A memory gradient algorithm for l2-l0 regularization with applications to image restoration

Abstract : In this paper, we consider a class of differentiable criteria for sparse image recovery problems. The regularization is applied to a linear transform of the target image. As special cases, it includes edge preserving measures or frame analysis potentials. As shown by our asymptotic results, the considered l2-l0 penalties may be employed to approximate solutions to l0 penalized optimization problems. One of the advantages of the approach is that it allows us to derive an efficient Majorize-Minimize Memory Gradient algorithm. The fast convergence properties of the proposed optimization algorithm are illustrated through image restoration examples.
Type de document :
Communication dans un congrès
18th IEEE International Conference on Image Processing (ICIP 2011), Sep 2011, Bruxelles, Belgium. pp.2717-2720, 2011
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-00687500
Contributeur : Emilie Chouzenoux <>
Soumis le : dimanche 14 juillet 2013 - 18:42:55
Dernière modification le : mercredi 15 avril 2015 - 16:08:18
Document(s) archivé(s) le : mardi 15 octobre 2013 - 02:20:09

Fichier

Chouzenoux_ICIP_11.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00687500, version 1

Citation

Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues Talbot, Anna Jezierska. A memory gradient algorithm for l2-l0 regularization with applications to image restoration. 18th IEEE International Conference on Image Processing (ICIP 2011), Sep 2011, Bruxelles, Belgium. pp.2717-2720, 2011. <hal-00687500>

Partager

Métriques

Consultations de
la notice

241

Téléchargements du document

121