT
05 & SSOT
- FEM

Non—dimenslion deflection
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Fig. 16. Non-dimensional deflection for various models, a/h =5, p =6,
SiC-AL

approximately 5% for the SiC-Al FGM, 7% for WC-Al
FGM and this percentage continue to increase in terms
of the augmentation of ny. Furthermore, the models taking
into accounts the shear deformation are also compared to
the model of Love-Kirchhofl in Fig. 16. That comparison
allows us to remark that there is an important difference
between the CPT model and the others. That is logical
because the contribution of shear deformation energy is
significant for the actual thickness of plate (a/h = 5).

The variation of the plane stress o, at the center of the
FG plate along the thickness direction is depicted in
Fig. 17. It can be seen that the maximum compressive stress
is at the top surface and increases with p. In comparison, the
maximum tensile stress is located inside the plate for p < 1.
This is a significant difference compared with usual homoge-
neous composite laminate. There is not important difference
of the membrane stresses between the models, the prediction
of the their distribution is thus not represented.
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Fig. 17. Non-dimensional stress 6., a/h = 5, Si-Al.



The transverse shear stress defined in (13) near the
boundary edge (x =99a/100.y =495/100) is shown in
Figs. 18-20. It is compared to the shear stress given by
higher-order models and to the results obtained from a
three-dimensional finite element model. In comparison,
the shear stresses of the corrected FSDT model and those
of the three-dimensional element finite model are nearly
the same. It can be seen that. for higher-order models,
the curves are clearly different for the three models (FSDT,
TSDT. SSDT) (see Figs. 19 and 20). The relative difference
between the values of shear stresses can reach 25% (Fig. 20)
at some locations within the plate for (ng=6, p=06).
Clearly, this distinction depends on the parameters n,
and p. The difference between the FSDT model and the
higher-order models (TSDT, SSDT) is indeed small for
the smaller values of (no,) (see Fig. 18).
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Fig. 18. Non-dimensional stress Gy, E./En = 2, p =2, a/h = 10.
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4. Conclusions

The improved shear stiffnesses and shear correction
coeflicients for the functionally graded plate models using
FSDT were presented. The closed-form solutions for the
simply supported square functionally graded plate and
for the cylindrical bended sandwich plate with functionally
graded faces based on the first-order shear deformation
(FSDT) were obtained. The obtained results show that
the shear correction factor is not the same as the one of
the homogeneous FSDT models, and is a function of the
ratio between elastic moduli of constituents and of the dis-
tribution of materials through the models. Its effect is the
most significant for the sandwich plate. For a classical,
non-symmetrical FGM plate, the maximum tensile stress
is located within the plate, contrarily to the case of a
homogenous plate. The variation of the shear stress
through the thickness of the FG plate given by the FSDT
model is identical to the one given by the finite element
model.

Appendix A. Navier’s solution for the functionally graded
Reissner-Mindlin plate

The boundary conditions for the simply supported rect-
angular plates are of the form,

up(x,0) =0, wo(x,0) =0, 0,(x.0)=0,
up(x,b) = wo(x, b) = 0.(x,b) =0,
vo(0,y) = wo(0.y) =0, 0,(0,y) =0,
vola,y) = wo(a.y) =0, 0,a.y)=0,

Nuo(0,y) =0, Nyla,y)=0,
0

N}]'(~\-~ 0) =0, Nu( h) =
M (0,y) =0, M(a,y)= (23)
M, (x,0) =0, M,(x.h)=



The external force is expressed as a double trigonometric
series,

= Z Z Gy SINAX SIN J1, (24)
n=1 m=1
where 4 = mn/a and p = nn/b. The coeflicients ¢, for the
uniformly distributed load are defined as follows:

% for m.n odd i
ql"ll = (-5)
0 for m.n even

where ¢, represents the load intensity on the plate surface.

The Navier’s solution for simply supported plates under

the uniform distributed load is given by:

up(x, ) i iu,,,,, COS Ax sin uy, (26)
=1 m=1

vo(x.y) = i i Uy SIN AX COS 11y, (27)
w1 m-1

wolx,y) = i: i Wi SINAX SIN f1y, (28)
n=1 m=1

0.(x,y) = i i.v,,,,, Cos Axsin puy, (29)
=1 m=1

0,(x.y) = i: i""’"’ SIN AX COS j1y. (30)

n=1 m=

The equilibrium equations of plates are given by,

Napp =0, Maupp=0,. Q,,+q=0. (31)

The constitutive relations can be written as:

Nzﬂ(.\‘. .l‘) = A,ﬂ}.,s('?‘)- (X._l') + 81575}:},5(‘\‘.}').

M p(x.y) = B,/,.’.‘;e?é(.\‘.y) + Dagys2,5(x. 1), (32)
Q,(x,y)=H given in (14),

where /) and y,; are given in (2), and H 4 are the improved
shear stiffnesses given in (17). Substituting Eqgs.
26,27.28,29.30, (24) and (25) into (31), the following equa-
tion system is obtained,

xﬁ‘)‘/{}(-“u“)

S S1i2 0 S1a S5 Upmp 0
S22 S22 0 S24 825 Upmin 0
0 0 533 834 835 Wonn = Gon s (33)
S14a S24 834 Saa Sas Xomn 0
515 825 S35 845 Sss Ymn 0

where the coeflicients of the matrix s are given by,

s =Aun A+ i, s = (A + Aan) A,

s =Bun i + Bk, sis = (Bun + Bian) A,
s = Ak’ + donp®, s34 = 85,

22 5 22 2
§25 = Biond” + B, s33 = HssA” + Haat*,

s34 = Hssh,s35 = Hupt,
su = Hss + Dk’ + D,
sis = (Dno + Do) An,
sss = Has + Doyt + Dyopp i’

The in-plane stress fields are defined as follows,

E o0

oo
O = E [(ttmn/e 4 v(2) 0 )

l_‘ n=1 m=1
+z (\',,,,,/ +v(z)uy,, )| sin Ax sin py (35)

‘ o0 o0

G,y = , z Z[ Ut + V(2) Aty
(

l = V(@) = e
'( ',,m;t + v(z) Ax, )| sin Ax sin py (36)

Gy =

D [(ttmnft + A0

n=l m=1

+ v(z
+ :(.v,,,,, "+ /.)‘,",,): COS AX COS Ly (37)
Transverse shear stresses are determined by expression

(13) as follows,

0. =y (2)Hss z Z[.\‘,,,,, + /Wy, | cos Axsin py, (38)
i

1
E
I

[
¢

Gy- = M2 (z)Has [V + W] sID Ax COS pav. (39)

n=l m=

Appendix B. Closed-form solution for the functionally
graded sandwich panel in cylindrical bending

Assuming that for cylindrical bending 0, =0 every-
where, the boundary conditions for the clamped sandwich
panel are of the form,

tp(x=0) =0, up(x=0), wx=0)=0

0.(x = 0) = 0, o)
volx=a)=0, uplx=a)=0, wix=a)=0

0.(x=a)=0.

The equilibrium Eq. (31) for the cylindrical bending
plate can be written simplify as follows,

My —Q,=0. O, +q =0, Ny, = 0. 41)
The generalized constitutive relations (32) for the isotro-
pic materials are expressed explicitly,
Ny = Annittox + Biin Oy,
N, = Ayt + Byl (42)
Ny = An1200-
M = Bunuox + Din Oy,
M,, = By, + Dyl . (43)
M., = Bty
and
O, = Hss(0: + wy). (44)



Similarly. substituting the expressions (42)-(44) into the
equilibrium Eq. (41). leads to the following relations:

Doxvr.r - H55(0.r + M'_r) =0, (45)
Hss(wou + 0:) + ¢ =0, (46)

where D = Dy — Bfm/A““ is the stiffness of the sand-
wich panel. For ¢(x) = ¢, = const and by applying the
boundary conditions (40), the Eqs. (45) and (46) lead to:

00 =852 -3+ ()] @)
mi =25 (0 - Q)] 5 [0-0 @

The maximal deflection obtained at the middle of the
plate (x = a/2) is of the form:

4

) _ qoa 48D
W0 max = 384D (l +_H55a3 . (49)
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