X. Aubard, Modélisation et identification du comportement mécanique des matériaux composites 2D SiC-SiC, 1992.

J. Barthelemy, Compliance and Hill polarization tensor of a crack in an anisotropic matrix, International Journal of Solids and Structures, vol.46, issue.22-23, pp.22-234064, 2009.
DOI : 10.1016/j.ijsolstr.2009.08.003

A. Benzerga and J. Leblond, Ductile fracture by void growth to coalescence Advances in Applied Mechanics, 2010.

B. Budiansky and R. Connell, Elastic moduli of a cracked solid, International Journal of Solids and Structures, vol.12, issue.2, pp.81-97, 1976.
DOI : 10.1016/0020-7683(76)90044-5

O. Cazacu, S. Soare, and D. Kondo, On Modeling the Interaction between Initial and Damage-Induced Anisotropy in Transversely Isotropic Solids, Mathematics and Mechanics of Solids, vol.12, issue.3, p.page in press, 2005.
DOI : 10.1177/1081286505059750

URL : https://hal.archives-ouvertes.fr/hal-00077291

V. Deudé, L. Dormieux, D. Kondo, and S. Maghous, Micromechanical Approach to Nonlinear Poroelasticity: Application to Cracked Rocks, Journal of Engineering Mechanics, vol.128, issue.8, pp.848-855, 2002.
DOI : 10.1061/(ASCE)0733-9399(2002)128:8(848)

L. Dormieux and D. Kondo, Poroelasticity and damage theory for saturated cracked media, Applied Micromechanics of Porous Media, CISM courses and lectures, 2005.
DOI : 10.1007/3-211-38046-9_5

A. Dragon and D. Halm, Damage mechanics. some modelling challenges. in: Localisation and Bifurcation Theory for Solids and Rocks, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00357446

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.1226, pp.376-396, 1957.
DOI : 10.1098/rspa.1957.0133

J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. Royal Society London11] G. Faivre. Hétérogénéités ellipso¨?dalesellipso¨?dales dans un milieú elastique anisotrope. Le Journal de Physique, pp.561-569325, 1959.

M. Gologanu, J. B. Leblond, G. Perrin, and J. Devaux, Approximate Models for Ductile Metals Containing Nonspherical Voids???Case of Axisymmetric Oblate Ellipsoidal Cavities, Journal of Engineering Materials and Technology, vol.116, issue.3, pp.290-297, 1994.
DOI : 10.1115/1.2904290

M. Gologanu, J. B. Leblond, G. Perrin, and J. Devaux, Recent extensions of Gurson's model for porous ductile metals. Continuum micromechanics, 1997.

C. Gruescu, V. Monchiet, and D. Kondo, Eshelby tensor for a crack in an orthotropic elastic medium, Comptes Rendus M??canique, vol.333, issue.6, pp.467-473, 2005.
DOI : 10.1016/j.crme.2005.04.005

URL : https://hal.archives-ouvertes.fr/hal-00137231

A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I???Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, vol.99, issue.1, pp.2-15, 1977.
DOI : 10.1115/1.3443401

D. Halm, A. Dragon, and Y. Charles, A modular damage model for quasi-brittle solids - interaction between initial and induced anisotropy, Archive of Applied Mechanics (Ingenieur Archiv), vol.72, issue.6-7, pp.498-510, 2002.
DOI : 10.1007/s00419-002-0226-9

M. Hayes, Connexions between the moduli for anisotropic elastic materials, Journal of Elasticity, vol.2, issue.12, pp.99-110, 1972.

M. Horii and S. Nemat-nasser, Overall moduli of solids with microcracks: Load-induced anisotropy, Journal of the Mechanics and Physics of Solids, vol.31, issue.2, pp.31155-171, 1983.
DOI : 10.1016/0022-5096(83)90048-0

J. W. Hutchinson, Crack tip shielding by micro-cracking in brittle solids, Acta Metallurgica, vol.35, issue.7, pp.1605-1619, 1987.
DOI : 10.1016/0001-6160(87)90108-8

M. Kachanov, Elastic solids with many cracks and related problems Advances in Applied Mechanics, pp.259-445, 1993.

M. Kachanov, Mechanics of anisotropic materials with multiple cracks, Key Engineering Materials, pp.121-122, 1996.

M. Kachanov, B. Shafiro, and I. Tsukrov, Handbook of elasticity solutions. Kluver Academic, The Netherlands, 2003.

S. K. Kanaun and V. M. Levin, Elliptical cracks arbitrarily oriented in 3D-anisotropic elastic media, International Journal of Engineering Science, vol.47, issue.7-8, 2009.
DOI : 10.1016/j.ijengsci.2008.12.014

N. Kinoshita and T. Mura, Elastic fields of inclusions in anisotropic media, Physica Status Solidi (a), vol.17, issue.3, pp.759-769, 1971.
DOI : 10.1002/pssa.2210050332

D. Krajcinovic, Damage mechanics. North-Holland, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00571166

P. Ladeveze and S. Letombe, Inelastic strains and damage (chap. 4). in Damage Mechanics of, Composite Materials, vol.9, 1994.

N. Laws, A note on interaction energies associated with cracks in anisotropic solids, Philosophical Magazine, vol.32, issue.2, pp.367-372, 1977.
DOI : 10.1080/14786437408207244

N. Laws, A note on penny-shaped cracks in transversely isotropic materials, Mechanics of Materials, vol.4, issue.2, pp.209-212, 1985.
DOI : 10.1016/0167-6636(85)90017-1

S. G. Lekhnitski, Stresses in an infinitely large anisotropic plate which is weakened by an elliptical hole, Dokl. Akad. Nauk -SSSR, vol.4, issue.3, pp.25-45, 1936.

Y. W. Mai, Failure characterization of fibre-reinforced cement composites with R-curve characteristics, 1991.

J. J. Marigo, Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Engineering Fracture Mechanics, vol.21, issue.4, pp.861-874, 1985.
DOI : 10.1016/0013-7944(85)90093-1

P. A. Martin, J. D. Richardson, L. J. Gray, and J. R. Berger, On Green's function for a three-dimensional exponentially graded elastic solid, Proc. R. Soc. London A, pp.1931-1947, 2002.
DOI : 10.1098/rspa.2001.0952

R. Masson, New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids, International Journal of Solids and Structures, vol.45, issue.3-4, pp.757-789, 2008.
DOI : 10.1016/j.ijsolstr.2007.08.035

C. Mauge and M. Kachanov, Anisotropic materials with interacting arbitrarily oriented cracks -stress intensity factors and crack-microcrack interactions, Int. J. Fract, vol.65, issue.2, pp.115-139, 1994.

V. Monchiet, O. Cazacu, E. Charkaluk, and D. Kondo, Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, International Journal of Plasticity, vol.24, issue.7, pp.1158-1189, 2008.
DOI : 10.1016/j.ijplas.2007.08.008

URL : https://hal.archives-ouvertes.fr/hal-00687823

V. Monchiet, C. Gruescu, E. Charkaluk, and D. Kondo, Approximate yield criteria for anisotropic metals with prolate or oblate voids, Comptes Rendus M??canique, vol.334, issue.7, pp.431-439, 2006.
DOI : 10.1016/j.crme.2006.06.001

URL : https://hal.archives-ouvertes.fr/hal-00090592

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

T. Mura, Micromechanics of defects in solids, 1987.

S. Nemat-nasser and M. Horii, Micromechanics: Overall Properties of Heterogeneous Materials, Journal of Applied Mechanics, vol.63, issue.2, 1993.
DOI : 10.1115/1.2788912

. Ch, B. Ouyang, S. P. Mobasher, and . Shah, An r-curve approach for fracture of quasi-brittle materials, Engineering Fracture Mechanics, vol.37, pp.901-913, 1990.

H. H. Pan and G. J. Weng, Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks, Acta Mechanica, vol.33, issue.1-4, pp.73-94, 1995.
DOI : 10.1007/BF01215417

J. R. Rice, Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, Journal of the Mechanics and Physics of Solids, vol.19, issue.6, pp.433-455, 1971.
DOI : 10.1016/0022-5096(71)90010-X

A. P. Suvorov and G. J. Dvorak, Rate form of the Eshelby and Hill tensors, International Journal of Solids and Structures, vol.39, issue.21-22, pp.21-225659, 2002.
DOI : 10.1016/S0020-7683(02)00369-4

R. Talreja, Damage mechanics of composite materials, 1994.

T. C. Ting, Anisotropic Elasticity: Theory and Applications, Journal of Applied Mechanics, vol.63, issue.4, 1996.
DOI : 10.1115/1.2787237

T. C. Ting, . Ven-gen, and . Lee, The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids, The Quarterly Journal of Mechanics and Applied Mathematics, vol.50, issue.3, pp.407-426, 1997.
DOI : 10.1093/qjmam/50.3.407

I. Tsukrov and M. Kachanov, Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution, International Journal of Solids and Structures, vol.37, issue.41, pp.5919-5941, 2000.
DOI : 10.1016/S0020-7683(99)00244-9

S. S. Wang, H. T. Corten, and J. F. Yau, A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity, International Journal of Fracture, vol.8, issue.No. 3, pp.247-259, 1980.
DOI : 10.1007/BF00013381

H. Welemane and F. Cormery, Some Remarks on the Damage Unilateral Effect Modelling for Microcracked Materials, International Journal of Damage Mechanics, vol.11, issue.1, pp.65-86, 2002.
DOI : 10.1106/105678902022260

URL : https://hal.archives-ouvertes.fr/hal-00140767

J. R. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, Journal of the Mechanics and Physics of Solids, vol.25, issue.3, pp.185-202, 1977.
DOI : 10.1016/0022-5096(77)90022-9

M. S. Wu, Analysis of finite anisotropic media containing multiple cracks using superposition, Engineering Fracture Mechanics, vol.45, issue.2, pp.159-175, 1993.
DOI : 10.1016/0013-7944(93)90185-U

A. Zaoui, Continuum Micromechanics: Survey, Journal of Engineering Mechanics, vol.128, issue.8, pp.808-816, 2002.
DOI : 10.1061/(ASCE)0733-9399(2002)128:8(808)

URL : https://hal.archives-ouvertes.fr/hal-00111366