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A new Green’s function and a new Poisson’s type integral formula for a boundary value problem
(BVP) in thermoelasticity for a half-space with mixed boundary conditions are derived. The
thermoelastic displacements are generated by a heat source, applied in the inner points of the
half-space and by temperature, and prescribed on its boundary. All results are obtained in closed
forms that are formulated in a special theorem. A closed form solution for a particular BVP of
thermoelasticity for a half-space also is included. The main difficulties to obtain these results are in
deriving of functions of influence of a unit concentrated force onto elastic volume dilatation @®)
and, also, in calculating of a volume integral of the product of function ©®) and Green'’s function
in heat conduction. Using the proposed approach, it is possible to extend the obtained results not
only for any canonical Cartesian domain, but also for any orthogonal one.

1. Introduction

The main objective of this paper is to prove a theorem (Section2.2) about deriving a
Poisson’s type integral formula for a thermoelastic half-space with the homogeneous locally
mixed mechanical boundary conditions and with the nonhomogeneous Dirichlet’s boundary
condition for temperature. To prove this theorem we need some equations for Green’s integral
formula in stationary thermoelasticity (Section 1.1) and thermoelastic influence functions
(Sections 1.2 and 1.3) for a solid body, suggested and published by the first-named author
earlier. Needed special cases of these equations for a half-space are given in Section 2.1.
An example of application of the obtained new Poisson’s type integral formula is given in

Section 3.



1.1. General Green’s Integral Formula in Stationary Thermoelasticity

The Green’s function plays the leading role in finding the solutions in integrals for
boundary value problems (BVPs) in different fields of mathematical physics. The theory
of thermoelasticity, which is a synthesis of the theory of heat conduction and elasticity
theory, is one of such fields. By now, a number of theories of thermoelasticity have been
developed and described in classical scientific literature [1-6]. The most developed theory,
which is widely used in practical calculations, is the theory of thermal stresses, that is, the
theory of uncoupled thermoelasticity, where the temperature field does not depend on the
field of elastic displacements. According to this theory the formulation of a BVP consists in
nonhomogeneous Lame’s equations

V2ui () + (A + p)Ox(@) — yTa(@) = 0 (L.1)

with respective mechanical boundary conditions, where 1, p are Lame’s constants of
elasticity; y = a;(2u + 31) is the thermoelastic constant; a; is the coefficient of the linear
thermal expansion. The temperature field T in (1.1) has to be determined from the BVP in
heat conduction that consists in the Poisson’s equation

VT(¢)=-a'F@) ¢eV, (1.2)

with the respective boundary conditions for heat actions: temperature T(y), heat flux
a(dT(y)/on,), or certain law of heat exchange between exterior medium and surface of the
body aT(y) + a|0T (y)/0ny], where F is the heat source; a is thermal conductivity; a is the
coefficient of convective heat conductivity. To solve the BVP of stationary thermoelasticity in
(1.1) and (1.2) using traditional methods, at the first stage we need to solve the BVP of heat
conduction in (1.2) with the given boundary conditions and to find the temperature field. At
the second stage we need to solve BVP of thermoelasticity in (1.1) with the already known
temperature field and with the given mechanical boundary conditions. On the base of the
influence functions introduced in the works [7-15] the following new general Green'’s type
integral formula for determining the fields of displacements, described by BVP in (1.1)-(1.2),
was suggested:

oUx (y,
@ = | FeUindave - [ 1) [#J drp(y)

X L [ (.‘/)]uk(y,g)dl"N(y)+L [T( )+ M]uk(y,é)drm(y),
(1.3)

where I'p, I'y, and 'y denote the surfaces on which the boundary conditions of Dirichlet’s,
Neumann’s, or mixed type are prescribed. One of the advantages of this formula is that the
desired thermoelastic displacements 1 are determined in the integral form directly via the
prescribed inner heat source and other thermal data, given on the boundary.



1.2. Main Thermoelastic Influence Functions

Thus, the introduced functions of influence of a unit heat source on thermoelastic
displacements U (x,¢) in (1.3) are determined by the following general integral formula [11]:

Ui (x,¢) = yfvc(x,z)e<k>(z,g)dV(z), x,z,¢ €V. (1.4)

This formula represents the Mayzel’s formula, when the temperature field (the Green’s
function G in heat conduction problem) is generated by an inner unit point heat source. The
volume dilatation ©® in (1.4) has to be determined from the following Lame set of equations:

pVAUY (x,8) + (A + p)OF (x,8) = -6ab(x—¢), ik=1,2,3, (1.5)

with the respective homogeneous mechanical boundary conditions. In (1.5) &(x — ¢) is the
Dirac’s function and 8 is the Kronecker’s symbol. The Green’s function G in (1.4) has to be
determined from the following equation in heat conduction:

V2iG(x,¢) = -6(x-¢), x,¢€V, (1.6)

with the respective homogeneous boundary conditions for heat actions. A generalization
of influence function and Green’s integral formula on the BVP in the classical theory of
stationary thermoelasticity [1-4] was given for the first time in the papers [7-10]. The
considered influence functions U (x, ) have the physical sense as displacements at an inner
point of observation x = (x1, x2, x3), generated by a unit heat source, applied at an inner point
¢ = (&1,4&,¢3), and described by the Dirac’s function. According to (1.4) they are determined
by a convolution over the body V of two influence functions. The first influence function is
the Green’s function G for the BVP in heat conduction. The other functions ©*) are functions
of influence of inner concentrated body forces on elastic volume dilatation.

Finally, the influence functions Uk (x, ¢) are functions of double influence [7-15], which
take in consideration both physical phenomena (heat conduction and elasticity) in a solid
body.

(1) Over the coordinates of the point of observation x = (x1,x2,x3) for thermoelastic
displacements, they satisfy the equations of the BVP for determining Green’s functions
in the theory of heat conduction (1.6). The only difference is that the unit heat source is
replaced by the function of influence of the unit concentrated forces on the volume dilatation

V2Uk(x,8) = -y ©%) (x,¢) (1.7)

with the respective homogeneous boundary conditions for heat actions.



(2) Ower the coordinates of the point of application & = (&1,¢&, &) of the unit point heat source,
they satisfy the BVP for determining components of the Green’s matrix (1.5). The only
difference is that the unit concentrated body forces are replaced with the derivatives of
Green'’s functions of the heat conduction problem

PVUK(x,8) + (A + p)O g (x,8) = yGy (x,8) = 0 (1.8)

with the respective homogeneous mechanical boundary conditions.

1.3. Other Thermoelastic Influence Functions

Take note that all influence functions in (1.3) are determined on the boundary independently
or using the respective limits from the main influence functions U (x, ¢):

(a) the formula for influence functions of a unit point heat flux a(dT(y)/on,) = 6(x-y)
on the surface I'y on thermoelastic displacements is

U (y,¢) = limyyf G(x,2z)00) (z,8)dV (z) = nmyuk(x,g), x,¢zeV,yely, (19
=3, v x—

(b) the formula for influence functions of a unit point temperature T (y) = -6(x - y) on
the surface I'p on thermoelastic displacements is,

Uk (v,4) _ limyJ’ %e(‘i)(z@)dvm x,8,z€V = lim %, y €Tp, (1.10)
Vv X

a"y x—y x—y -

(c) the formula for influence functions of unit point heat exchange of the body with
exterior medium aT(y) + a|dT (y)/0on,| = 6(x — y) through the surface I'pr on

thermoelastic displacements is,

Ui(y,¢) = lin}y[ G(x,z)0W (2,8)dV(z), x,&z€V = ]in}uk(x,g), yelm  (111)
x= \4 x—

The formula in (1.3) can be treated also as a generalization of Mayzel’s formula [4-6] for
those cases when the temperature field satisfies the BVP of heat conduction. Temperature
field in this case is caused by the inner heat source and by the prescribed on the boundary
temperature, heat flux, or certain law of heat exchange between exterior medium and surface
of the body.

The advantage of the proposed integral formula in (1.3) is that it allows us to
unite the two-staged process of solving the BVP in the theory of thermoelasticity (the
first stage comprises finding temperature fields, and the second stage comprises finding
thermoelastic displacements) in one stage. Also, the advantage of the integral formula in
(1.3) in comparison with the well-known Mayzel’s integral formula is that the thermoelastic
displacements are determined directly via given heat actions. Besides, for any concrete



type of BVP we can obtain all possible solutions for different laws describing the above-
mentioned heat actions. The main difficulties for practical realization of the integral formula
in (1.3) and (1.4) are to derive the functions of influence of a unit concentrated force
on elastic volume dilatation ©%) and of the Green’s functions in heat conduction G. In
addition we need to compute some volume integrals of the product of the above-mentioned
functions. These difficulties, especially deriving functions ©*%), were overcome successfully
for Cartesian canonical domains [11]. For cylindrical and spherical domains only general
integral representations for ©%) and Green’s matrices were proposed [16, 17].

2. Elastic Response of a Half-Space to a Unit Point Heat Source

In this section we give a theorem for determining the thermoelastic displacements for a half-
space in the form of volume and surface integrals, which is a particular case of the general
integral formula in (1.3). To do this, first, on the basis of the theory described above we
construct the functions of influence of the inner unit point heat source on the thermoelastic
displacements U (x,¢). At the second step we have to calculate (on the basis of the main
influence functions Uy (x,§)) the other influence functions 0Ux(y,$)/0n, and to write the
Poisson’s type integral formulas for respective BVP of thermoelasticity for half-space. At the
last step it is necessary to prove that the obtained influence functions and Poisson’s type
integral formulas satisfy the respective BVP.

2.1. Main Influence Functions and Green’s Integral Formula for
a Thermoelastic Half-space

To obtain the functions of influence of an inner unit point heat source F(¢) = 6(x — &) on
thermoelastic displacements for a half-space we will use the general formula in (1.4) rewritten
as follows:

Uy (x,¢) = on JJ‘_ G(x,z) ©¥(z,8)dz\dzydzs, |Ux(x,¢)| < co. (2.1)

Before starting to formulate the theorem we have to give the following Poisson’s type integral
formula for half-space V(0 < x1 < 00; —00 < x2,x3 < o0):

o oo 0 au ,
uk(¢) = a'lIO J’J‘_mF(x)uk (x,&)dx1dx2dx3 — J‘J‘_wT(y)#dyzdy;;, |k (8)] < oo,
(2.2)

where the thermoelastic displacements uy (&) are generated by the inner heat source F(x) and
given temperature T (y) on the boundary plane I'(y; = 0; —o0 < y2, 3 < ). The formula in
(2.2) is obtained from the suggested general integral formula from (1.3), wherein it should be
taken into account that on the all boundary plane 'only Dirichlet’s condition (temperature)
is given. Note that when we check if the boundary conditions for thermoelastic stresses



gij(x,¢) with respect to coordinates of the point ¢ = (&, &, ¢3) are satisfied, we have to use
the Duhamel-Neumann law

Oij = ;4(11,-,,- + LI,;,-) + 6,']'(1\11]',}' — YG), i,j = 1, 2,3.

—_
N
(*5]

~

2.2. A Theorem about Deriving a Poisson’s Integral Formula for
Thermoelastic Half-Space

Theorem 2.1. Let the field of displacements ux (&) at inner points ¢ = (&1, &, &) of the elastic half-
space V(0 < x; < 00; =00 < X3, x3 < o) be determined by nonhomogeneous Lame equations

KV (@) + (A + p)0x(&) - yTk(8) =0, (24)

and at the points y = (0,2, y3) of its boundary plane T'(y, = 0; —oo0 < y2,y3 < o) the following
homogeneous mixed mechanical conditions are given:

011(81=0, &=y, &=y3) =0, (81=0, %=1y, &=y3)=0,

2.5)
u3(81=0, =12, &a=1) =0,

where o11 are normal stresses which are determined by the Duhamel-Neumann law (2.3).
Let also the temperature field T (&) in (2.4), generated by the inner heat source F(¢) and
temperature T (y) € I' (Dirichlet’s boundary condition), satisfy the following BVP in heat conduction:

VT(¢) =-a'F@), ¢€V, T =0 &L=y, &=1)=T(y), y=0Oy,ys) €l
(2.6)

If the inner heat source and boundary temperature satisfies the conditions

j J:[ |F(x)|dx1dxadxs < oo, J’J‘ |T(y)|dy2dys < oo, (2.7)
0 -0 -

then the solution of this BVP in (2.4)—(2.7) of thermoelasticity for searched displacements wux (&) for
half-space exists, and it can be presented by the following Poisson’s type integral formula, written in
the matrix form,

1 o0 o o0
w@) =3[ [[ Fevsbandndo - [[” Tm)Qy.ddvdy, y=0.2m) @8

where [u(g)| < oo everywhere and vanish at infinity limy _, uy (§) — 0, limy, o1k (§) — 0,
limygy)— otk (§) — 0.



The matrices U(x,§) and Q(y,§) = 0U(y,§)/0ny of influence of an inner unit point heat
source F(&) = 6(x — &) and of a unit point temperature T(y) = 6(y — &) on the I" onto thermoelastic
displacements, also the matrix u(&) of searched displacements in (2.8), are determined as follows:

x1+é& x1-¢&
Uy(x,¢) _<T1 * T)
1 1

ud = | Ui |-t e w)

Us(x, ) (11

3 (x3—¢3) <R1 R> o)
& '

Qi (#9) "R (@)

Qly,é) =1 Q) | = (1++I‘)R (2 - éz)% , o u@) = w@) |,

Qs (y,¢) u3(¢)

(ys- éa)%

where R = R(x,$) = |x—§|; Ri(x,$) = |x_§;|;§5 (81,82, 83); §I = (81,82, 83); x = (x1,x2,x3) in
the matrix U(x,¢), and R = R(y,$) = |y —¢|: Ri(y,¢) = ly = §il; § = (81,82, 83); &1 = (=61, 62, 83);
y = (0, y2,y3) in the matrix Q(y, ¢).

Proof. First, well-known Green’s function G for Poisson’s equation for a half-space is
rewritten, and then, in the Subsection2.2.1, we derive the volume dilatation ©®)(x,¢).
In Subsection 2.2.2 it is shown how to derive thermoelastic influence functions Uk(x,¢).
Checking the correctitude of the derived already thermoelastic influence functions Uy (x, ¢)
is given in Subsection 2.2.3. Finally, in Subsection 2.2.4, on the base of the functions U(x,¢),
the Poisson’s type integral formula for stated BVP of thermoelasticity is derived and checked.

To obtain the matrix U(x, ¢) in (2.9) for the BVP in (2.4)—(2.6) we will use the integral
formula in (2.1). The functions G(x, ¢) and ©®) (x, &) in this equation are the Green'’s functions
of Dirichlet problem in heat conduction and, respectively, the influence functions of a unit
concentrated body force 6;x6(x —¢) onto volume dilatation in theory of elasticity for the half-
space V. So, to get the Green’s function G(x,¢) we have to solve the BVP, which consists of
the equation in the heat conduction with the homogeneous boundary conditions similar to

those in (2.6):

V,Z,G(x,g) =-6(x-¢), x,¢(€V, G=0, y1=0, -o<iyy3<oc0. (2.10)

In the presented paper we recall this Green’s function from the handbook [11] (see problem
and answer 15.P.1):

Crd) = o (R'-R'),  R=\m-8) + (-2 + (rs- &),
2.11)

Ri= (1 + &)+ (x2—&)* + (x3 - &)2.

This Green'’s function is well known and is presented also in the books [18, 19]. O



2.2.1. Deriving the Volume Dilatation ©® (x, &)

To get the influence functions @(")(x, ¢), usually, we have to solve the following BVP, which
consists of Lame’s equations in theory of elasticity and homogeneous boundary conditions
asin (2.5)

pVUL (x,8) + (A + p)OY (x,8) = ~6ab(x~8), x,¢€V,

(2.12)
k k k
o (1,8) = Uy (v,8) U (%,8) =0, »=0, -w<yy<o
and then, on the base of displacements Usk) (x,¢), to compute volume dilatation
O®) (x,8) = U} (x,8)- 2.13)

But as it will be shown below, in the case of the boundary condition in (2.12), we can derive
the volume dilatation ©*)(x, &) using the equation

1 o

20 (k) I —
VOrxd) = 17 o

5(x - @) (2.14)
only, and its integral representation via respective Green’s function Ge (x, £):

1 9 00®) (y, 3
O0® (x,2) = —W@Ge(x,g) K J'r [# -0®(y,¢) a_nr] Go(y,x)dl' (). (2.15)

To show this, first prove that the boundary conditions in (2.12) lead to the zero volume
dilatation on the boundary plane I'(y; = 0; —c0 < 5, y3 < 0):

ok (y,¢) =0. (2.16)

To do this we write the Hooke’s law for the normal stresses 01(’1() in the form

o) = 2;4113? +10® = 1+ 2u)0® - 2;4(112‘2) + U;’}’ , 4,j=1,23. (2.17)
Next we know that the boundary conditions
UP =uf =0 (2.18)

lead to the following zero tangential derivatives on the boundary plane I'(y; = 0; —o0 <
Y2,Y3 < ®):

ul) =uf) =o. (2.19)



Finally, substituting equalities (2.19) and boundary conditions 01('1‘) = 0 in the Hooke’s law

(2.17) we come to the zero volume dilatation on the boundary I' in (2.16).

So, as for the BVP for ©%), we have (2.14) and (2.16), then the respective BVP for

Green’s function Ge for considered half-space can be written in the form
ViGO(xrg) =-6(x _g)r xrg eV, Geo=0, = 0, -o< Y2, Y3 <0, (2.20)

which coincides with the BVP in (2.10). This fact leads to the conclusion that Gg = G, and, as
a result, the Green’s function Gg is determined by expressions in (2.11).

Finally, if we introduce the expressions Ge = G in (2.10), (2.11) and the equality
O®) (y,¢) = 0in (2.16) into the representation (2.15), taking into account the equality

9Ok) , b5}
[ arfry $) ‘@(k)(y’é)a_m]ce(y’ x) =0, (2.21)

we obtain the searched volume dilatation of the elastic BVP in (2.12) for half-space, written
in the form

®(x gy L O (p1_p
O® (x,¢) = 4.7r(,\+2;t)a§k<R_ R'). (2.22)

2.2.2. Deriving the Thermoelastic Influence Functions Uk (x, ¢)

Now we have both functions: G(x,¢) and ©¥ (x,¢) needed for deriving the thermoelastic
influence functions Uk(x,¢), using (2.1). So, substituting functions G(x,¢) and ©® (x,¢)
from (2.11) and (2.22) in (2.1), then, calculating the volume integral in the special way (see
appendix), we will get the following expression for functions U (x, ¢):

Uy (x,8) = yfo [|” cnze® dzdzdz

=— (" i 1_pR1 1 i 1_ p-1
) on H_WM(R K )4Jr(./\+2y) & (R'-R)dzidzadzs, (223)

1

A+2 o
i) = 0 8 (R ) - Rica )L,

that being presented in the matrix form coincide with the matrix U(x,¢) in (2.9). From the
expressions Ui (x,¢) in (2.23) we can see that |U(x,¢)| < oo and that these displacements
vanish at infinity: limg, , oo Uk (x,§) — 0, limp,| - Uk (x,§) — 0, and lim, - o Uk(x,$) — 0.

At the next step of the proof of the theorem we have to check the correctness of the
functions U (x, ¢). To do this we have to use the fact that these functions satisfy both physical
phenomena: elasticity in (1.5) and heat conduction in (1.4). So, they must satisfy the following



BVP of thermoelasticity in respect to the coordinates of the point of application ¢ = (¢1,&,¢3)
of the inner unit heat source F(¢) = 6(x —¢):

PVRUk(x,8) + (A + p)O g (x,8) - YG 4 (x,8) = 0,
on=U=U3=0, §=0, —00<&,& <o,

(2.24)

which follows from the integral formula in (2.31) and boundary conditions in (2.12) (see also
(1.5)). Also, the functions Uy (x, &) have to satisfy the following fictive BVP in heat conduction
with respect to the coordinates of the point of observation x = (x1, x2, x3):

VUi (x,8) = -y O0(x,2), x,¢€V, U(y,8)=0, y=(0,y,ys) €T, (2.25)

which follows from the integral formula in (2.23) and boundary conditions in (2.10) (see
also (1.4)). In addition, the functions Uk (x,¢) in (2.23) have to vanish at infinity. In (2.25)
the functions ©®)(x,¢) are determined by expression in (2.22), but in (2.24) the functions
O(x, ¢) are determined on the base of displacements Uy (x, ¢) in (2.23), using the rule O(x, ¢) =
Uik (x, &), where derivatives are taken with respect to coordinates of the point & = (&1, &, &3).

2.2.3. Checking the Correctitude of the Thermoelastic Influence Functions U (x, &)

To check (2.24) and (2.25) we need to compute the following values:

ViR(x,8) = ViR(x,4) =2R"'(x,8),  VjRi(x,$) = ViRi(x,¢) = 2R} (x,9),

(2.26)
V2R (x,8) = ViR; (x,8) = V2R (x,8) = V2R (x,8) = 0.
Check first (2.24). So, from (2.23), (2.24), and (2.26) it follows that
2 _ YH i -1 _p-l
KUY = o e R (x,9) - Ri'(x,2)],
(2.27)
y(A+p) o

(A+p) O (x,8) = [R(x9) - R (x,8)]-

dor (A +2p) Od

From (2.27) and (2.11) it follows that
0
Fvguk(xr é) + (A + /‘) @,k(xfg) = ﬁ@ [R_l (x, é) - RII (x, é)] = YG,k(X,é), (2.28)

where the expression for Poisson’s function G(x, ¢) in (2.11) was used. So, due to (2.28), we
come to the conclusion that the functions in (2.23) verify (2.24) at inner points. To check
boundary conditions in (2.24) we need to calculate the derivatives in the expressions for



displacements Uk (x, ¢) in (2.23) and calculate the values of the normal stresses for & = 0. So,
using the Duhamel-Neumann law (2.3) for normal stresses oy

o = 2;4111,1 + (A@ - YG), (229)

where the displacements U, the volume dilatation © are determined on the base of
expressions in (2.23), and the Green'’s function G is determined by (2.11), we will obtain

op(A+ )7 1 1 (x1=&)* | (a1 +&)’ _
2uly (x,§)|g1=o =Y dor R(x,) - Ri(x,8) B R(x, ) * Ry(x,¢) 4e0 =0
Ay _ 1
- IR, SR - B _ b1 _
A0 (x, é)|§1=D B 4 (X +2p) (R R ) 51:0_0, i §)|g.=0 dr (R— Ry )leo—(l

(2.30)

Substituting expressions in (2.30) in (2.29) we obtain o11f,-0 = 0, so the first boundary
condition in (2.24) is satisfied. Using the expressions in (2.23) for U and U3, and we obtain

(A+2p0)" 3

Ui (x, §)|g.=0 =Y 8ar 0k

[R(x,8) - Ri(x,§)]} =0, k=2,3. (2.31)
51=0

So, as we can see from (2.31) and from oy1]¢=0 = 0, the BVP in (2.24) is satisfied. Now we can
confirm that the thermoelastic influence functions Uk (x, &) satisfy BVP of thermoelasticity in
(2.24). Next we have to prove that the influence functions in (2.23) satisfy with respect to the
coordinates of the point of observation x = (x1,x2,x3) the fictive BVP in heat conduction,
described by (2.25). Indeed, using (2.22), (2.26) and (2.23), we will obtain

V2Uy(x, ¢) = Y 9

dor (A +2p) O&i (F '(x,8) - R (xfé)) = —y0M(x,9), (2.32)

which means that at inner points (2.25) is satisfied. Also, taking into account expressions in
(2.23) for displacements Uk (x, &) we come to the conclusion that the boundary conditions in
(2.25) on the boundary plane are also satisfied, which means Ui (y,¢) = 0; y = (0,5, y3) €T

2.2.4. Deriving and Checking the Poisson’s Type Integral Formula

The next step is to calculate the other influence functions in (1.10) dUk(y,¢)/dny1 and to
get Poisson’s type integral formula. So, to get the Poisson’s type integral formula we have
to use formula (2.2) for the half-space. The influence functions Uy (x,¢) in this formula are
determined by (2.23). The functions 0Ux(y, §)/0ny1, as functions of influence of unit point



temperature, given on the boundary plane, according to the formula in (1.10) have to be
determined on the basis of the functions U(x, &) in (2.23) as following

U (,8) . 0Ui(xd) _ . y(A+ P I

ony, x—y  0x;  x—y 8ar Ox10& [R(x,4) = Ri(x,¢)]

Cy(e2wT @
= lim
x—y 4or 0&1 0k

Ui(y,8) _y(+2p) " @
dng  dr omok o)

R(xl §)r (233)

As we see, the expressions for Uk (y, ) /0ny in (2.33) vanish at infinity.
Introducing the influence functions in (2.23) and (2.33) into the formula in (2.2) we
obtain the following Poisson’s type integral formula:

Lo ] o fe o] au ,
Ui (@) = a” L f  F)Ui(x,)dxi dxadxs - j j T(y)%ﬁd;ﬁd%

(7 o]
“ sz [, [P Rey R plandnds,  ea

= &
‘ZI I LT )‘a«;]a‘gkR(y'@)dwdys]/ |k (8)] < oo.

Finally, to notice that integrals with unbounded intervals will exist, which means that the
displacements |ux(¢)| < oo, when the following conditions are satisfied:

.[ JT |F(x)|dx1dx2dx3 < oo, IJ’ |T(y)|dy2dys < oo, (2.35)
0 -0 _—

because, as was mentioned above, the kernels in (2.34) vanish at infinity. The conditions in
(2.35) will be satisfied in case the functions F(x) and T (y) are given on the bounded domains.

If in (2.23) and (2.33) we calculate the derivatives, and, if we present the obtained
results in matrix form, then we can be sure that the influence matrices U(x, §), 0U(y, §)/dny, =
Q(y, ¢), and Poisson’s type integral formula in (2.34) coincide with the results in (2.8) and
(2.9).

The obtained displacements, described by Poisson’s type integral formula (2.34), must
satisfy the stated in the theorem BVP of thermoelasticity, described by (2.4) and (2.5). To check
this we substitute the integral formula from (2.34) into (2.4):

KV () + (A + p) Bk (@) = a—ljo II F(x)[yVéUk(x, &+ (A+ y)@lk(x,g)]dxldxzdxg

- H T(y)—a:,3 ViU (v,8) + (A + 0O (3,8) | dyadys.
- w1
(2.36)



Taking into account the already proved equality in (2.28) and the Poisson’s type integral
formula for BVP in heat conduction, described by (2.6),

0 o 0 a
T() = Io II_ F(x)G(x,¢)dx1dxydx3 — II_ T(y)EG(y,g) dy,dys, (2.37)

the following is obtained:

UV (@) + (A + p)Bx(@) = a-lfo H F(x)G,(x, §)dx1dxadxs
o (2.38)

* 0
|| 015G 8) dpadys = Tac0)

So, the displacements, described by Poisson’s type integral formula (2.34), satisfy (2.4).
Finally, we have to show that the displacements in (2.34) satisfy the mechanical boundary
conditions in (2.5). Of course, these conditions are satisfied, because, as we have shown
above, the kernels of Poisson’s type integral formula (2.34) satisfied the same mechanical
boundary conditions in (2.24) that are analogical to (2.5). So, now we are sure that all items
of the theorem are proved. It means that the theorem is proved.

3. An Example of Application of the Obtained Poisson’s Type
Integral Formula

Let us solve (2.4)—(2.6) and to determine thermoelastic displacements ux (&) in half-space if on
the segment [y = 0, =b < y» < b; y3 = 0] of its boundary plane I'(y; = 0; —o0 < 12,3 < ),
the constant temperature

To=const, y€[y1=0,-b<y2<by3=0];
T(y) = { (3.1)

0, yE[y1=0,-b<y,<by; =0

is given. To solve this BVP we use the integral formula in (2.8) and (2.9) for F(x) = 0 and
T(y) = To = const:

b
u(@) = -To f QWdy, y=(Om0), -b<p<h, (32)

where Q(y;¢) is determined by the matrix (2.9). The formulas in (3.1) and (2.9) can be
presented in terms of components of thermoelastic displacements u; k = 1,2,3 as follows

(see (2.9) and (2.34)):

YTO b az
dr(A+2p) ) 08108

R(y;8)dys, R(yyd)=\&+(n-)'+&% &= (Gu & &).
(3.3)

u(§)=



So, taking the respective integrals over the boundary segment [y = 0,-b < y» < b;y3 = 0],
we obtain the following thermoelastic displacements at an arbitrary inner point & = (&1, &, &):

(@) = _4.7r(§1;(-)2y) :,agfgglR(yZ‘)d” - ‘M(ITE 2) o) :,R(}i?é) v
= M(K%F)ag [in]y2 - & + R(y,:8) %] 54
w®) =~ i s L)
where
L@)=In| 22 RGS) | - g0 B -t 182, Rbi2)=\/E+(bri) +5

(3.5)

Check whether thermoelastic displacements u (¢) in (3.4) and (3.5) satisfy the stated in this
section BVP, described by (2.4)—-(2.6) and (3.1). For this, first calculate

2 rTo 2 0 I (2
Vi®) = Ve SO T e O G0
9 ok - LAl Ll D) (U
(A +,u)a§k® @) =0U+p) agkagju;(g) = Tar(h+ 20) O o [&L(8)] .
A+ 3 o AT & ‘
dor (A +2p) a_gkv [5L(&)] = 207 (A + 2p) 0&k0&1 L©)-
In (3.6) and (3.7) the Euler’s formula was used:

VE(f-9) =9Vi+ [V +2f . (38)

Also it was taken into account that the function L(¢), described by (3.5), is a harmonic
function, so that V2L(¢) = 0. Next calculate the temperature T (&) using the well-known
Poisson’s integral formula in (2.37) rewritten in the case when on the segment [y, = 0,-b <
y2 < b; y3 = 0] of its boundary plane I'(y; = 0; =00 < y2,y3 < o) the constant temperature
T =T is given:

2 Ty

M
TQ) =T[5 -Gl 2)dy: - T"agfbm TQ) = 5o 5

L(§) (3.9)

It is easy to see that temperature in (3.9) satisfies the BVP in heat conduction, described by
Poisson equation (2.6) [for F(x) = 0] and boundary condition in (3.1). So, substituting the
expressions in (3.6), (3.7), and (3.9) into (2.4) we can see that this equation is satisfied. It



remains to show that the thermoelastic displacements ux(¢) in (3.4) and (3.5) satisfy the
boundary conditions in (2.5), and also that they vanish at infinity. From (3.4) it is easy to
see that for k = 2,3 the thermoelastic displacements u;(¢) and u3(&) for & = 0 satisfy the
second and third boundary conditions in (2.5). To check the first boundary condition in (2.5)
calculate the normal stresses oy; (¢) using the Duhamel-Neumann law, the displacements in
(3.4) and the temperature in (3.9):

o =2uly + AU]',,' -1T, i,j =1,2,3, on= (l +2p)Uy1 — AUz + Usz) — T,

rTo
4o (L + 2)34;2
T, o

yT
o111 = 4 (2 §1 ag >a§ é ./\(Uzz +Uz'x) + 2.7r8§1L(§)

on=—-(A+2pu)——— [§1L(§)] AUz +Usz3) - T,

(3.10)

As on the boundary plane (for ¢; = 0) uz = u3 = 0 (which means also uz2 = u33 = 0), then

from the last equation it follows o711 = 0 [the first boundary condition in (2.5) is satisfied].
Finally, calculating the derivatives of expressions in (3.4) and (3.5), we obtain the

thermoelastic displacements of the stated in this section BVP in the explicit form

I £ by - & + R(b; )
“E) =" e 20 {n) s 5)+ R(-b;3)
B[R B - &+ RE:E) ™ - R(-b;d) (2 + &) + R(-b:9) |
__ 1D Lpdy - R —b-2)]-
ur(3) = 4”(“2,4)‘;1[? (b:8) - R (-b;3)]:
B yTo - _
@) =~ 2 48[ GO G- e RED) T - R b8 (b + 8) + RCBD)],

(3.11)

which vanish at infinity.

4. Conclusions

(1) The Poisson’s type integral formula, obtained in this paper, is new, useful, and
completely ready to be efficiently applied for computing of the thermoelastic
displacements uk (¢) in half-space (see example of its application given in Section 3).
The main advantage of the obtained integral formula is that the searched half-space
thermoelastic displacements are expressed directly via given inside heat source,
boundary temperature, and known kernels. So it is not necessary to determine
intermediately the inner temperature field or to solve, as in traditional methods,

additional BVP.

(2) The most difficult problems in the proposed here method are the problems of
deriving the Green’s functions G(x,¢) in heat conduction and the functions of
influence for volume dilatation ©®®)(x,¢) in the elasticity theory. Note that for



canonical Cartesian domains, these problems were solved successfully in the
handbook [11], where about 190 Green’s functions for Laplace’s equation and
250 influence functions for volume dilatation ©%)(x,¢) are presented. At last,
computing the integral over volume in (1.4) of the product of functions G(x, ¢) and
©® (x,¢) is also solved successfully [see the recommendations of the appendix].
So, for canonical Cartesian domains, the proposed in thermoelasticity method will
work successfully. This means that the presented paper opened great possibilities
for researchers to derive many new Poisson’s type integral formulas, not only
for half-space, but also for many other canonical Cartesian domains. These new
Poisson’s type integral formulas are very useful to solve effectively not only
deterministic BVPs of thermoelasticity, but also the stochastic ones [20].

(3) The approach presented in this paper in thermoelasticity for Cartesian canonical

domains can be extended onto spherical [21, 22], polar [23], cylindrical, and other
canonical domains of any orthogonal systems of coordinates. This extension will be
done when the lists of the respective functions G(x,¢) and ©®) (x, ¢) are completed.

(4) The approach presented in this paper is valid also for other physical phenomena as

electroelasticity, magnetoelasticity, and poroelasticity, described by the same BVP
as in thermoelasticity.

Appendix

The improper integral in (2.23) was taken using;:

(a) the following equalities on the boundary plane of the half-space:

[R@2) =R 2 ym(0n) =0 [RT@O-RIEI]|_ =0, (aD
(b) the relations
V2R(x,z) = 2R\ (x, 2), V2Ri(x,z) = 2R} (x, 2), (A.2)
(c) the following property of Dirac’s function:
[ f@swpave - f@, (A3)

(d) the Green’s formula inside the half-space

[ (w7 -rog)av= o(2)-r(2)]ar, (A

where

f=IRx2)-Ri(x2)] ¢=0Gn"[R'(zd-R'zd)|- (A5)



So, using the recommended equations (A.1)-(A.5), we obtain
) =v[ [[ cwae® e dndndz,
0 -0

- 1 1 d 1 -1
__YJ' ” R'-R; )m@(k - R;")dzidz,dz,

- Wagkf ” V[R(x,2)- il 2)] 3[R (2, 8)- Ry (2,8) | dzndzadzs

- Y 3 (*® o 1 -
-—m @J’O J’J-_m[R(x' z)-Ri(x,z)] Evi [R Y(z,8)-R{'(z, §)] dzidzydz;

magk,[ H [R(x,2) - Ri(x,2)]6(z - §)dz1dzodzs

Y o

- m@[m% ¢) - Ri(x,8)],

which coincides with the final expression in (2.23).
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