
HAL Id: hal-00686299
https://hal.science/hal-00686299

Submitted on 9 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric and nonparametric models of the impedance
matrix of a random medium

R. Cottereau, Didier Clouteau, Christian Soize

To cite this version:
R. Cottereau, Didier Clouteau, Christian Soize. Parametric and nonparametric models of the
impedance matrix of a random medium. Revue Européenne de Mécanique Numérique/European
Journal of Computational Mechanics, 2008, 17 (5-7), pp.881-892. �hal-00686299�

https://hal.science/hal-00686299
https://hal.archives-ouvertes.fr


Parametric and nonparametric models of

the impedance matrix of a random medium

Régis Cottereau* —Didier Clouteau* —Christian Soize**

*École Centrale Paris, Laboratoire MSSMat,
Grande Voie des Vignes, 92295 Châtenay-Malabry, France

{regis.cottereau,didier.clouteau}@ecp.fr

**Université Paris-Est, Laboratoire de Mécanique,
5 bd Descartes, 77454 Marne-la-Vallée, France

soize@univ-mlv.fr

ABSTRACT. Two approaches are presented for the modeling of the impedance matrix of a random
medium: one parametric and the other nonparametric. The former allows to take into account
the data uncertainties while introducing a model error, that yields, in some cases, very high
levels. The latter is based on a much simpler, deterministic, model, for which both data uncer-
tainties and model errors are accounted for. When the model error is negligible, the parametric
approach can be used for the identification of the parameters of the nonparametric model of the
impedance matrix.

RÉSUMÉ. Deux approches sont présentées pour la modélisation de la matrice d’impédance d’un
milieu aléatoire: une paramétrique et une non-paramétrique. La première prend en compte les
erreurs de données, mais introduit une erreur de modèle, qui peut, selon les cas, atteindre des
niveaux importants. La seconde est basée sur un modèle simpliste et déterministe, pour lequel
à la fois les erreurs de données et de modèle peuvent être prises en compte. Lorsque l’erreur
de modèle est négligeable, l’approche paramétrique peut être utilisée pour l’identification des
paramètres du modèle non-paramétrique de la matrice d’impédance.
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1. Introduction

In many fields of application, as civil engineering or aeronautics, engineers have to
design structures that are in contact with unbounded domains. In these applications,
only the structure is really of interest for the engineers, and the exterior domain is
important only through its equivalent stiffness, in statics, or its boundary impedance
matrix, in dynamics.

The unbounded domains that are considered in these applications are often inaccu-
rately described and complex. For instance, the natural heterogeneity of a soil is often
replaced, in seismic design problems, by a system of homogeneous horizontal layers.
However, the physical behavior of such a simplified system is quite different from the
original, and some features are then lost. The error that is introduced is referred to as
model error. Besides, once the model has been chosen, the shear size of the domains
that are considered hinders the feasibility of an experimental campaign to assess the
parameters of that model. The uncertainty associated with the evaluation of these pa-
rameters is referred to as data uncertainty. For some domains, and in particular the
soil in geotechnical problems, these data and model uncertainties can be very large.
Probabilistic approaches can then be introduced to try and take them into account.

Two types of approaches are possible: a parametric, which takes into account
data uncertainties only, and a nonparametric, which can assess both model errors
and data uncertainties. The former consists in constructing probabilistic models of
the parameters of the mechanical system, and to deduce the corresponding stochastic
model for the impedance matrix. The most widely used method for this approach
is the Stochastic Finite Element (SFE) method (Ghanem et al., 1991). The non-
parametric approach consists in taking into account uncertainties directly at the level
of the matrices of the considered dynamical system. Based on the original method
by Soize (Soize, 2000; Soize, 2001), presenting the construction of a probabilistic
model for the generalized matrices of mass, damping and stiffness of a dynamical
system, a nonparametric probabilistic model for impedance matrices was recently in-
troduced (Cottereau, 2007; Cottereau et al., 2007a; Cottereau et al., 2007b).

We propose here to construct, for a common reference problem (cf. section 2),
probabilistic models of the boundary impedance matrix, following successively a
parametric approach (cf. section 3.1) and a nonparametric approach (cf. section 3.2).
When the model error that is introduced in the parametric approach is negligible, this
method can be used for the identification of the parameters of the nonparametricmodel
of the impedance matrix (cf. section 3.3). An example is provided, of a rigid embed-
ded foundation within a layer of random soil on a rigid bedrock (cf. section 4).

2. Reference problem

Let us consider a general domain Ω, which is considered random in the sense
that its mechanical properties are modeled as random fields. This domain Ω may be
unbounded, and its boundary is denoted ∂Ω. We define part of this boundary as a
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(a) Reference model (b) Mean model (c) SFE model

Figure 1. (a) Reference problem of a rigid embedded foundation in a horizontally-
unbounded layer of random soil on top of a rigid bedrock, (b) corresponding mean
model, and (c) SFE model of the reference problem.

boundary of interest Γ, with respect to which we want to define the impedance matrix.
For instance, this boundaryΓ would be the interface between the soil and the structure
in seismic design of a structure (see figure 1(a)), or the union of the interfaces between
the soil and the structure and between the fluid and the structure in dam engineering.
Free field conditions are enforced on part of the boundary, denoted ∂Ωσ , and clamped
conditions are imposed on another part, denoted ∂Ωu. We suppose that Γ∩ ∂Ωσ = ∅,
Γ ∩ ∂Ωu = ∅, ∂Ωu ∩ ∂Ωσ = ∅, and Γ ∪ ∂Ωσ ∪ ∂Ωu = ∂Ω.

The Lamé’s parameters λ(x) and µ(x) of the random medium Ω are modeled
as the restrictions on Ω of second-order homogeneous random fields, defined on a
probabilistic space (A, T , P), and indexed on R

3. The corresponding mean fields are
constant and denoted by

λ0 = E[λ(x)], µ0 = E[µ(x)], [1]

and the covariance is such that

Cαβ(x,x′) = Cαβ(|x − x
′|) = E[(α(x) − α0)(β(x′) − β0)], [2]

whereα and β stand either for λ or µ, and α and β for λ or µ. For simplicity, the unit
mass ρ(x) of the medium will be supposed constant throughout this paper.

The harmonic boundary value problem (BVP) in Ω that is used to define the
impedance matrix consists in finding, for each ω ∈ R, a displacement field u =
[ui]1≤i≤3 such that, for 1 ≤ i ≤ 3,



















σij,j(u) + ρ(x)ω2ui = 0 in Ω,

ui = φi on Γ,

σij(u) nj = 0 on ∂Ωσ,

ui = 0 on ∂Ωu,

[3]

where φ = [φi]1≤i≤3 is a given displacement field imposed on the boundary Γ, n =
[ni]1≤i≤3 is the normal to boundary ∂Ωσ, and σ(u) is the elastic stress tensor,

σij(u) = λ(x)uk,kδij + µ(x)(uj,i + ui,j). [4]
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Implicit summation over repeated indexes is considered, and an index following a
comma indicates a derivation with respect to the corresponding coordinate. δij repre-
sents Kronecker’s delta.

The solution u(x) of the BVP of eq. [3] corresponds to a traction field fΓ on Γ. By
definition, the impedance operator relates fΓ to the imposed displacement field φ on
Γ. When these two fields are approximated by their expansions on a common finite
Hilbert basis of functions indexed on Γ, the boundary impedance matrix [Zs(ω)] is
defined, with respect to the coordinates [fΓ(ω)] and [Φ(ω)] of these expansions, by

[Zs(ω)][Φ(ω)] = [fΓ(ω)]. [5]

The problem that was described in this section, where the Lamé’s parameters are
modeled as random fields, is referred to as the "reference problem" (figure 1(a)). It
yields the definition of the "reference impedance matrix", [Zs(ω)].

3. Probabilistic models of the impedance matrix

In the general case, it is not possible to compute [Zs(ω)]. Therefore, two ap-
proaches are introduced for the modeling of the impedance matrix of the reference
problem of figure 1(a): a parametric one (figure 1(c)), and a nonparametric one. The
former consists in considering λ(x) and µ(x) in the BVP [3] as random only on part
of the random domain Ω, and constant elsewhere, at their mean value λ0 and µ0. Be-
sides possible data uncertainties, this process induces a model error that cannot be
accounted for. On the other hand, the nonparametric model is based on a "mean"
model (figure 1(b)), where the Lamé’s parameters are taken as constant everywhere,
therefore inducing a large model error. However, in this approach, both data uncer-
tainties and model error can be taken into account.

3.1. Parametric model of the impedance matrix [ZP(ω)]

In this approach, we subdivide Ω into a bounded part ΩP , where the Lamé’s pa-
rameters will be modeled by random fields, as in the "reference problem", and its
complement Ω0, where they will be taken as constant, at values λ0 and µ0. This is
typically what happens when the SFE method is used to solve a problem where ran-
dom fields are defined over an unbounded domain. Indeed, this method requires the
random fields to be discretized over a FE grid, which means that unbounded domains
must be cut out in some fashion.

A possible approach, extending the classical, deterministic, FE modeling of un-
bounded domains, would consist in introducing absorbing boundary layers, or ab-
sorbing boundary conditions at some distance from the excitation and observation
points (Magoulès et al., 2006). However, no generalization seem to exist yet for
problems with random distributions of the mechanical parameters. Another ap-
proach (Savin et al., 2002), that will be used here, consists in coupling the bounded
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domain ΩP , that will be modeled by the SFE method, to the unbounded deterministic
domainΩ0, that can be modeled, for example, by the Boundary Element (BE) method.

Within the bounded domain ΩP , the covariance function (eq. [2]) of the Lamé’s
parameters is supposed to be known. The fields of parameters can then be written as
Karhunen-Loève expansions

λ(x) = λ0 +

∞
∑

ℓ=1

ξℓeℓ(x) , µ(x) = µ0 +

∞
∑

ℓ=1

κℓeℓ(x), [6]

where the {ξℓ}ℓ≥1 and {κℓ}ℓ≥1 are uncorrelated random variables, and the {eℓ}ℓ≥1

are eigenfunctions of the covariance operator in eq. [2]. In practice, the sums in eq. [6]
are truncated after NKH modes, which is chosen such that the trace of the covariance
operator is well represented.

We additionally suppose that realizations of the λ(x) andµ(x) can be constructed
by drawing independent realizations of the {ξℓ}ℓ≥1 and {κℓ}ℓ≥1 with an uniform
random variables generator, and discarding those realizations of the λ(x) and µ(x)
that reach a negative value for some x. For each acceptable realization of the Lamé’s
parameters fields, a realization of the soil impedance matrix can be computed, by
solving the BVP [3]. The probability law of [ZP(ω)] can then be estimated through
statistics of these realizations.

3.2. Nonparametric model of the impedance matrix [ZNP(ω)]

The nonparametric approach is quite different. The reference problem, where the
mechanical fields are random is replaced by a very simplistic one, the mean model,
where they are constants. This mean model of the impedance matrix [Z0(ω)] therefore
includes both data and model error, with respect to [Zs(ω)]. The nonparametricmodel
of the impedance matrix [ZNP(ω)] is therefore introduced, based on the mean model,
to take these errors into account.

The nonparametric method was originally introduced in structural vibration prob-
lems for the modeling of matrices of mass, damping and stiffness (Soize, 2000; Soize,
2001), and recently extended to impedance matrices (Cottereau et al., 2007a; Cot-
tereau, 2007; Cottereau et al., 2007b), through the use of so-called "hidden variables
models". In this approach, the probabilistic model of the considered matrix is con-
structed, around a knownmean model, by enforcing that each realization of the matrix
verify a given set of algebraic conditions. These conditions, for the impedance matrix,
include that it be causal and stable.

The parameters that have to be identified for the construction of the nonparametric
model of the impedance matrix are the mean model [Z0(ω)], and a set of dispersion
parameters, denoted δK, δD, and δM. These parameters control the scattering, around
their mean value, of the realizations of the matrices of stiffness [K], damping [D], and
mass [M], of the hidden variables model of the impedance matrix. The choice of these
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parameters is usually made by comparison with experiments (Soize, 2005; Arnst et
al., 2007; Arnst, 2007). In the next section, we discuss the possibility to identify them
by comparison with numerical experiments constructed with the parametric approach.

The practical construction of [ZNP(ω)] is done in the following way:

1) Computation of [Z0(ω)] using any method.

2) Identification of the matrices of stiffness [K0], damping [D0], and mass [M0],
of the hidden variables model of [Z0(ω)], as described in (Cottereau et al., 2007a).

3) Computation of realizations of the nonparametric probabilistic models of [K],
[D], and [M], as described, for example, in (Soize, 2001).

4) Computation, by condensation, of realizations of [ZNP(ω)].

5) Estimation of statistics of [ZNP(ω)].

3.3. Identification of the parameters of the nonparametric model [ZNP(ω)]

In the previous two sections, two probabilistic models of the impedance matrix
have been constructed in two very different ways. The first one is constructed by
the propagation of randomness on the parameters of the model towards the impedance
matrix, and the other is built directly at the level of the impedancematrix, by enforcing
a given set of algebraic conditions. The models of the medium on which they are built
are also very different: one is a random medium, although partially, while the other
is deterministic. Finally, they do not span the same spaces of matrix-valued random
processes. However, they aim at representing the same reference problem.

In both cases, model errors are introduced during the modeling process. In the
nonparametric approach these model errors can be accounted for, while they cannot
be dealt with in the parametric approach. If it is possible to construct a parametric
model of the impedance matrix [ZP(ω)] in which the model error is negligible, then a
numerical experiment can be conducted that generates realizations of the impedance
matrix of the referencemedium, and accounting for data uncertainties. The parameters
of the nonparametricmodel of the impedancematrix [ZNP(ω)], assessing both data and
model errors, can then be identified from the results of this numerical experiment.

In the next section, we will construct a parametric model of the impedance matrix
[ZP(ω)] for which the model error is important for some elements and negligible for
others (in particular the shaking element). In that case, the parameters of the nonpara-
metric model [ZNP(ω)] should be identified only on the latter elements.

4. Impedance matrix of a random layer of soil on top of a rigid bedrock

In this section, we apply the principles seen in the previous sections, to a particular
example of the impedance matrix of a rigid embedded foundation on a random layer
of soil, over a rigid bedrock.
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4.1. Reference model of the impedance matrix

The geometry of the reference problem is that presented in figure 1(a), with the
height of layer H , three times larger than the radius of the foundation R, and the
height of the embedment D. The foundation is rigid and circular.

H = 3R = 3D = 30 m [7]

The unit mass is constant at ρ0 = 2000 kg/m3, and the mean Lamé’s parameters are
λ0 = 0.36 GPa and µ0 = 0.18 GPa, corresponding to mean compressional and shear
velocities vP,0 = 600 m/s and vS,0 = 300 m/s.

4.2. Parametric model of the impedance matrix

Let us first construct the parametric model of the soil impedance matrix [ZP(ω)].
We suppose that the correlation structure of the Lamé’s parameters is of the exponen-
tial type, with an isotropic correlation length Lc,

Cαβ(|x − x
′|) = cαcβ exp

(

−
|x− x

′|

Lc

)

, [8]

where α and β are either λ or µ, cλ =
√

(Cλλ), and cµ =
√

(Cµµ). We consider
cλ = γλ0 and cµ = γµ0, with γ = 60%.

Three different correlation lengths are considered: Lc = 5 m, Lc = 10 m, and
Lc = 20 m. The Karhunen-Loève expansion (eq. [6]) is truncated after NKH = 20
modes, which corresponds to an error in the evaluation of the trace of the covariance
matrix of around 15% in the three cases that were considered. 1000Monte Carlo trials
are drawn in each case.

The real part of the parametric model of two elements of the soil impedancematrix
are drawn in figure 2, in the case of Lc = 10 m. In figure 3, a frequency-wise normal-
ized variance is plotted for the same two elements of the soil impedance matrix. It is
defined, for each ω ∈ R, by

gPij =
E[ZPij(ω)ZPij(ω)]

E[ZPij(ω)]2
, [9]

where ZPij(ω) is the element (i, j) of matrix [ZP(ω)], and a indicates the conjugate
of the complex number a.

Two main facts can be observed on figure 3:

– gPij(ω) generally increases with frequency and in the neighborhood of resonance
frequencies (here, the first compressional - for pumping - and shear - for shaking -
resonances of the layer of soil at 5 Hz and 2.5 Hz, respectively).

– gPij(ω) is much larger for the pumping element than for the shaking element.
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(a) Real part of shaking element (b) Real part of pumping element

Figure 2. Real part of (a) the shaking and (b) the pumping elements of [ZP(ω)]: mean
model (dotted line), one Monte Carlo trial (solid line), mean value (dashed line), and
90%-confidence interval (shaded area).
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(a) Shaking element
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(b) Pumping element

Figure 3. Normalized variance gP
ij of the (a) shaking and (b) pumping elements of

[ZP(ω)], for three lengths of correlation: Lc = 5 m (dotted line), Lc = 10 m (dashed
line), and Lc = 20 m (solid line)

The first item is also observed on the other elements of the impedance matrix, that are
not plotted here for concision. The second item is also observed, but to a lesser extent,
when comparing the rocking and torsional elements, which correspond respectively to
a compression and a shear deformation of the layer of soil.

The difference in the amplitudes of gPij for the shaking and pumping elements
of [ZP(ω)] arise from the error that is made by replacing the reference problem by
the SFE model. By doing this, the volume of soil that surrounds the sides of the
embedded foundation, which is heterogeneous in the reference problem, is replaced
by a homogeneous volume of soil. This has little impact on the random model of the
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(a) Real part of shaking element (b) Real part of pumping element

Figure 4. Real part of (a) the shaking and (b) the pumping elements of [ZNP(ω)]:
mean model (dotted line), one Monte Carlo trial (solid line), mean value (dashed
line), and 90%-confidence interval (shaded area).

pumping element of [ZP(ω)], because the dynamics of the vertical displacements of
the foundation are more influenced by the volume of soil beneath the foundation. On
the horizontal displacements, however, this introduces a very important model error,
virtually canceling any variability on the shaking element of [ZP(ω)].

4.3. Nonparametric model of the impedance matrix

We then turn to the construction of the nonparametric model of the soil impedance
matrix [ZNP(ω)]. It is based on the mean model of the reference problem (figure 1(b)),
where all mechanical parameters are considered constant within the layer of soil, at
their mean values (see above). Besides the mean model, the dispersion parameters δK,
δD, and δM also have to be selected. We choose here, for illustration, δK = δD =
δM = 0.1, and will discuss this choice further in the next section.

The real parts of the nonparametric model of the shaking and pumping elements
of the soil impedance matrix are drawn in figure 4. The corresponding normalized
variances gNPij (eq. [9]) are plotted on figure 5. Two facts are noticeable:

– Although the amplitude is different, the dynamical shape of the normalized vari-
ances for [ZNP(ω)] is similar to that of [ZP(ω)].

– The shaking and pumping elements of [ZNP(ω)] yield similar levels of variabil-
ity, while the levels were very different in the parametric case.
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(a) Shaking element

0 5 10 15
0

0.005

0.01

0.015

0.02

Frequency [Hz]

N
o
rm

a
liz

e
d
 v

a
ri
a
n
c
e
 [
−

]

(b) Pumping element

Figure 5. Normalized variance gNP
ij of the (a) shaking and (b) pumping elements of

[ZNP(ω)], for δK = δD = δM = 0.1.

4.4. Discussion

As already noted, in the parametric approach, a model error is introduced by con-
sidering heterogeneous Lamé’s parameters fields only in a bounded volume of soil
under the foundation, rather than everywhere in the layer, as in the reference problem.
This error has influence on the shaking element of [ZP(ω)], but little on the pump-
ing element, due to the location of the heterogeneous volume. In the nonparametric
approach, there is no such difference between the elements as model errors are taken
into on all terms of the impedance matrix.

It is therefore reasonable to assess that the pumping elements of both models of the
impedance matrix represent comparable physical problems, while this is not the case
for the shaking elements. It is then proposed to identify the dispersion parameters δK,
δD, and δM on the values of the correlation coefficients of the pumping element, or
such that the following cost function is minimized

ǫ = ‖gPpump − gNPpump‖
2, [10]

where the notations used are obvious generalizations of eq. [9]. Other identification
methods, more appropriate for uncertainty quantification, are currently investigated,
and will be discussed elsewhere.

For simplicity, we present only results of the identification of the dispersion param-
eters with the additional simplification that δK = δD = δM. In that case, the inverse
problem can be solved simply by sampling the parameter space (1-dimensional here)
and solving one problem for each sample. A more complete identification process
would require the independent identification of each dispersion parameter, as well as
the concomitant identification of the mean model of the impedance matrix [Z0(ω)]. In
that case, more complex sampling procedures will be necessary. The results obtained
for the three Lc that were considered are presented in figure 6.
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(a) Shaking element
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(b) Pumping element

Figure 6. Normalized variances for [ZP(ω)] (dashed lines), as in figure 3, for Lc = 5
m (lowest variability), Lc = 10 m, and Lc = 20 m, and corresponding correlation
coefficients for [ZNP(ω)] (solid lines), with δK = δD = δM = 0.15 (lowest variability),
δK = δD = δM = 0.2, and δK = δD = δM = 0.3.

5. Conclusion

Two approaches were presented in this paper for the modeling of a reference ran-
dom problem. The parametric approach, appropriate for the modeling of data uncer-
tainties, was shown to introduce a model error by the discretization of the random
mechanical parameters fields. However, on the example of the foundation embedded
in a layer of random soil on a rigid bedrock, this model error seems to have little effect
on the shaking element of the impedance matrix, and more on the pumping element.

The nonparametric approach, accounts for both model errors and data uncertain-
ties. It is based on the mean model of the impedance matrix, in which a large model
error is introduced by comparison with the reference model. On the example pre-
sented here, it was shown to yield more balanced levels of variability for the shaking
and pumping elements of the impedance matrix than for the parametric approach.
Finally, a novel method was proposed for the identification of the dispersion param-
eters of the nonparametric method, based on results for the pumping element of the
impedance matrix with the parametric approach.

In a forthcoming paper, we will present results using more appropriate iden-
tification schemes, based in particular on the works of (Arnst, 2007; Arnst et
al., 2007; Soize, 2005), and with the simultaneous identification of the dispersion
parameters and of the mean model of the impedance matrix.

6. References

Arnst M., Inversion of probabilistic models of structures using measured transfer functions,
PhD thesis, École Centrale Paris, Châtenay-Malabry, France, April, 2007.



12 1re soumission à European Journal of Computational Mechanics

Arnst M., Clouteau D., Bonnet M., “ Identification of non-parametric probabilistic models from
measured frequency transfer functions”, Computer Methods in Applied Mechanics and En-
gineering, 2007. Submitted in revised form.

Cottereau R., Probabilistic models of impedance matrices. Application to dynamic soil-structure
interaction, PhD thesis, École Centrale Paris, Châtenay-Malabry, France, January, 2007.

Cottereau R., Clouteau D., Soize C., “ Construction of a probabilistic model for impedance
matrices”, Computer Methods in Applied Mechanics and Engineering, vol. 196, n˚ 17-20,
p. 2252-2268, March, 2007a.

Cottereau R., Clouteau D., Soize C., “ Probabilistic impedance of foundation: impact on
the seismic design on uncertain soils”, Earthquake Engineering and Structural Dynamics,
2007b. Submitted.

Ghanem R. G., Spanos P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag,
1991.

Magoulès F., Harari I., “ Absorbing boundary conditions”, Computer Methods in Applied Me-
chanics and Engineering, vol. 195, n˚ 29-32, p. 3551-3902, June, 2006.

Savin É., Clouteau D., “ Elastic wave propagation in a 3D unbounded random heterogeneous
medium coupled with a bounded medium. Applications to seismic soil-structure interac-
tion.”, International Journal for Numerical Methods in Engineering, vol. 54, n˚ 4, p. 607-
630, 2002.

Soize C., “ A nonparametric model of random uncertainties for reduced matrix models in struc-
tural dynamics”, Probabilistic Engineering Mechanics, vol. 15, p. 277-294, 2000.

Soize C., “ Maximum entropy approach for modeling random uncertainties in transient elasto-
dynamics”, Journal of the Acoustical Society of America, vol. 109, n˚ 5, p. 1979-1996, May,
2001.

Soize C., “ Random matrix theory for modeling uncertainties in computational mechanics”,
Computer Methods in Applied Mechanics and Engineering, vol. 194, p. 1333-1366, 2005.


