
HAL Id: hal-00689682
https://hal.science/hal-00689682

Submitted on 19 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On measures of nonlinearities for dynamical systems
with uncertainties

R. Sampaio, Christian Soize

To cite this version:
R. Sampaio, Christian Soize. On measures of nonlinearities for dynamical systems with uncertainties.
18th International Congress of Mechanical Engineering, COBEM 2005, ABCM, Nov 2005, Ouro Preto,
MG, Brazil. pp.1-8. �hal-00689682�

https://hal.science/hal-00689682
https://hal.archives-ouvertes.fr


Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

On measures of nonlinearities for dynamical systems with uncertainties

Rubens Sampaio

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea,

22453-900, Rio de Janeiro, RJ, Brazil

rsampaio@mec.puc-rio.br

Christian Soize

Laboratoire de Mécanique, Université de Marne-la-Vallèe; 5, Bd Descartes, 77454 Marne-la-Vallée, France

soize@univ-mlv.fr

Abstract. This paper studies the transient dynamics of a linear dynamical system with elastic barriers excited by a

deterministic transient force whose Fourier Transform has a bounded frequency narrow band. The system is then non-

linear. In order to measure the degree of non-linearity of the system, one looks for the mechanical energy transferred

outside the frequency band of excitation as a function of the parameter η defined by ǫ
a , in which ǫ is the size of the barrier

gap and a is the amplitude of the excitation force. The mechanical energy transferred outside the frequency band of

excitation can potentially be a source of excitation for other subsystems. Consequently, a quantification of this energy

transfer is important for the understanding of the non-linear dynamical system. In addition, it is well known that this

type of non-linear dynamical system is very sensitive to uncertainties. For this reason one studies the system as being

deterministic, and also stochastic in order to take into account random uncertainties. The proposed analysis is then

applied to a Timoshenko beam having its motion constrained by a symmetric elastic barrier at its free end. In particular,

one shows the confidence region of the random mechanical energy transferred outside the excitation band as a function

of η for several levels of model and data uncertainties. This type of results allows the robustness of the predictions to be

analyzed with respect to model and data uncertainties.

Keywords: Nonlinear Dynamics, Vibroimpacts, System Uncertainties

1. Introduction

The non-linear dynamics of linear dynamical systems with barriers inducing impacts have received a considerable

attention in the last two decades. Although there are some engineering systems where impacts are part of the project,

most of the time this phenomenon is related to wear, fatigue and noise as, for example, in the case of gear boxes. The

interest in vibroimpact systems arises due to their intrinsic non-linear characteristic which prevents their study through

more traditional methods such as modal analysis. Actually, systems of this kind have an extremely complex dynamic

behaviour, sometimes even chaotic. Therefore, they are normally studied with bifurcation diagrams and Poincaré maps.

However, most of the vibroimpact systems investigated so far consists of simple ones with a single degree of freedom.

It is expected that the flexibility of a structure will play an important role in its impact response, specially through the

excitations of many of its degrees of freedom. Also one expects some exchange of energy among modes due to impacts.

A lot of works have been published concerning one single degree of freedom and multi-degrees of freedom deterministic

systems excited by deterministic harmonic signals or by narrow- or wide-band stochastic processes (see for instance

Babitsky and Birkett [1]). A review of such works can be found in the recent paper by Dimentberg and Iourtchenko

[2]. It should be noted that deterministic continuous systems with impacts have received less attention probably due to the

difficulties of such non-linear dynamical problems which are very hard to analyzed with analytical tools or with numerical

methods. However, some recent representative works of this type can be found in Refs. [4].

Some of the features of this work are:

• It is not about a single, nor multiple, degree of freedom system, but deals with a continuous system. Nevertheless,

in order to simplify the presentation and also to show that the methodology applies to a general dynamical system,

we start with a discretization of the continuous system, say by using the finite element method.

• The excitation is neither narrow- nor broad-band stochastic process ( including white noise modelling) nor de-

terministic harmonic signal. In this paper the excitation will be modelled by a deterministic narrow-band signal.

This choice is important because it gives some robustness to the excitation. One centers the band around one of

the natural frequencies of the linear system(without impact) and the width of the band is chosen in order to allow

modifications of the system to be taken into account (nonlinearities and uncertainties).

• It deals with the deterministic and also stochastic modelling of the continous system. The stochastic aspects being

induced by the uncertainties in the data and in the model (the matrices that represent the linear continuous system

are random).
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• Measures of nonlinearities are proposed. In order to analyze the degree of non-linearity of the system, one looks for

the mechanical energy transferred outside the frequency band of excitation as a function of the parameter η, defined

by ǫ
a , in which ǫ is the size of the barrier gap and a is the amplitude of the excitation force. When ǫ is zero or infinity,

there are no impacts. When it is between this two bounds the continuous system-barrier behaves non-linearly for

amplitude a sufficiently high. It turns out that the non-linearity depends on η. The interest of measuring the amount

of energy that is transferred outside the band of excitation is to evaluate the dangerous consequences like exciting

sensitive subsystems whose lowest eigenfrequency is outside the band of excitation.

• Stochastic systems are considered in order to evaluate the robustness of the numerical prediction of the energy

transferred with respect to data and model uncertainties.

This paper is divided of four parts. Section 2.is devoted to the modelling and analysis of the deterministic non-linear

dynamical system. In Section 3.one presents the stochastic modelling of the system in order to take into account data and

model uncertainties. Section 4.deals with numerical applications. We take a Timoshenko beam with an elastic barrier.

Finally, general analysis and conclusions are presented in Section 5..

2. Modelling and analysis of the deterministic non-linear dynamical system

In this section one presents the mean model of the dynamical system with excitation, the reduced mean model obtained

by using the elastic modes of the linear mean dynamical system and finally, one describes the different energies one needs

to analyze the energy transferred outside the excitation band.

2.1 Finite element model of the mean non-linear dynamical system

The main interest of the paper is to study a linear continuous system with elastic barriers that induce through impact

non-linearities. However the methodology one presents is general and can be applied to a larger class of problems, as

for example those related to a linear system interacting with a subsystem that originates non-linearities, as the case of an

elastic barrier. Systems having large deformations are, of course, not included. In order to focus in the methodology one

starts with a finite dimensional system that could be the result of a discretization process. This system, referred as the

mean model, is described by the following matrix equation in R
m,

[M] ÿ(t) + [D] ẏ(t) + [K]y(t) + fNL(y(t), ẏ(t)) = f(t) , (1)

where [M], [D], [K] are the mass, damping and stiffness matrices, that are supposed to be symmetric and positive-definite

real matrices, and y(t) is the displacement vector, fNL(y(t), ẏ(t)) describes the nonlinear vector forces, f(t) the applied

vector load. The non-linear mapping (y, z) 7→ fNL(y, z) is assumed to be such that fNL(0, 0) = 0. The vector load f(t) is

written as

f(t) = a g(t) f0 , (2)

in which a is the amplitude and f0 is a normalized vector describing the position of the applied forces. The impulse

t 7→ g(t) is a square integrable real-valued function on R whose Fourier Transform ω 7→ ĝ(ω) =
∫

R
e−iωtg(t) dt has a

bounded support B2 ∪ B2 with

B2 = [ωmin, ωmax] , B2 = [−ωmax,−ωmin] . (3)

The notation B2 will be explained in Section 2.3. In addition it is assumed that maxω∈B2
|ĝ(ω)| = 1.

2.2 Reduced mean model

Let {φ1, . . . , φm} be an algebraic basis of R
m. The reduced mean model of the dynamic system whose mean fi-

nite element model is defined by Eq. (1) is obtained by projection of Eq. (1) on the subspace Vn of R
m spanned by

{φ1, . . . , φn} with n ≪ m. Let [ Φn] be the (m × n) real matrix whose columns are vectors {φ1, . . . , φn}. The gener-

alized applied force Fn(t) is an R
n-vector such that Fn(t) = [Φn]T f(t). The generalized mass, damping and stiffness

matrices [Mn], [Dn] and [Kn] are positive-definite symmetric (n× n) real matrices such that [Mn] = [ Φn]T [ M ][ Φn],
[Dn] = [Φn]T [ D ][ Φn], and [Kn] = [Φn]T [ K ][ Φn]. Consequently, the reduced mean model of the nonlinear dynamic

system, written as the projection yn of y on Vn, can be written as

yn(t) = [ Φn]qn(t) , (4)

in which the vector qn(t) ∈ R
n of the generalized coordinates verifies the mean nonlinear differential equation,

[Mn] q̈n(t) + [Dn] q̇n(t) + [Kn]qn(t) + Fn
NL

(qn(t), q̇n(t)) = Fn(t) , (5)



Proceedings of COBEM 2005
Copyright c© 2005 by ABCM

18th International Congress of Mechanical Engineering
November 6-11, 2005, Ouro Preto, MG

where, for all q and p in R
n,

Fn
NL

(q,p) = [ Φn]T fNL([ Φn]q, [ Φn]p) . (6)

2.3 Quantification of the transferred energies outside the excitation band

The objective of this section is to quantify the mechanical energy transferred outside the excitation band. It is assumed

that Eq. (1) has a unique solution t 7→ y(t) such that y and ẏ are square integrable vector-valued functions on R. An

approximation of this solution is computed using the reduced mean model defined by Eqs. (4)-(6). The positive frequency

band R
+ = [0,+∞[ is then written as

R
+ = [0,+∞[= B1 ∪ B2 ∪ B3 , (7)

in which B1 = [0, ωmin[ and B3 =]ωmax,+∞[. The sets B1 and B3 are the bands outside the frequency band of

excitation B2. The total mechanical energy, denoted by ẽ, of the non-linear dynamical system corresponding to the

solution mentioned above is written as,

ẽ =

∫

R

(
1

2
< [M] ẏ(t) , ẏ(t) > +

1

2
< [K]y(t) ,y(t) >) dt . (8)

Let ŷ(ω) =
∫

R
e−iωty(t) dt be the Fourier Transform of y. Using the Parseval formula, Eq. (8) yields

ẽ =

∫

R

h(ω) dω = 2

∫

R+

h(ω) dω , (9)

in which h(ω) is the density of the mechanical energy in the frequency domain which is written as

h(ω) =
1

2π
{
1

2
< ω2[M] ŷ(ω) , ŷ(ω) > +

1

2
< [K] ŷ(ω) , ŷ(ω) > } . (10)

From Eqs. (7) and (9), it can deduced that

ẽ = ẽ1 + ẽ2 + ẽ3 , (11)

in which

ẽj = 2

∫

Bj

h(ω) dω , j = 1, 2, 3 . (12)

The transferred mechanical energy outside the excitation band B2 is denoted by ẽ13 which is defined by

ẽ13 = ẽ1 + ẽ3 . (13)

Using the reduced mean model defined by Eqs. (4)-(6), the approximation hn(ω) of h(ω) defined by Eq. (10) can be

written as

hn(ω) =
1

2π
{
1

2
< ω2[Mn] q̂n(ω) , q̂n(ω) > +

1

2
< [Kn] q̂n(ω) , q̂n(ω) > } , (14)

in which q̂n(ω) =
∫

R
e−iωtqn(t) dt is the Fourier Transform of qn. The corresponding energies computed with this

approximation are denoted by ẽn, ẽn
1 , ẽn

2 , ẽn
3 , ẽn

13. In order to explore the results in a non-dimensional way one introduces

the following parameters,

en
1 =

ẽn
1

ẽn
, en

2 =
ẽn
2

ẽn
, en

3 =
ẽn
3

ẽn
, en

13 =
ẽn
13

ẽn
, (15)

3. Modelling and analysis of the non-linear dynamical system with random uncertainties

The first source of uncertainties in this type of problem is due to the mathematical-mechanical modelling process

leading to the boundary value problem. This type of uncertainty is structural, and cannot be represented as, simply, the

usual variation of parameters[5, 6]. This uncertainties are called the model uncertainties. Concerning the second source

of uncertainties, they come from the parameters such as geometry, material properties, boundary and initial conditions,

etc, related to the boundary value problem. The uncertainties in these parameters are called data uncertainties. It is

worthwhile to remark that the errors related to the construction of an approximation of the solution of the boundary

value problem, that have to be controlled in order to meet the specifications of the numerical approximation, are not

uncertainties. For the class of systems one studies the sources of uncertainties are in the data related to the non-linear term

and in the data and model related to the linear part.
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3.1 Probabilistic modelling of uncertainties

From this point one constructs the probability model of uncertainties from the mean reduced model defined by Eqs.

(4)-(6). All the random variables are defined in a probability space (Θ,F ,P)
(A) Parametric probabilistic model of data uncertainties for the non-linear term. Usually, data uncertainties are

modelled by using parametric probabilistic approach consisting in modelling each uncertain parameter by a random

variable whose probability distribution has to be constructed using the available information. The non-linear term

Fn
NL

(qn(t), q̇n(t)) in Eq. (5) is rewritten as Fn
NL

(qn(t), q̇n(t); s) in which s is an R
ν-vector of uncertain parameters. The

probabilistic modelling of vector s is as an R
ν-valued random variable whose probability distribution on R

ν is denoted by

PS(ds). The available information for constructing PS(ds) depends on the nature of the parameters constituting vector s

( for instance positivity, boundedness of components, etc). When this information is defined the probability distribution

can be constructed using the maximum entropy principle with the constraints defined by the available information.

(B) Non-parametric probabilistic model of model and data uncertainties for the linear part. Model uncertainties

cannot be taken into account using the parametric probabilistic approach. A non-parametric probabilistic approach can

be used to take into account model uncertainties and data uncertainties [5, 6]. The principle of construction of such non-

parametric probabilistic approach of uncertainties for the linear part of the non-linear dynamical system whose reduced

mean model is defined by Eqs. (4)-(6) consists in substituting the generalized mass, damping and stiffness matrices in Eq.

( 5) by random matrices [Mn], [Dn] and [Kn] whose probability distributions have been constructed using the maximum

entropy principle with an adapted available information. The explicit form of the probability distributions of the random

matrices [Mn], [Dn] and [Kn] are given in Refs. [5, 6].

(C) Stochastic reduced model. The stochastic transient response of the nonlinear dynamic system with a nonparametric

probabilistic approach of model and data uncertainties is the stochastic process Yn(t), indexed by R, with values in R
m,

such that

Yn(t) = [ Φn]Qn(t) , (16)

in which the stochastic process Qn, defined in the probability space (Θ,F ,P), indexed by R, with values R
n, is such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn]Qn(t) + Fn
NL(Qn(t), Q̇n(t);S) = Fn(t) . (17)

Let |||Qn||| be the norm such that

|||Qn|||2 = E{

∫

R

||Qn(t)||2 dt} , (18)

in which E is the mathematical expectation and where ||u||2 = u2
1 + . . . + u2

n is a square of the Euclidean norm of u in

R
n. It is assumed that the non-linear term is such that Eq. (17) has a unique second-order mean-square solution such that

|||Qn||| < +∞ , |||Q̇n||| < +∞ , (19)

3.2 Probabilistic quantification of the transferred energies outside the excitation band for the uncertain system

The objective of this section is to adapt Section 3.3to the reduced stochastic system defined by Eqs. (16) and (17). The

random total mechanical energy associated with ẽn is denoted by Ẽ n and is such that

Ẽ n =

∫

R

(
1

2
< [M] Ẏn(t) , Ẏn(t) > +

1

2
< [K]Yn(t) ,Yn(t) >) dt . (20)

The density of the random mechanical energy in the frequency domain associated with hn(ω) defined by Eq. (14) is

denoted by Hn(ω) and can be written as

Hn(ω) =
1

2π
{
1

2
< ω2[Mn] Q̂n(ω) , Q̂n(ω) > +

1

2
< [Kn] Q̂n(ω) , Q̂n(ω) > } , (21)

in which Q̂n(ω) =
∫

R
e−iωtQn(t) dt is the Fourier Transform of Qn.

Let Hn
dB(ω) be the density of the random mechanical energy in dB normalized with respect to the total mechanical

energy ẽlin of the linear mean system. One then has

Hn
dB(ω) = log10(H

n(ω)/ẽlin) . (22)

Let Ẽn
1 , Ẽn

2 , Ẽn
3 and Ẽn

13 be the random energies associated with ẽn
1 , ẽn

2 , ẽn
3 and ẽn

13 such that

Ẽn
j = 2

∫

Bj

Hn(ω) dω , j = 1, 2, 3 , Ẽn
13 = Ẽn

1 + Ẽn
3 . (23)
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Similarly to Section , this random energies are normalized as follows

En
1 =

Ẽn
1

Ẽn
, En

2 =
Ẽn

2

Ẽn
, En

3 =
Ẽn

3

Ẽn
, En

13 =
Ẽn

13

Ẽn
, (24)

3.3 Stochastic solver and convergence

In this section, one introduces the stochastic solver that is used and one analyses the stochastic convergence. The

Monte Carlo numerical simulation and mathematical statistics are used for solving the stochastic equations defined by

Eqs. (16) and (17). Let S(θ) and [Mn(θ)], [Dn(θ)], [Kn(θ)] be independent realizations of random variable S and

random matrices [Mn], [Dn], [Kn] for θ ∈ Θ.

(A) Construction of realizations of random variable S. Each realization S(θ) of random variable S is usually con-

structed using random generator associated with the probability distribution PS(ds). Because the generation is standard

it will not be detailed here.

(B) Construction of realizations of random matrix variables [Mn], [Dn], [Kn]. Let [An] be anyone of the three

random matrices above and let [An] be its mean value which is a positive-definite matrix. Its Cholesky factorization

yields [An] = [Ln]T [Ln]. Each realization [An(θ)] can be generated using the following algebraic representation [5, 6],

[An] = [Ln]T [Gn] [Ln] , (25)

In which the positive-definite random matrix [Gn] is written as

[Gn] = [Ln]T [Ln] . (26)

In Eq. (25), [Ln] is an upper triangular random matrix with values in Mn(R) such that:

(1) Random variables {[Ln]jj′ , j ≤ j′} are independent.

(2) For j < j′, real-valued random variable [Ln]jj′ can be written as [Ln]jj′ = σnUjj′ in which σn = δ(n + 1)−1/2

and where Ujj′ is a real-valued Gaussian random variable with zero mean and variance equal to 1.

(3) For j = j′, positive-valued random variable [Ln]jj can be written as [Ln]jj = σn

√
2Vj in which σn is defined

above and where Vj is a positive-valued gamma random variable whose probability density function pVj
(v) with respect

to dv is written as

pVj
(v) = 1R+(v)

1

Γ
(

n+1
2δ2 + 1−j

2

) v
n+1

2δ2 −
1+j
2 e−v , (27)

in which 1R+(v) = 1 if v ∈ R
+ and = 0 if not, and where Γ is the usual Gamma function. This algebraic representation

exhibits δ which is the positive parameter allowing the dispersion of random matrix [An] to be controlled. This parameter

has to be given for each random matrix and controls the level of uncertainties. In special it controls the uncertainties of

mass, damping or stiffness of the linear continuous system of the non-linear dynamical system.

(C)Construction of realizations of the solution of the stochastic reduced system. The realization Yn(t, θ) for θ ∈ Θ of

Yn(t) defined by Eq. (23) is given by

Yn(t, θ) = [ Φn]Qn(t, θ) , (28)

in which the realization {Qn(t, θ), t ∈ R} of the stochastic process {Qn(t), t ∈ R}, is the solution of the following

deterministic non-linear reduced equation,

[Mn(θ)] Q̈n(t, θ) + [Dn(θ)] Q̇n(t, θ) + [Kn(θ)]Qn(t, θ) + Fn
NL(Qn(t, θ), Q̇n(t, θ);S(θ)) = Fn(t, θ) . (29)

This equation is solved by using an implicit unconditionnally stable scheme such as Newmark algorithm. At each time

step, the non-linear algebraic equation coming from the scheme is solved by iteration.

(D)Stochastic convergence The mean-square convergence of the second-order stochastic solution of Eq. (17) with re-

spect to dimension n of the stochastic reduced model and to the number ns of realizations used in the Monte Carlo numer-

ical simulations is controlled by the norm |||Qn||| defined by Eq. (18). Using the usual estimation of the mathematical ex-

pectation operator E , convergence with respect to n and ns is studied by constructing the function (ns, n) 7→ conv(ns, n)
defined by

conv(ns, n) =

{
1

ns

ns∑

k=1

∫

R

‖Qn(t, θk)‖2 dt

}1/2

, (30)
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in which Qn(t, θ1), . . . ,Q
n(t, θns

) are ns independent realizations of Qn(t).
(E) Statistical estimations of the random energies. One is interested in constructing statistical estimations for the

stochastic process {Hn(ω), ω ∈ R} defined by Eq. (21) and for the random variables En
1 , En

2 , En
3 , En

13 defined by

Eq. (23), whose realizations are directly deduced from the realizations of Qn. Let X be the positive-valued random

variable representing either Hn(ω) for ω fixed in R or any of the random variables En
1 , En

2 , En
3 , En

13. The mean value

mX = E{X} is estimated by

m̃X =
1

ns

ns∑

k=1

X(θk) , (31)

in which X(θ1), . . . , X(θns
) are ns independent realizations of X . The confidence region of random variable X is

constructed by using the quantiles. Let FX be the cumulative distribution function (continuous from the right) of random

variable X such that FX(x) = P (X ≤ x). For 0 < p < 1, the pth quantile or fractile of FX is defined by

ζ(p) = inf{x : FX(x) ≥ p} . (32)

Then the upper envelope x+ and the lower envelope x− of the confidence region with probability level Pc are defined by

x+ = ζ Pc , x− = ζ(1 − Pc) . (33)

The estimation of x+ and x− is performed by using the sample quantiles. Let x1 = X(θ1), . . . , xns
= X(θns

). Let

x̃1 < . . . < x̃ns
be the order statistics associated with x1 < . . . < xns

. Therefore, one has the following estimation,

x+ ≃ x̃j+ , j+ = fix(ns Pc) , (34)

x− ≃ x̃j− , j− = fix(ns(1 − Pc)) , (35)

in which fix(z) is the integer part of the real number z.

4. Application to a Timoshenko beam with an elastic barrier

This section deals with the application of the theory developed in the previous sections. The linear part of the con-

tinuous system is a Timoshenko beam with added dissipation. The non-linear force is due to a symmetrical linear elastic

barrier.

The geometrical properties of the beam are length 1 m, width 0.1 m, height 0.1 m. The boundary conditions are

of a cantilever beam, with the free end having its motion limited by an elastic barrier distant of ǫ, in both sides of the

beam. The gap ǫ is considered as a parameter. The beam homogeneous, isotropic, whose material properties are density

7500 kg/m3, Young’ s modulus 2.1×1010 N/m2, Poisson’s coefficient 0.3, shearing correction factor 5/6. The damping

model is introduced by the model damping rate which is 0.02 for the first three modes, 0.01 for the fourth mode and 0.005
for the others. The elasticity constant of the barrier is kb = 107 N/m.

(A) Mean finite element model. The mean finite element model of the cantilever beam is constituted of 100 2-nodes

Timoshenko beam elements. The first six computed eigenfrequencies are 26.9, 162.7, 432.9, 794.1, 1219.2 and 1685.3
Hz.

(B) Description of excitation force. The vector load is defined by Eq. (2). The amplitude a is considered as a parameter.

The force is a point force applied at the middle point of the beam. The impulse function g is such that

g(t) =
1

π t
{sin(t(Ωc + ∆Ω/2)) − sin(t(Ωc − ∆Ω/2))} , (36)

whose Fourier Transform is ĝ(ω) = 1B
2
∪B2

. The frequency band B2 is defined by Eq. (3) with ωmin = 2πfmin and

ωmax = 2πfmax with fmin = 148 Hz and fmax = 178 Hz. The corresponding bandwidth ∆Ω = 2π∆f is then such

that ∆f = 30 Hz and the central frequency Ωc = 2π fc is such that fc = 163 Hz. Consequently, the frequency band of

excitation is central in the second eigenfrequency of the linear system.

(C) Reduced mean model. The numerical presented in this section are computed with n = 40, and the modes were

calculated with the finite element model. This valued was chosen to assure good convergence for the deterministic and

the stochastic solutions.

(D) Parametric probabilistic model of the barrier. Since the gap is taken as a parameter of the problem it is not

considered as uncertain. On the other hand, the stiffness of the barrier is uncertain and modelled by a positive-valued

random variable Kb whose mean value is kb, for which the coefficient of variation δb is 0 (no uncertainty) or 0.05
(uncertainty) and whose probability distribution is the Gamma law.

(E) Nonparametric probabilistic model of the beam. As explained in Section 3.3(B), the uncertainty levels for the

mass, damping and stiffness of the linear system are controlled by the dispersion parameters δM , δD and δK , respectively.
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In order to simplify the presentation, one only consider the cases δM = δD = δK . The common valued will be denoted

by δm. Two values are considered δm = 0 (no uncertainty) and δm = 0.1(uncertainty).

In this paper we show only results for δm = 0.1 and δb = 0.05.

The integration time step is taken as ∆t = 1/(2fmax) and the time integration T = ntime ∆t with ntime = 8192. The

integration in R is approximated by an integration over the interval [t0, t1] in which t0 = −T/2 and t1 = T/2−∆t. The

sampling time points are tk = t0 + k∆t, k = 0, . . . , ntime − 1. To compute the Fourier Transform by FFT algorithm,

the integration frequency step is taken as ∆ω = 2ωmax/nfreq with nfreq = ntime. The sampling frequency points are

ωk = −ωmax + k∆ω, k = 0, . . . , nfreq − 1. Equation (29) is integrated over [t0, t1] with zero initial conditions at t0. The

given choice of the parameters are such that E{‖Q(t1, θ)‖
2} is negligible at the final time t1.

Figure 1(left) is relative to the random fraction function η 7→ En
1 (η), defined by Eq. (23) and related to the random

mechanical energy transferred to band B1. Three quantities are represented in this figure: the graph η 7→ en
1 (η) for the

mean system, defined by Eq. (15), the graph η 7→ E{En
1 (η)} of the mean value for the stochastic system, and finally,

the confidence region of the random fraction function η 7→ En
1 (η). Figure 1 (right) is relative to the random fraction

function η 7→ En
2 (η), defined by Eq. (23) and related to the random mechanical energy in band B2. Three quantities are

represented in this figure: the graph η 7→ en
2 (η) for the mean system, defined by Eq. (15), the graph η 7→ E{En

2 (η)} of

the mean value for the stochastic system, and finally, the confidence region of the random fraction function η 7→ En
2 (η).

Figure 2 (left) is similar to Fig. 4 but for random energy E3 transferred in band B3 Figures 2 (right) is relative to the

cumulative distribution functions of the random energies for a fixed value of η such that log10 η = −6.0. It displays the

graph of ζ1 7→ Proba{En
1 (η) ≤ ζ1} of the random variable En

1 (η) related to the random mechanical energy transferred

to band B1.
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Figure 1. Confidence region of the random fraction function En
1 (η) (left) and En

2 (η) related to the random mechani-

cal energy transferred to band B1 and B2, respectively. Horizontal axis log10 η. Vertical axis fraction in linear scale,

adimensional.

5. Analysis of the results and conclusions

5.1 Maximum of non-linearity effects as a function of η

The measures of non-linearity is given by the fraction of energy that is transferred outside the band of excitation.

Figures 1 to 2 (left) show that a maximum of non-linearity effect is obtained for mid-value of η = ǫ
a and not for the

extremes, near zero or very large. Near zero means that the gap is very small with respect to the displacement, that is there

are a large number of impacts with low energy (small gap). This case is frequent, for instance, in Robotics (looseness).

Very large means that the gap is sufficiently big with respect to the displacement such that the number of impacts is small

and with low energy. In the medium range, the impacts are more frequent and also more energetic. It is worthwhile to

insist that as η is the ratio of the gap and the amplitude of the excitation, even for very small gaps the effect of η can

be large depending on the force. For example for ǫ = 2 × 10−6 m a force of 1 N corresponds to a numerical value of

η = 2 × 10−6, and Fig. 2 (left) shows that for this value there is a transfer of energy of 30 to 50 percent outside the band

of excitation.

5.2 Relation of the non-linearities with the spectral density
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Figure 2. Left figure are data for E3. On right is the cumulative distribution function ζ1 7→ Proba{En
1 (η) ≤ ζ1} of the

random variable En
1 (η) for log10 η = −5.5 related to the random mechanical energy transferred to band B1. Horizontal

axis fraction ζ1, adimensional. Vertical axis probability level in linear scale.

It can be shown that even when there is a small amount of energy transferred outside the band of excitation the effect

of this transfer in the spectral density is very large causing the response to become a broad-band signal.

5.3 Uncertainties effects

The Figs. 1 to 2 show that the point of maximum of non-linearities is also the point of less robustness with respect

to uncertainties. On the other hand the two limit cases, near zero and very large η are relatively robust with respect to

uncertainties. It is useful to discuss the effect of two types of uncertainties: barrier uncertainty and model uncertainties

for the linear system. The non-linearity effects are less robust for model uncertainties than that for barrier uncertainty. On

the other hand the frequency response in the frequency band of excitation is robust with respect to uncertainties. Finally,

Figs. 2(right) allows the probability of the random energies to be estimated.
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