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Abstract

Random uncertainties in finite element models in linear structural dynamics are usually modeled by using paramet-

ric models. This means that 1) the uncertain local parameters occurring in the global mass, damping and stiffness

matrices of the finite element model have to be identified; 2) appropriate probabilistic models of these uncertain

parameters have to be constructed, and 3) functions mapping the domains of uncertain parameters into the global

mass, damping and stiffness matrices have to be constructed. In the low-frequency range, a reduced matrix model

can then be constructed using the generalized coordinates associated with the structural modes corresponding to

the lowest eigenfrequencies. In this paper we propose an approach for constructing a random uncertainties model

of the generalized mass, damping and stiffness matrices. This nonparametric model does not require identifying

the uncertain local parameters and consequently, obviates construction of functions which map the domains of

uncertain local parameters into the generalized mass, damping and stiffness matrices. This nonparametric model

of random uncertainties is based on direct construction of a probabilistic model of the generalized mass, damping

and stiffness matrices, which uses only the available information constituted of the mean value of the generalized

mass, damping and stiffness matrices. This paper describes the explicit construction of the theory of such a

nonparametric model.

Keywords: Structural dynamics; random uncertainties; finite element model; entropy optimization principle

1. Introduction

1.1. Introduction of the “mean finite element model”

Let us consider the finite element model of linear vibrations of a damped structure around a position of static

equilibrium taken as reference configuration without prestresses. Details concerning such a model can be found

in the literature on structural dynamics and vibrations [1-6]. In this paper, we are interested in predicting the

frequency response functions of such a system in the frequency band of analysis = [ωmin , ωmax] , 0 < ωmin < ωmax . (1)

With respect to frequency band  of analysis, it is assumed that the structure under consideration can be modeled

by a linear time-invariant damped dynamical system. Consequently, this finite element model, which has to be

considered as the “mean finite element model” can be written in the time domain as

[M ] ÿ(t) + [D ] ẏ(t) + [K ] y(t) = x(t) ,

or in the frequency domain as

(
−ω2 [M ] + iω [D ] + [K ]

)
y(ω) = x(ω) , (2)

in which y = (y
1
, . . . , y

m
) is the vector of the m DOFs (displacements and/or rotations) and x = (x1, . . . , xm)

is the vector of the m inputs (forces and/or moments). The mass, damping and stiffness matrices [M ], [D ] and
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[K ] are symmetric (m×m) real matrices independent of ω over band  , but may depend on  (as is the case

if  is a narrow medium-frequency band and if the structure is modeled with viscoelastic constitutive equations

[6]). Matrix [M ] is positive definite whereas matrices [D ] and [K ] are either positive definite (fixed structure)
or positive semidefinite if there are rigid body modes (free structure). In the case of a free structure, the external

forces are assumed to be in equilibrium in the sense defined below. It is assumed that matrices [D ] and [K ] have
the same null space. Note that an underlined quantity refers to the “mean finite element model”. For all ω fixed

in  , Eq. (2) has a unique solution y(ω) = [h(ω)] x(ω) in which ω 7→ [h(ω)] is the frequency response function
defined on  with values in the symmetric (m×m) complex matrices,

[h(ω)] =
(
−ω2 [M ] + iω [D ] + [K ]

)−1
. (3)

1.2. Introduction of the “mean reduced matrix model”

If frequency band  corresponds to the low-frequency range, a reduced matrix model can be constructed using the

structural modes [1,2,4-6]. Let us consider the generalized eigenvalue problem related to the mean finite element

model,

[K ] y = λ [M ] y . (4)

1) If the structure is fixed, then [K ] and [D ] are positive-definite matrices. We have 0 < λ1 ≤ λ2 ≤ . . . and the
associated eigenvectors {y1, y2, . . .} are such that

< [M ] yα, yβ>= δαβ , < [K ] yα, yβ>= ω2
α δαβ , (5)

in which ωα =
√
λα is the eigenfrequency of structural mode yα whose normalization is defined by generalized

mass µα = 1 and where <y , x>= y1 x1 + . . . + ym xm.

2) If the structure is free, then [K ] and [D ] are positive-semidefinite matrices. The dimension of the null space
of [K ] is denoted as mrig and is assumed to be such that 0 < mrig ≤ 6. The rigid body modes are denoted as
{y−mrig , . . . , y−1} and verify [K ] yα = 0 for α in {−mrig, . . . ,−1}. Since by assumption the null spaces of

matrices [D ] and [K ] coincide, the null space of [D ] is spanned by {y−mrig , . . . , y−1}. The structural modes
{y1, y2, . . .} are associated with positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . .. Vectors yα belonging to the family

{y−mrig , . . . , y−1, y1, y2, . . .} constituted of the rigid bodymodes and the structural modes verify the orthogonality
properties defined by Eq. (5). Since external force x(ω) is in equilibrium, for all ω in  , we have

<x(ω) , yα>= 0 , α ∈ {−mrig, . . . ,−1} .

3) The mean reduced matrix model related to structural modes {y1, . . . , yN} with N ≪ m is then defined by the

frequency response function [hN (ω)] such that

[hN (ω)] =
N∑

α=1

N∑

β=1

[T (ω)]αβ yα y
T
β , (6)

in which [T (ω)] is the (N×N) complex symmetric matrix defined by

[T (ω)] =
(
−ω2 [M ] + iω [D ] + [K ]

)−1
, (7)

where [M], [D] and [K] are the mean generalized mass, damping and stiffness matrices which are symmetric
positive-definite (N×N) real matrices such that [M]αβ = δαβ , [D]αβ =< [D ] yβ, yα> and [K]αβ = ω2

α δαβ .

A quasi-static correction term can be added to the right-hand side of Eq. (6) to accelerate convergence [6].

4) It should be noted that the usual construction for the low-frequency range recalled above cannot be used if

frequency band  belongs to the medium-frequency range. A mean reduced matrix model was recently proposed

for the medium-frequency range [7-6]. This method consists in replacing the structural modes associated with the
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N lowest eigenfrequencies of the mean finite element model by the eigenfunctions associated with the N highest

eigenvalues of the mechanical energy operator of the structure over band  .
1.3. The usual parametric model of random uncertainties in linear structural dynamics

Random uncertainties are mainly due to uncertainties on the geometry, boundary conditions and constitutive

equations. In this case, the matrices of the finite element model depend on a vector-valued uncertain parameter

denoted as q + q in which q = (q
1
, . . . , q

L
) ∈ !L is the mean value of the uncertain parameter and q is the

fluctuation around mean value q. Fluctuation q = (q1, . . . , qL) is such that q ∈ DL ⊂ !L, whereDL is a subspace

of !L. Consequently, Eq. (2) is rewritten as

(
−ω2 [M(q+ q)] + iω [D(q+ q)] + [K(q+ q)]

)
y(ω) = x(ω) . (8)

If q = 0, this equation yields the “mean finite element model” defined by Eq. (2) with [M ] = [M(q)],
[D ] = [D(q)] and [K ] = [K(q)]. Matrix [M(q + q)] is positive definite and it is assumed that the null spaces
of matrices [D(q+ q)] and [K(q+ q)] are independent of q and coincide with the null space of [K ]. Uncertain

parameter q ∈ DL ⊂ !L is modeled by a second-order centered random variable Q = (Q1, . . . , QL) with valued
in !L, whose probability distribution is written as PQ(dq) = pQ(q) dq in which pQ(q) = 0 if q /∈ DL. In practice,

functions q 7→ [M(q+q)], [D(q+q)] and [K(q+q)] have to be algebraically known and in the general case, only
a numerical approximation can be constructed using a sensitivity analysis of the finite element model with respect

to uncertain parameter q. Such a sensitivity analysis can be performed using a first- or second-order analysis.

Consequently, in the frequency domain, the response of the dynamical system is a random vectorY(ω)with values
in "m verifying the random matrix equation

(
−ω2 [M(q+Q)] + iω [D(q+Q)] + [K(q+Q)]

)
Y(ω) = x(ω) . (9)

For all ω fixed in  , this equation has a unique solution Y(ω) = [H(ω)] x(ω) in which [H(ω)] is a random matrix

with values in the set of the symmetric (m×m) complex matrices and is defined by [H(ω)] = [h(ω,Q)] in which

[h(ω,q)] =
(
−ω2 [M(q+ q)] + iω [D(q+ q)] + [K(q+ q)]

)−1
. (10)

Any probabilistic quantity related to stochastic process {Y(ω), ω ∈  } can be constructed using the above model.
For instance, the mean value of random vector Y(ω) is given by E{Y(ω)} = E{[H(ω)]} x(ω) in which

E{[H(ω)]} =

∫

DL

[h(ω,q)] pQ(q) dq . (11)

It should be noted that mean value E{[H(ω)]} is not equal to frequency response function [h(ω)] related to the
“mean finite element model”. In practice, the L-uple integral over DL can be estimated, either using a first-

or second-order Taylor expansion of function q 7→ [h(ω,q)], or using a Monte Carlo calculation of the L-uple
integral.

1.3.1. Random reduced matrix model

The reduced matrix model related to structural modes {y1, . . . , yN} introduced in Section 1.1.1 with N ≪ m
consists in replacing frequency response function [h(ω,q)] by its approximation

[hN (ω,q)] =
N∑

α=1

N∑

β=1

[T (ω,q)]αβ yα y
T
β , (12)

in which [hN (ω,q)] is a symmetric (m×m) complex matrix and [T (ω,q)] is a symmetric (N×N) complexmatrix
such that

[T (ω,q)] = (−ω2[M(q+ q)] + iω [D(q+ q)] + [K(q+ q)])−1 , (13)

Proba. Eng. Mech. 3 C. Soize - October 1999



where generalized mass, damping and stiffness matrices [M(q + q)], [D(q + q)] and [K(q + q)] are symmetric
positive-definite (N×N) real dense matrices which can be constructed explicitly using a first- or second-order
sensitivity analysis to represent functions q 7→ [M(q + q)], [D(q + q)] and [K(q + q)]. The random reduced

matrix model related to structural modes {y1, . . . , yN} with N ≪ m is then defined by

[HN (ω)] = [hN (ω,Q)] . (14)

The methods used for [H(ω)] can be used to calculate the probabilistic quantities related to random frequency

response function [HN (ω)] replacing [h(ω,q)] by [hN (ω,q)].

A reduced matrix model can be obtained for the medium-frequency range using the above method, replacing

the structural modes of the “mean finite element model” associated with the N lowest eigenfrequencies by the

eigenfunctions associated with theN highest eigenvalues of the mechanical energy operator of the structure (mean

finite element model) over band  .
1.3.2. Parametric model and bibliography

The approach described in Section 1.3.1 can be defined as a parametric random reduced matrix model because 1)

uncertain vector parameter q is constituted of the local parameters of the mean finite element model and has to be

explicitly defined; 2) probability density function pQ(q) of random variable Q has to be constructed; 3) mappings

q 7→ [A(q + q)], in which [A] denotes [M], [D] or [K], have to be explicitly constructed. These three steps

constitute a parametric model of random uncertainties for the reduced matrix model. Concerning details related

to such a parametric approach, we refer the reader to [8-22] for general developments, to [23-30] for applications,

to [31-38] for general aspects related to stochastic finite elements. Some other aspects related to this kind of

parametric models of random uncertainties can also be found in the context of developments written in stochastic

dynamics and parametric stochastic excitations (see for instance [8,21,39-49]). Finally, it should be noted that

there are some connections between the parametric model of random uncertainties in linear structural dynamics

and stochastic linearization methods with random parameters for nonlinear dynamical systems [50-56].

1.4. Introduction of a nonparametric model of random uncertainties in linear structural dynamics

An interesting question concerns the possibility of directly constructing a randommodel of the generalized dynamic

stiffness matrix of a structure or a substructure without having to determine the uncertain local parameters of the

finite element model (for instance, the fuzzy structure theory [6,57,58] belongs to this class of problem). In this

paper, we propose an approach allowing a random uncertainties model to be constructed for a reduced matrix

model in linear structural dynamics, introducing a probabilistic model for the generalized mass, damping and

stiffness matrices obviating identification of uncertain local parameters q of the finite element model and therefore

the construction of functions q 7→ [A(q+ q)] in which [A] denotes the generalized mass matrix [M], generalized
dampingmatrix [D] or generalized stiffness matrix [K]. This nonparametricmodel of randomuncertainties is based

on direct construction of a probability model of the generalized mass, damping and stiffness matrices, using only

the available information which is constituted of the mean generalized mass, damping and stiffness matrices of

the mean reduced matrix model. This paper describes the explicit construction of the theory of this nonparametric

model. In Section 2, we introduce the principle of construction of a nonparametric model of random uncertainties

in linear structural dynamics using the available information constituted of the mean reduced matrix model of the

structure. Section 3 deals with the explicit construction of a probability model for symmetric positive-definite

real random matrices using only the available information, and consequently, using the entropy optimization

principle (which has been applied in another context for different problems [59-64]). This method allows the

probabilistic model of the generalized mass, damping and stiffness matrices to be constructed. In Section 4, we

finish the construction of the randomgeneralizedmass, damping and stiffnessmatrices andwe present the complete

development of the random reduced matrix model in the low-frequency range and an efficient representation of

the probability model which is very well adapted to algebraic calculus and to Monte Carlo numerical simulation

in order to compute the responses of the dynamical system with random uncertainties. In Section 5, we present a

simple example.

Proba. Eng. Mech. 4 C. Soize - October 1999



2. Principle of construction of a nonparametric model of random uncertainties for a reduced matrix model

In this section, we introduce the principle of construction of a nonparametric model of random uncertainties, the

available information being constituted of the mean reduced matrix model of the structure.

2.1. Vector and matrix notations

Any vector x = (x1, . . . , xn) in Euclidean space  n is identified with the (n× 1) column matrix of its xj

components. Euclidean space  n is equipped with the usual inner product < x , y>= xT y =
∑n

j=1 xjyj and

the associated Euclidean norm ‖y‖ =< y , y>1/2, where xT denotes the transpose of x. Hermitian space !n is

equipped with the Hermitian inner product (x , y) =< x , y> and the associated norm ‖y‖ =< y , y>1/2 where

y is the conjugate of y in !n. Let " be  or ! and #n,m(") be the space of all the (n×m) matrices [A ] whose
elementsAij = [A ]ij are in ". If n = m, we denote #n(") as #n,n("). The determinant of matrix [A ] in #n(")
is denoted as det[A ] and its trace as tr[A ] =

∑n
j=1[A ]jj . The transpose of [A ] in #n(") is denoted as [A ]T

and its adjoint as [A ]∗ = [A ]
T
. The Frobenius norm (or the Hilbert-Schmidt norm) of matrix [A ] in #n(") is

defined by ‖ [A ] ‖F = (tr{[A ] [A ]∗})1/2
. Finally, we introduce the subspace #S

n(") of all the (n×n) symmetric
matrices (a matrix [A ] in #S

n(") is such that [A ] = [A ]T , i.e. [A ]ij = [A ]ji) and the subspace #+
n ( ) of #S

n( )
constituted of all the positive-definite symmetric (n×n) real matrices.

2.2. Nonparametric model of random uncertainties for the reduced matrix model matrices

2.2.1. Principle of construction

The global construction of random uncertainties is associated with the mean finite element model defined in the

frequency domain by Eq. (2) and consists in directly introducing mass, damping and stiffness random matrices

[M], [D] and [K]. Consequently, in the frequency domain the finite element model with random uncertainties is

written as (
−ω2 [M] + iω [D] + [K]

)
Y(ω) = x(ω) , (15)

in which Y(ω) = (Y1(ω), . . . , Ym(ω)) is the random vector with values in !m constituted of the m DOFs

(displacements and/or rotations), x = (x1, . . . , xm) is the vector of them inputs (forces and/or moments) defined

in Section 1.1 and [M], [D] and [K] are random matrices with values in #S
m( ). It should be noted that the mean

finite element model defined by Eq. (2) cannot be used to predict the reponse for all ω in  but only for ω in $
for which the mean model has been developed. This means that the mean finite element model does not constitute

an available information to construct the random finite element model for all ω in  . On the other hand the

mean reduced matrix model defined by Eqs. (6) and (7) constitutes the true available information to construct the

response of the mean finite element model for ω in $. Consequently, since the available information is constituted
of the mean reduced matrix model, the probability model has not to be constructed for the random finite element

model defined by Eq. (15) but for the random reduced matrix model associated with the mean reduced matrix

model defined by Eqs. (6) and (7). This random reduced matrix model is then written as

[HN (ω)] =
N∑

α=1

N∑

β=1

[T (ω)]αβ yα y
T
β , (16)

in which [T (ω)] is the (N×N) complex symmetric random matrix defined by

[T (ω)] =
(
−ω2 [M] + iω [D] + [K]

)−1
, (17)

where [M], [D] and [K] are the random generalized mass, damping and stiffness matrices which have to be

symmetric positive-definite (N×N) real matrices, i.e. random matrices with values in #+
N ( ). Finally, we have

to define the available information which is useful for constructing the probabilistic model.

2.2.2. Available information
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The basic available information is the mean reduced matrix model which is constituted of the mean generalized

mass, damping and stiffness matrices [M ], [D ] and [K ] defined in Section 1.1 and which are in +
N (!). Random

generalizedmass, damping and stiffness matrices [M], [D] and [K] are second-order random variables with values

in  +
N (!) such that

E{[M]} = [M ] , E{[D]} = [D ] , E{[K]} = [K ] . (18)

In addition, we need to introduce information relative to the existence of moments of random variables [M]−1,

[D]−1 and [K]−1 (such as second-order moments). Since random matrices [M], [D] and [K] are almost surely
positive definite, their inverses exist almost surely, but this property does not imply the existence of moments. We

therefore introduce the following constraints,

E
{
‖[M]−1‖γM

F

}
< +∞ , E

{
‖[D]−1‖γD

F

}
< +∞ , E

{
‖[K]−1‖γK

F

}
< +∞ , (19)

in which γM ≥ 1, γD ≥ 1 and γK ≥ 1 are positive integers. We then have to construct a probability model for

symmetric positive-definite real randommatrices [M], [D] and [K]with the available information defined by Eqs.
(18) and (19). This construction is performed in Section 3 using the entropy optimization principle.

3. Construction of a probability model for symmetric positive-definite real random matrices using the

entropy optimization principle

In this section, we construct a probability model of a random matrix with values in the (n×n) real symmetric
positive-definite matrices.

3.1. Probability density function on the space of positive-definite symmetric real matrices

Let [A] be a random matrix with values in  +
n (!) ⊂  S

n(!) whose probability distribution

P[A] = p[A]([A ]) d̃A (20)

is defined by a probability density function [A ] 7→ p[A]([A ]) from  +
n (!) into !+ = [0 ,+∞[ with respect to the

measure (volume element) d̃A on  S
n(!) defined below. This probability density function is such that

∫ +
n (!)

p[A]([A ]) d̃A = 1 . (21)

The objective of this section is to clearly define measure d̃A induced by the Euclidean structure on  S
n(!).

3.1.1. Euclidean structure and measure on space !n

Space !n is equipped with the Euclidean inner product defined in Section 2.1. Let {e1, . . . , en} be the canonical
basis of !n. Any vector x = (x1, . . . , xn) in !n can be written as x =

∑n
j=1 xj ej . Since < ei, ej >= δij in

which δij = 0 if i 6= j and δjj = 1, we deduce that {ej}j is an orthonormal basis in !n. This Euclidean structure

on !n defines the measure (volume element) dx on !n such that dx = Πn
j=1 dxj .

3.1.2. Euclidean structure and measure on space  n(!)
Any matrix [A ] in  n(!) can be written as [A ] =

∑n
i,j=1Aij [bij ] in which Aij = [A ]ij are the elements of

matrix [A ] and [bij ] are matrices in  n(!) such that [bij ] = ei e
T
j . If [A ] and [B] are matrices in  n(!), then their

inner product can be defined by

≪ [A ] , [B]≫= tr{[A ] [B]T } =
n∑

i,j=1

AijBij , (22)

and the associated norm is the Frobenius norm ‖[A ]‖F =≪ [A ] , [A ]≫1/2 . Since ≪ [bij ] , [bi′j′ ]≫= δii′δjj′ ,

we deduce that {[bij ]}ij is an orthonormal basis in  n(!). This Euclidean structure on n(!) defines the measure
(volume element) dA on  n(!) such that

dA = Πn
i,j=1 dAij . (23)

Proba. Eng. Mech. 6 C. Soize - October 1999



3.1.3. Euclidean structure and measure on space  S
n(!)

Space  S
n(!) ⊂  n(!) is constituted of the symmetric (n×n) real matrices. It can easily be verified that the

family {[̃bij ] , 1 ≤ i ≤ j ≤ n} of symmetric matrices defined by

[̃bii] = ei e
T
i , [̃bij ] =

1√
2
(ei e

T
j + ej e

T
i ) if i < j ,

is an orthonormal basis in  S
n(!) because ≪ [̃bij ] , [̃bi′j′ ] ≫= δii′δjj′ for i ≤ j and i′ ≤ j′. Any symmetric

matrix [A ] in  S
n(!) can then be written as

[A ] =
∑

1≤i≤j≤n

Ãij [̃bij ] , (24)

in which, for 1 ≤ i ≤ j ≤ n, real numbers Ãij are defined by

Ãii = Aii , Ãij =
√

2Aij if i < j . (25)

If [A ] and [B] are matrices in  S
n(!) ⊂  n(!), then their inner product is written as

≪ [A ] , [B]≫= tr{[A ] [B]T } =
∑

1≤i≤j≤n

Ãij B̃ij . (26)

This Euclidean structure on  S
n(!) defines the measure (volume element) d̃A on  S

n(!) such that

d̃A = Π1≤i≤j≤n dÃij . (27)

From Eqs. (25) and (27), we deduce that

d̃A = 2n(n−1)/4 Π1≤i≤j≤n dAij . (28)

3.2. Available information for construction of the probability model

We are interested in the construction of the probability distribution of a second-order random variable [A] with
values in  +

n (!) for which the available information is the mean value of random matrix [A],

E{[A]} =

∫ +
n (!)

[A ] p[A]([A ]) d̃A = [A ] , (29)

in which E denotes the mathematical expectation and where the mean value [A ] is given in  +
n (!). In addition,

we assume that random matrix [A] is such that

E{ln(det[A])} = v with |v| < +∞ . (30)

In Section 3.6, we prove that the constraint defined by Eq. (30) allows us to obtain the existence of moments

related to the inverse random matrix [A]−1,

E
{
‖[A]−1‖γ

F

}
< +∞ , (31)

in which γ ≥ 1 is a positive integer. Consequently, from Eqs. (21), (29) and (30), we deduce that the constraints

imposed for the construction of the probability model of random matrix [A] with values in  +
n (!) are

∫ +
n (!)

p[A]([A ]) d̃A = 1 , (32)

∫ +
n (!)

[A ] p[A]([A ]) d̃A = [A ] ∈  +
n (!) , (33)

∫ +
n (!)

ln(det[A]) p[A]([A ]) d̃A = v with |v| < +∞ . (34)
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3.3. Introduction of the maximum entropy principle

We use the maximum entropy principle to construct the probability model of random matrix [A] with values

in  +
n (!) based only on the use of the available information defined in Section 3.2. In this section, we recall

the maximum entropy principle. Let Z be a discrete-valued random variable taking its values in Z = {zi}i

with the corresponding probabilities {pi}i in which p = {pi}i is the discrete probability distribution such that

pi ≥ 0 and
∑

i pi = 1. Let g1, . . . , gm be functions from Z into ! such that, for all j, the mathematical

expectation g
j

= E{gj(Z)} =
∑

i pi gji exists, in which gji = gj(zi). The measure of entropy (uncertainty)

S(p) = −∑
i pi ln pi ≥ 0 of discrete probability distribution p was initially introduced by Shannon [65] in

the context of the information theory. The maximum entropy principle for a discrete probability distribution was

introduced by Jaynes [66]. This principle allows the probability distribution of a discrete-valued randomvariable to

be explicitly constructed using only the available information, avoiding the use of any additional information which

introduces a bias on the estimation of the probability distribution. This approach allows a coherent probability

model to be constructed in the case where little objective information is available. Jayne’s maximum entropy

principle consists in maximizing the Shannon measure of entropy S(p) = −
∑

i pi ln pi, subject to the 1 + m
constraint equations

∑
i pi − 1 = 0 and

∑
i pi gji − g

j
= 0 for j in {1, . . . ,m} in which gji and gj

are given. It

should be noted that the use of the Shannon measure of entropy implies that inequalities pi ≥ 0 are automatically
satisfied. This optimization problemwith constraints is solved by introducing 1+m Lagrange multipliers denoted

as (µ0 − 1), µ1, . . . , µm corresponding to the 1 +m constraints and calculating the maximum of the Lagrangian

L(p) defined by L(p) = S(p) − (µ0 − 1){∑i pi − 1} − ∑m
j=1 µj{

∑
i pi gji − g

j
}. Jayne’s maximum entropy

principle can be extended to the case of a probability density function p(x) on!n with respect to dx of an!n-valued

random variable. In this case, the measure of “entropy” is defined by S(p) = −
∫ n p(x) ln(p(x)) dx. Since p(x)

can be greater than 1, ln p(x) can be positive, S(p) can then be negative and consequently, S(p) cannot represent
an absolute measure of uncertainty (in general the measure of uncertainty must be positive). Nevertheless, it can

be verified (see for instance [67]) that S(p) measures a relative uncertainty.

3.4. Probability model using the maximum entropy principle

In this section, we construct probability density function p[A]([A ]) and characteristic functionΦ[A]([Θ]) of random
matrix [A] with values in  +

n (!), using the maximum entropy principle and the available information defined by

Eqs. (32) to (34).

3.4.1. Construction of the probability density function

Let (µ0 − 1), [µ ] and (1 − λ) be the Lagrange multipliers corresponding to the constraints defined by Eqs. (32),
(33) and (34) respectively, with µ0 ∈ !, [µ ] ∈  +

n (!) and λ ∈ !. We then introduce the Lagrangian L(p[A]) =

S(p[A])− (µ0−1) g0−
∑n

i,j=1[µ ]ij [ g ]ij − (1−λ) g1 in which S(p[A]) = −
∫!+

n ( )
p[A]([A ]) ln

(
p[A]([A ])

)
d̃A

is the measure of entropy, g0 and g1 are the real constant numbers defined by g0 =
∫!+

n ( )
p[A]([A ]) d̃A − 1

and g1 =
∫!+

n ( )
ln(det[A]) p[A]([A ]) d̃A − v and finally, [ g ] is the (n × n) symmetric real matrix defined by

[ g ] =
∫!+

n ( )
[A ] p[A]([A ]) d̃A − [A ]. The calculus of variations applied to Lagrangian L allows the maximum

of L to be calculated and yields p[A]([A ]) = "!+
n
([A ]) × exp(−µ0 − ≪ [µ ] , [A ] ≫ − (1 − λ) ln(det[A ])) in

which "!+
n ( )([A ]) is equal to 1 if [A ] ∈  +

n (!) and is equal to zero if [A ] /∈  +
n (!). Introducing the positive

constant of normalization c0 = exp{−µ0}, the probability density function can be rewritten as

p[A]([A ]) = "!+
n ( )([A ]) × c0 × (det[A ])λ−1 × exp

(
− ≪ [µ ] , [A ] ≫

)
. (35)

Since the constraint defined by Eq. (34) has only been introduced to ensure that Eq. (31) is satisfied, there is no

advantage of expressing λ as a function of v. Consequently, λ is considered as the new parameter instead of v,
which has to be determined as a function of n and γ in order to satisfy Eq. (31). Constant c0 of normalization and
matrix [µ ] have to be determined as a function of λ and [A ] using Eqs. (32) and (33). In order to perform this

calculation, we need results concerning the Siegel integral for a positive-definite symmetric real matrix.
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3.4.2. The Siegel integral

We introduce the Siegel integral J(λ, [µ ]) defined for λ > 0 and [µ ] in  +
n (!), corresponding to the multivariate

generalization of the gamma function [68] and such that

J(λ, [µ ]) =

∫ +
n (!)

(det[A ])λ−1 exp
(
− ≪ [µ ] , [A ]≫

)
d̃A . (36)

For all real λ > 0 and for all [µ ] in  +
n (!), we have 0 < J(λ, [µ ]) < +∞ and

J(λ, [µ ]) = (2π)n(n−1)/4

{
Πn

ℓ=1 Γ
(

n−ℓ+2λ
2

)}

(det[µ ])(n−1+2λ)/2
, (37)

in which Γ(λ) is the gamma function defined for ℜe λ > 0 by

Γ(λ) =

∫ +∞

0

tλ−1 e−t dt . (38)

For [µ ] = [ I ] and n = 1, the Siegel integral coincides with the gamma function defined by Eq. (38). It should

be noted that the Siegel integral is presently defined with respect to measure d̃A and not with respect to measure

Π1≤i≤j≤n dAij (these twomeasures differ by a factor of2
n(n−1)/4). A proof ofEq. (37) can bewritten in two steps.

First, since [µ ] belongs to  +
n (!), there exists an orthogonal matrix [ψ] ∈  n(!) such that [ψ]T [µ ] [ψ] = [Λ]

in which [Λ] is a diagonal matrix in  +
n (!). Introducing the change of variable [A ] = [ψ] [G] [ψ]T and since

det[A ] = det[G] and d̃A = d̃G, Eq. (36) can be written as J(λ, [µ ]) =
∫ +

n (!)
(det[G])λ−1 exp(− ≪ [Λ] , [G]≫

) d̃G. Secondly, since [G] belongs to  +
n (!), there exists an upper triangular matrix [L ] ∈  n(!) such that

[G] = [L ]T [L ] with [L ]ℓℓ > 0 for all ℓ. For ℓ ≤ ℓ′, we define L̃ℓℓ′ such that L̃ℓℓ = Lℓℓ and L̃ℓℓ′ =
√

2Lℓℓ′

if ℓ < ℓ′. Let d̃L be the measure defined by d̃L = Π1≤ℓ≤ℓ′≤n dL̃ℓℓ′ = 2n(n−1)/4 Π1≤ℓ≤ℓ′≤n dLℓℓ′ . Introducing

the change of variable [G] = [L ]T [L ] in the integral over  +
n (!) and since det[G] = Πn

ℓ=1 L̃
2
ℓℓ, ≪ [Λ] , [G]≫=∑n

j=1 Λjj (L̃2
jj + 1

2

∑
ℓ<j L̃

2
ℓj) and d̃G = 2n {Πn

ℓ=1L̃
n−ℓ+1
ℓℓ } d̃L (for the proof, see Appendix A), we obtain Eq.

(37).

3.4.3. Characteristic function

Forλ > 0 and for all [Θ] in S
n(!), the characteristic function of randommatrix [A]with values in +

n (!) ⊂  S
n(!)

is defined by Φ[A]([Θ]) = E
{
exp(i≪ [Θ] , [A]≫)

}
and can then be written as

Φ[A]([Θ]) =

∫ +
n (!)

exp( i≪ [Θ] , [A ]≫) p[A]([A ]) d̃A , (39)

in which p[A]([A ]) is given by Eq. (35) and is then written as

Φ[A]([Θ]) =
{
det

(
[ In] − i [µ ]−1[Θ]

)}−(n−1+2λ)/2

, (40)

where [ In] is the (n × n) unit matrix. The proof of Eq. (40) uses the Siegel integral. Since [µ ] belongs to +
n (!), there exists ε > 0 such that, for all [V ] in  S

n(!) verifying ‖[V ]‖F < ε, matrix [µ ] − [V ] is in  +
n (!).

Consequently, for λ > 0, Siegel integral J(λ, [µ ]− [V ]) is defined by Eq. (36). We can then consider the analytic

extension of the mapping [V ] 7→ J(λ, [µ ] − [V ]) to the space  S
n(") by writing [V ] = ℜe [V ] + i [Θ] with

[Θ] ∈  S
n(!) and ‖ℜe [V ]‖F < ε. Taking ℜe [V ] = [ 0 ] in this extension and from Eqs. (35) and (39), we deduce

that Φ[A]([Θ]) = c0 J(λ, [µ ] − i [Θ]). From the equation Φ[A]([ 0 ]) = 1, we can deduce the value of constant c0
which is written as

c0 =
1

J(λ, [µ ])
= (2π)−n(n−1)/4 (det[µ ])(n−1+2λ)/2

{
Πn

ℓ=1 Γ
(

n−ℓ+2λ
2

)} , (41)
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and consequently,Φ[A]([Θ]) = J(λ, [µ ]−i[Θ]) × J(λ, [µ ])−1. From Eq. (37), we then deduce Eq. (40).

3.4.4. Second-order moments of random matrix [A]

For all [Θ] in  S
n(!), j ≤ k and j′ ≤ k′, we have

E{Ajk} =
−i

(2 − δjk)

{
∂

∂Θjk
Φ[A]([Θ])

}

[Θ]=[ 0 ]

, (42)

E{AjkAj′k′} =
−1

(2 − δjk)(2 − δj′k′)

{
∂2

∂Θjk∂Θj′k′

Φ[A]([Θ])

}

[Θ]=[ 0 ]

. (43)

The calculation of the right-hand side of Eqs. (42) and (43) requires calculating the derivatives of a determinant.

If [H] ∈  n(") and if ‖ [H] ‖F → 0, then (see for instance [69]), det([ I ] + [H]) = 1 + tr[H] + O(‖ [H] ‖2
F ).

Using differential calculus, it can easily be shown that, for all invertible matrices [B] in n("), ∂(det[B])/∂Bjk =
(det[B]){[B]−1}kj. From Eqs. (40), (42) and (43) and for λ > 0, we deduce that

E{Ajk} =
(n−1+2λ)

2

{
[µ ]−1

}
jk

, (44)

E{AjkAj′k′} = E{Ajk}E{Aj′k′}
+

1

(n−1+2λ)

{
E{Aj′k}E{Ajk′} + E{Ajj′}E{Akk′}

}
. (45)

3.4.5. Calculation of matrix parameter [µ ]

Using Eq. (33) and Eq. (44), parameter [µ ] can be expressed in terms of mean value [A ] ∈  +
n (!) of random

matrix [A] with values in  +
n (!),

[µ ] =
(n−1+2λ)

2
[A ]−1 , λ > 0 . (46)

3.4.6. Characteristic function and probability density function of positive-definite random matrix [A]

For λ > 0 and [Θ] ∈  S
n(!), Eqs. (40) and (46) yield

Φ[A]([Θ]) =
{
det

(
[ In] − 2i

(n−1+2λ)
[A ] [Θ]

)}−(n−1+2λ)/2
, (47)

and substituting Eqs. (41) and (46) into Eq. (35) yields

p[A]([A ]) = # +
n (!)([A ])×cA×

(
det[A ]

)λ−1 × exp
(
− (n−1+2λ)

2
≪ [A ]−1, [A ]≫

)
, (48)

in which positive constant cA is written as

cA =
(2π)−n(n−1)/4

(
n−1+2λ

2

)n(n−1+2λ)/2

{
Πn

ℓ=1Γ
(

n−ℓ+2λ
2

)}
(det[A ])(n−1+2λ)/2

. (49)
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3.4.7. Covariance tensor of random matrix [A]
Since E{[A]} = [A ] and using Eq. (45), the covariance Cjk,j′k′ = E

{
(Ajk − Ajk)(Aj′k′ − Aj′k′)

}
of random

variables Ajk and Aj′k′ is written as

Cjk,j′k′ =
1

(n−1+2λ)

{
Aj′kAjk′ +Ajj′Akk′

}
,

and the variance σ2
jk = Cjk,jk of random variable Ajk is such that

σ2
jk =

1

(n−1+2λ)

{
A2

jk +AjjAkk

}
.

Let δA be defined by

δA =

{
E{‖ [A] − [A ] ‖2

F }
‖ [A ] ‖2

F

}1/2

. (50)

Since E{‖ [A] − [A ] ‖2
F } =

∑
j

∑
k σ

2
jk, we deduce that

δA =

{
1

n− 1 + 2λ

(
1 +

(tr[A ])2

tr([A ]2)

)}1/2

. (51)

3.4.8. Remark concerning parameter λ
For n fixed, if λ → +∞, then δA and σjk → 0 and therefore [A] → [A ] almost surely. Consequently,

parameter λ allows the dispersion of the probability model to be controlled. If [A ] = [ In], then Eq. (51) yields
δA = {(1 + 1/n)/(1 − 1/n+ 2λ/n)}1/2. Consequently, if n ≫ 1, we then have δA ∼ (1 + 2λ/n)−1/2 which

shows that λ→ +∞ means λ/n≫ 1. Concerning the calculation of the range of parameter λ required to satisfy
Eq. (31), we need a result concerning the probability distribution of eigenvalues of matrix [A] that we present in
the next section.

3.5. Probability distribution of the eigenvalues of random matrix [A] with values in  +
n (!)

Since mean value [A ] = E{[A]} is a matrix belonging to  +
n (!), there exists an orthogonal matrix [F ] verifying

det[F ] = 1 and [F ] [F ]T = [F ]T [F ] = [ In], such that [A ] = [F ] [B] [F ]T in which [B] is a diagonal
matrix whose diagonal is constituted of the positive eigenvalues b1, . . . , bn of matrix [A ]. Let us introduce the
random matrix [B] with values in  +

n (!) such that [A] = [F ] [B] [F ]T . We deduce that mean value E{[B]} of
random matrix [B] is [B]. It should be noted that random matrix [B] is not a diagonal matrix. From Eqs. (48) and

(49), we deduce that the probability distribution of random matrix [B] is written as P[B] = p[B]([B ]) d̃B in which

probability density function p[B]([B ]) is such that

p[B]([B ]) = " +
n (!)([B ])×cB×

(
det[B ]

)λ−1 × exp
(
− (n−1+2λ)

2
≪ [B ]−1, [B ]≫

)
, (52)

in which positive constant cB is written as

cB =
(2π)−n(n−1)/4

(
n−1+2λ

2

)n(n−1+2λ)/2

{
Πn

ℓ=1Γ
(

n−ℓ+2λ
2

)}
(det[B ])(n−1+2λ)/2

. (53)

Since [B] is a random matrix with values in  +
n , there exists a random matrix [S] verifying det[S] = 1 and

[S] [S]T = [S]T [S] = [ In] almost surely, such that [B] = [S] [ ] [S]T in which [ ] is a random diagonal matrix

whose diagonal is constituted of the positive-valued random eigenvalues  1, . . . , n of random matrix [B] (it
should be noted that the mean value of random matrix [B] is not equal to the mean value of the diagonal random
matrix [ ]). We deduce that

[A] = [R] [ ] [R]T , (54)

in which [R] is a random matrix defined by [R] = [F ] [S] such that [R] [R]T = [R]T [R] = [ In] almost surely.
From Eq. (54), we then deduce that diagonal random matrix [ ] is constituted of the random eigenvalues of

random matrix [A]. In order to construct the probability distribution of the random eigenvalues  1, . . . , n of

random matrix [A], we need additional results concerning representation of orthogonal matrices.
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3.5.1. Exponential representation of orthogonal real matrices

Let [S] be any orthogonal matrix in  n(!) such that

det[S] = 1 , [S] [S]T = [S]T [S] = [ In] . (55)

It is known that orthogonal matrix [S] can be written as [S] = exp(ρ [T ]) in which ρ ≥ 0 and where [T ] is a
skew-symmetric real matrix in  n(!) having a Frobenius norm equal to 1,

[T ]T = −[T ] , ‖ [T ] ‖F = 1 . (56)

Due to Eq. (56), matrix [T ] depends only on ν = n(n − 1)/2 − 1 independent parameters denoted as r =
(r1, . . . , rν) and is then rewritten as [T (r)]. Consequently, matrix [S] which depends only on 1 + ν = n(n− 1)/2
independent parameters ρ and r, is then rewritten as

[S(ρ, r)] = exp(ρ [T (r)]) . (57)

It can be shown that there exist a choice of vector-valued parameter r, a bounded subsetDρ ⊂ !+ and a bounded

subset Dr ⊂ !ν such that the range of the mapping (ρ, r) 7→ [S(ρ, r)] defined on Dρ×Dr, coincides with the set

of all the orthogonal matrices in  n(!) verifying Eq. (55).

3.5.2. Infinitesimal orthogonal matrices

For r fixed in Dr and from Eq. (57), we deduce that [S(ρ, r)] → [ In] if ρ→ 0, and for 0 < ρ≪ 1, we can write

[S(ρ, r)] = [ In] + ρ [T (r)] + O(ρ2) . (58)

Let [Σ] be any matrix in  n(!) and let [S(ρ, r)] be the infinitesimal orthogonal matrix defined by Eq. (58).

Therefore, it can easily be verified that [S(ρ, r)] [Σ] [S(ρ, r)]T = [Σ] + ρ
(
[T (r)] [Σ] − [Σ] [T (r)]

)
+ O(ρ2). If

[Σ] is a diagonal matrix whose diagonal elements are denoted as σ1, . . . , σn, then

n∑

k=1

σk [S(ρ, r)]2jk = σj + O(ρ2) , ∀j . (59)

3.5.3. Probability density function of the random eigenvalues

Any matrix [B ] belonging to  +
n (!) can be written as

[B ] = [S(ρ, r)] [Σ( )] [S(ρ, r)]T , (60)

in which [S(ρ, r)] ∈  n(!) is defined by Eq. (57) and where [Σ( )] is a diagonal matrix in  +
n (!) constituted of

all the positive eigenvalues σ1, . . . , σn of matrix [B ] such that [Σ( )]jk = σj δjk in which  = (σ1, . . . , σn) ∈
D = (]0 ,+∞[)n ⊂ !n. Using Eq. (25), we associate matrix [B̃] with matrix [B ] defined by Eq. (60). Let ! be

the vector in !n(n+1)/2 such that ! = (Bjk , 1 ≤ j ≤ k ≤ n). Let d̃B be the measure on  S
n(!) defined by Eq.

(28) such that d̃B = 2n(n−1)/4 d! in which d! = Π1≤i≤j≤n dBij . Let ( , ρ, r) 7→ f( , ρ, r) be the mapping from
D ×Dρ×Dr into !n(n+1)/2 such that ! = f( , ρ, r). The Jacobian matrix of mapping f, denoted as [J( , ρ, r)],
is such that for 1 ≤ j ≤ k ≤ n and 1 ≤ ℓ ≤ n(n + 1)/2 we have [J( , ρ, r)]jk,ℓ = ∂Bjk/∂xℓ in which

x = (x1, . . . , xn(n+1)/2) is defined by x = ( , ρ, r). Consequently, we have d! = |det[J( , ρ, r)]| d dρ dr. It
can be proved [70,72] that |det[J( , ρ, r)]| = g(ρ, r)

{
Πj<k|σk − σj |

}
in which g(ρ, r) does not depend on  

and is a bounded function on bounded sets Dρ ×Dr,

0 ≤ g(ρ, r) ≤ cg < +∞ , ∀ρ ∈ Dρ , ∀r ∈ Dr . (61)

We then deduce that

d̃B = 2n(n−1)/4 g(ρ, r)
{
Πj<k|σk − σj |

}
d dρ dr . (62)
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Using Eqs. (60) and (62) yields

p[B]([B ]) d̃B = p[B]([S(ρ, r)] [Σ( )] [S(ρ, r)]T )

× 2n(n−1)/4 g(ρ, r)
{
Πj<k|σk − σj |

}
d dρ dr , (63)

in which p[B]([B ]) is defined by Eqs. (52) and (53). The probability density function p[ ]( ) onD! =]0 ,+∞[n⊂ n with respect to Lebesgue measure d = dσ1 . . . dσn of random diagonal matrix [!] (whose diagonal is
constituted of the random eigenvalues of random matrix [A]) is then written as p[ ]( ) = !D ( ) 2n(n−1)/4

×
∫
Dρ

∫
Dr
p[B]

(
[S(ρ, r)] [Σ( )] [S(ρ, r)]T

)
× g(ρ, r)

{
Πj<k|σk − σj |

}
dρ dr. For λ > 0, substituting Eq. (52)

yields

p[ ]( ) = !D ( )×2n(n−1)/4×cB×
∫

Dρ

∫

Dr

g(ρ, r)×(σ1×. . .×σn)λ−1

×
{
Πj<k|σk − σj |

}
×exp

(
− (n−1+2λ)

2

n∑

j,k=1

σk

bj
[S(ρ, r)]2jk

)
dρ dr , (64)

in which cB is defined by Eq. (53). It should be noted thatΠj<k(σk −σj) can be expressedwith the Vandermonde
determinant formula,

Πj<k(σk − σj) = det




1 . . 1
σ1 . . σn

σ2
1 . . σ2

n

. . . .
σn−1

1 . . σn−1
n


 . (65)

3.5.4. Particular cases

1) As a first particular case, we assume that mean matrix [A ] has one eigenvalue of multiplicity n, i.e. we have
b1 = . . . = bn = b. Since

∑n
j=1[S(ρ, r)]2jk = 1 for all k and taking into account Eq. (61), we deduce that

p[ ]( ) = !D ( )×cΣ×(σ1×. . .×σn)λ−1

×
{
Πj<k|σk − σj |

}
×exp

(
− (n−1+2λ)

2b

n∑

j=1

σj

)
, (66)

in which cΣ is the constant of normalization such that∫

D p[ ]( ) d = 1 . (67)

The very interesting Eq. (66) shows the repulsion phenomenon of the eigenvalues due to random uncertainties.

Figure 1 shows the contour plot composed of lines of constant values for the function (σ1, σ2) 7→ c−1
Σ p[ ](σ1, σ2)

with n = 2 and b = 5/2 (it should be noted that p[ ](σ1, σ2) = 0 for σ1 = σ2).

2) The second particular case corresponds to large values of λ which means that the dispersion of random matrix

[A] is small (see Section 3.4.8). Since [A ] = [F ] [B] [F ]T and [A] = [F ] [B] [F ]T , and since [A] → [A ]
almost surely when λ → +∞, we then deduce that [B] → [B ] almost surely when λ → +∞ (it is recalled

that [B] is a diagonal matrix constituted of eigenvalues b1, . . . , bn of matrix [A]). Since [B] = [S] [!] [S]T , we
deduce that [S] → [ In] almost surely when λ → +∞ and consequently, for large values of λ, random matrix

[S] = [S(ρ, r)] = exp(ρ [T (r)]) ) is an infinitesimal othogonal random matrix (this means that subset Dρ can be

written asDρ = [0 , ρ0] with 0 < ρ0 ≪ 1). Consequently, we can substitute Eq. (59) into Eq. (64) and taking into
account Eq. (61), we obtain the following approximation of the probability density function of the eigenvalues!1, . . . ,!n of random matrix [A] = [R] [!] [R]T with [R] = [F ] [S],

p[ ]( ) = !D ( )×cΣ×(σ1×. . .×σn)λ−1

×
{
Πj<k|σk − σj |

}
×exp

(
− (n−1+2λ)

2

n∑

j=1

σj

bj

)
, (68)

in which cΣ is another constant of normalization defined by Eq. (67).
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3.6. Range of parameter λ

We have to determine the range of parameter λ required to satisfy Eq. (31), in which γ ≥ 1 is a positive integer.
Since [A] = [R] [ ] [R]T in which [R] is an orthogonal random matrix, we have ‖ [A] ‖2

F =  2
1 + . . . + 2

n and

‖ [A]−1 ‖2
F = ( 2

1 + . . . + 2
n)−1 and consequently,

E
{
‖[A]−1‖γ

F

}
=

∫

D p[ ](!) d!
(σ2

1 + . . . + σ2
n)γ/2

, (69)

in which D! =]0 ,+∞[n. Since 0 ≤ g(ρ, r) ≤ cg < +∞ on bounded set Dρ ×Dr and since ((n − 1 +
2λ)/2)

∑n
j,k=1(σk/bj) [S(ρ, r)]2jk ≥ 0 because λ > 0, from Eqs. (69) and (64), we deduce thatE

{
‖[A]−1‖γ

F

}
<

+∞ if and only if

Iε =

∫

‖!‖<ε

(σ1×. . .×σn)λ−1

(σ2
1 + . . . + σ2

n)γ/2
×

{
Πj<k|σk − σj |

}
d! < +∞ , (70)

in which 0 < ε ≪ 1. Introducing polar coordinates r and " = (θ1, . . . , θn−1), we have (see Appendix B)

d! = rn−1 h1(") dr d". From Eq. (65), we deduce that Πj<k(σk − σj) = r × r2 × . . . × rn−1 × h2(") and
consequently, we have Πj<k|σk − σj | = rn(n−1)/2 |h2(")|. Finally, we have (σ1×. . .×σn)λ−1 = rn(λ−1) h3(")
and (σ2

1 + . . . + σ2
n)γ/2 = rγ . Substituting these results into Eq. (70) yields

Iε =

∫ ε

0

rnλ−1−γ+n(n−1)/2 dr

∫" h1(") |h2(")|h3(")d" .

Since λ > 0, we then deduce that

λ > max

{
0 ,
γ

n
+

1 − n

2

}
=⇒ E

{
‖[A]−1‖γ

F

}
< +∞ , γ ≥ 1 . (71)

Equation (71) shows that if n = 1, n = 2 or n ≥ 3, then matrix [A]−1 is a second-order random variable (γ = 2)
for λ > 2, λ > 0.5 or λ > 0 respectively. In addition, it can easily be proved that

λ > 0 =⇒ E
{
‖[A]‖η

F

}
< +∞ , η > 0 . (72)

Equation (72) means that for λ > 0, all the moments of random matrix [A] exist (η is any positive integer).

3.7. Monte Carlo simulation of random matrix [A] when λ is a positive integer

Let us assume that λ is a positive integer and let us introduce the positive integermA such that

mA = n− 1 + 2λ . (73)

Therefore, the characteristic function of random matrix [A] defined by Eq. (47) can be rewritten as

Φ[A]([Θ]) =
{
det

(
[ In] − 2i[C] [Θ]

)}−mA/2
, (74)

in which [C] = (1/mA) [A ]. Equation (74) shows that Φ[A]([Θ]) corresponds to the characteristic function

of a Wishart distribution [70,71] and that random matrix [A] can be written as [A] =
∑mA

j=1 XjX
T
j where

X1, . . . ,XmA
are independent random vectors, each vectorXj being an  n-valued second-order Gaussian random

variable, centered and whose covariance matrix is [C] = E{XjX
T
j }. Since [A ] belongs to !+

n ( ), the Cholesky
factorization of [A ] yields

[A ] = [LA]T [LA] , (75)
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in which [LA] is an upper triangular matrix in  n(!). Therefore, for all j, random vector Xj can be written as

Xj = m
−1/2
A [LA]T Uj in whichU1, . . . ,UmA

are independent randomvectors, each vectorUj being an!n-valued

second-order Gaussian random variable, centered and whose covariance matrix is [CUj
] = E{UjU

T
j } = [ In].

Consequently, random matrix [A] can be written as

[A] =
1

mA

mA∑

j=1

(
[LA]T Uj

) (
[LA]T Uj

)T
. (76)

We then deduce the procedure for the Monte Carlo simulation of random matrix [A].

1) Simulation of mA ×n independent real-valued normalized Gaussian random variables {Uj,k}j,k for j =
1, . . . ,mA and k = 1, . . . , n (zero mean value and unit variance).

2) Defining {Uj}k = Uj,k and using Eq. (76) yields the simulation of random matrix [A].

3.8. Monte Carlo simulation of random matrix [A] when λ is a not an integer

Let us assume that λ is a positive real number (the particular case for which λ is a positive integer is presented in
Section 3.7). Considering Eq. (75), random matrix [A] can be written as

[A] = [LA]T [G] [LA] , (77)

in which matrix [G] is a random variable with values in  +
n (!). From Eqs. (75) and (77), we deduce that the

mean value [G] = E{[G]} of random matrix [G] is such that [G] = [ In] in which [ In] is the unit matrix. The

probability density function p[G]([G ]) with respect to measure d̃G on  S
n(!) of random matrix [G] with values in +

n (!) is given by Eqs. (48) and (49) in which [A ] has to be replaced by [ In]. We then have

p[G]([G ]) = " +
n (!)([G ])×c

G
×

(
det[G ]

)λ−1 × exp
(
− (n−1+2λ)

2
tr[G ]

)
, (78)

in which positive constant c
G
is written as

c
G

=
(2π)−n(n−1)/4

(
n−1+2λ

2

)n(n−1+2λ)/2

{
Πn

ℓ=1Γ
(

n−ℓ+2λ
2

)} . (79)

Since [G] is a random matrix with values in  +
n (!), the Cholesky factorization allows to write

[G] = [L]T [L] a.s. , (80)

in which [L] is an upper triangular random matrix with values in  n(!). Let [G] be a matrix belonging to  +
n (!).

Therefore, the Cholesky factorization of [G] yields [G] = [L]T [L] in which [L] is an upper triangular matrix such

that det[L] = Πn
j=1Ljj > 0. For j ≤ k, let G̃jk be such that G̃jj = Gjj and G̃jk =

√
2Gjk if j < k, and for

ℓ ≤ ℓ′, let L̃ℓℓ′ be such that L̃ℓℓ = Lℓℓ and L̃ℓℓ′ =
√

2Lℓℓ′ if ℓ < ℓ′. We then deduce that G̃jj = L̃2
jj + 1

2

∑
ℓ<j L̃

2
ℓj

and G̃jk = L̃jjL̃jk+ 1√
2

∑
ℓ<j L̃ℓjL̃ℓk for j < k. Introducing themapping {L̃ℓℓ′ , 1 ≤ ℓ ≤ ℓ′ ≤ n} 7→ {G̃jk , 1 ≤

j ≤ k ≤ n} defined by the previous equations and the measures d̃G and d̃L defined by d̃G = Π1≤j≤k≤n dG̃jk =

2n(n−1)/4 Π1≤j≤k≤n dGjk and d̃L = Π1≤ℓ≤ℓ′≤n dL̃ℓℓ′ = 2n(n−1)/4 Π1≤ℓ≤ℓ′≤n dLℓℓ′ , we have (see Appendix

A) d̃G = 2n {Πn
ℓ=1L̃

n−ℓ+1
ℓℓ } d̃L. Let #̃ be the vector in !n(n+1)/2 such that #̃ = {L̃ℓℓ′ , 1 ≤ ℓ ≤ ℓ′ ≤ n}. The

corresponding random vector with values in !n(n+1)/2 associated with random matrix [L] is denoted as L̃. We

then have pL̃(#̃) d̃L = p[G]([G ]) d̃G, det [G] =
∑n

j=1 L̃
2
jj and tr [G] =

∑n
j=1(L̃

2
jj + 1

2

∑
ℓ<j L̃

2
ℓj). Using Eq.

(78) yields pL̃(#̃) d̃L = {Πn
ℓ=1 pL̃ℓℓ

(L̃ℓℓ) dL̃ℓℓ}×{Πℓ<ℓ′ pL̃ℓℓ′
(L̃ℓℓ′) dL̃ℓℓ′} in which pL̃ℓℓ

(L̃ℓℓ) is the probability

density function with respect to dL̃ℓℓ of the positive-valued random variable L̃ℓℓ = Lℓℓ, which is written as
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pL̃ℓℓ
(L̃ℓℓ) = (n−1+2λ) L̃ℓℓ Γℓ((n−1+2λ)L̃2

ℓℓ/2) where Γℓ(y) is the gamma probability density function with
respect to dy such that

Γℓ(y) =
 [0,+∞[(y)

Γ
(

n−ℓ+2λ
2

) y
(n−ℓ+2λ)

2 −1 e−y . (81)

For ℓ < ℓ′, pL̃ℓℓ′
(L̃ℓℓ′) is the Gaussian probability density function with respect to dL̃ℓℓ′ of the real-valued random

variable L̃ℓℓ′ =
√

2Lℓℓ′ , such that pL̃ℓℓ′
(L̃ℓℓ′) = (2π)−1/2σ−1 exp(−L̃2

ℓℓ′/(2σ
2)) in which

σ =

√
2

n− 1 + 2λ
. (82)

We then deduce the procedure for the Monte Carlo simulation of random matrix [A]:

1) Random variables {Lℓℓ′ , ℓ ≤ ℓ′} are independent.
2) For ℓ < ℓ′, simulation of real-valued Gaussian random variable L̃ℓℓ′ with zero mean and root mean square given

by Eq. (82) and construction of random variable Lℓℓ′ = 2−1/2 L̃ℓℓ′ .

3) For ℓ = ℓ′, simulation of positive-valued gamma random variable Yℓ whose probability density function with

respect to dy is given by Eq. (81). This random variable is such that its mean value is equal to its variance which

is (n−ℓ+2λ)/2. We then construct random variable L̃ℓℓ = σ
√
Yℓ in which σ is given by Eq. (82) and we have

Lℓℓ = L̃ℓℓ.

4) Calculation of [G] = [L]T [L] and [A] = [LA]T [G] [LA].

3.9. Probability model of a set of positive-definite symmetric real random matrices

Let us consider ν randommatrices [A1], . . . , [Aν ]with values in!+
n (") such that for each j in {1, . . . , ν}, random

matrix [Aj ] satisfies Eqs. (32) to (34). This means that only the mean values of the random matrices are known.

Applying the maximum entropy principle (see Section 3.3), it can easily be verified that the probability density

function ([A1], . . . , [Aν ]) 7→ p[A1],...,[Aν ]([A1], . . . , [Aν ]) from !+
n (") × . . .×!+

n (") into "+ with respect to the

measure (volume element) d̃A1 × . . . × d̃Aν on !S
n(") × . . . × !S

n(") is written as

p[A1],...,[Aν ]([A1], . . . , [Aν ]) = p[A1]([A1]) × . . . × p[Aν ]([Aν ]) , (83)

which means that [A1], . . . , [Aν ] are independent random matrices.

4. Nonparametric model of random uncertainties for the reduced matrix model

In this sectionwe complete the construction of the probabilitymodel introduced in Section 2 using the developments

of Section 3.

4.1. Probability model of the reduced matrix model

We apply the results of Section 3 to random matrices [M], [D] and [K] defined in Section 2, for which the

available information is described in Section 2.2.2. Parameters γM, γD and γK introduced in Eq. (19) can be

chosen as integers such that

γM ≥ 2 , γD ≥ 2 , γK ≥ 2 . (84)

In practice, we can take for instance

γM = γD = γK = 2 . (85)

Concerning parameter λ allowing the dispersion of the probability model to be controlled (see Section 3.4.8) and
concerning its range to satisfy Eq. (19) (see Section 3.6), from Eqs. (19) and (71), we deduce that parameters λ
for each random matrix [M], [D] and [K], denoted as λM, λD and λK respectively, have to be such that

λM > max

{
0 ,
γM
N

+
1−N

2

}
, λD > max

{
0 ,
γD
N

+
1−N

2

}
, λK > max

{
0 ,
γK
N

+
1−N

2

}
. (86)
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ParametersλM, λD andλK allow the dispersion of randommatrices [M], [D] and [K] to be controlled respectively
(see Section 3.4.8). These parameters can be replaced by the parameters δM, δD and δK defined (see Eq. (50)) by

δM =

{
E{‖ [M] − [M ] ‖2

F }
‖ [M ] ‖2

F

}1/2

, δD =

{
E{‖ [D] − [D ] ‖2

F }
‖ [D ] ‖2

F

}1/2

, δK =

{
E{‖ [K] − [K ] ‖2

F }
‖ [K ] ‖2

F

}1/2

.

(87)
From Eq. (51), we deduce that

λM =
1

2δ2M

(
1 − δ2M(N − 1) +

(tr[M ])2

tr([M ]2)

)
, (88)

λD =
1

2δ2D

(
1 − δ2D(N − 1) +

(tr[D ])2

tr([D ]2)

)
, (89)

λK =
1

2δ2K

(
1 − δ2K(N − 1) +

(tr[K ])2

tr([K ]2)

)
. (90)

When Eqs. (88) to (90) are used, λM, λD and λK have to verify Eq. (86). From Section 3.9, we deduce that

random matrices [M], [D] and [K] are independent random variables with values in  +
N (!) and from Eqs. (48)

and (49), we deduce that the probability density functions p[ ], p[!] and p["] with respect to the measures (volume

elements) d̃M, d̃D and d̃K on  S
N (!) are given by

p[ ]([M]) = " +
N

(!)([M])×cM×
(
det[M]

)λM−1 × exp
(
− (N−1+2λM)

2
≪ [M]−1, [M]≫

)
, (91)

p[!]([D]) = " +
N

(!)([D])×cD×
(
det[D]

)λD−1 × exp
(
− (N−1+2λD)

2
≪ [D ]−1, [D]≫

)
, (92)

p["]([K]) = " +
N

(!)([K])×cK×
(
det[K]

)λK−1 × exp
(
− (N−1+2λK)

2
≪ [K ]−1, [K]≫

)
, (93)

in which positive constants cM, cD and cK are written as

cM =
(2π)−N(N−1)/4

(
(N − 1 + 2λM)/2

)N(N−1+2λM)/2

{
ΠN

ℓ=1Γ
(
(N − ℓ+ 2λM)/2

)}
(det[M])(N−1+2λM)/2

. (94)

cD =
(2π)−N(N−1)/4

(
(N − 1 + 2λD)/2

)N(N−1+2λD)/2

{
ΠN

ℓ=1Γ
(
(N − ℓ+ 2λD)/2

)}
(det[D])(N−1+2λD)/2

. (95)

cK =
(2π)−N(N−1)/4

(
(N − 1 + 2λK)/2

)N(N−1+2λK)/2

{
ΠN

ℓ=1Γ
(
(N − ℓ+ 2λK)/2

)}
(det[K])(N−1+2λK)/2

. (96)

Let [hN

(
ω; [M], [D], [K]

)
] be the function with values in  S

m(#) such that for all ω in $,
[hN

(
ω; [M], [D], [K]

)
] =

N∑

α=1

N∑

β=1

[T (ω; [M], [D], [K])]αβ yα y
T
β , (97)

in which [T (ω; [M], [D], [K])] is the (N×N) complex symmetric random matrix defined by

[T (ω; [M], [D], [K])] =
(
−ω2 [M] + iω [D] + [K]

)−1
. (98)

From Eq. (16), we deduce that

[HN (ω)] = [hN

(
ω; [M], [D], [K]

)
] . (99)

If [HN ] 7→ f(ω; [HN ]) is a mapping defined on  S
m(#) with values in  ν1,ν2

(#) where ν1 ≥ 1 and ν2 ≥ 1, we
have

E{f(ω; [HN (ω)])} =

∫ +
N

(!)

∫ +
N

(!)

∫ +
N

(!)

f(ω; [hN (ω; [M], [D], [K]) ])

× p[ ]([M]) × p[!]([D]) × p["]([K]) d̃M d̃D d̃K . (100)
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4.2. Efficient representation of the probability model for the response calculations

The random responses of the dynamical system with random uncertainties require the calculation of multiple

integrals in higher dimension (see Eq. (100)). Two main methods can usually be used to carry out this kind of cal-

culation. The first one corresponds to the perturbation method consisting in performing a ν-order Taylor expansion
of function ( [M], [D], [K] ) 7→ f

(
ω;

[
hN

(
ω; [M], [D], [K]

) ])
aroundmean values ( [M], [D ], [K ] ) of random

matrices ( [M], [D], [K] ). The mathematical expectation can then be calculated using Eqs. (91) to (96). For

instance, if function f is written as f(ω; [HN (ω)])} = [Q(ω)] [HN (ω)] [S(ω)] [HN (ω)]∗[Q(ω)]∗ in which [Q(ω)]
and [S(ω)] are given matrices, and if a second-order Taylor expansion of [HN (ω)] =

[
hN

(
ω; [M], [D], [K]

) ]

with respect to [M], [D] and [K] around their mean values is used, we then have to calculate fourth-order tensor
moments of random matrices [M], [D] and [K]; this kind of calculation is tricky due to Eqs. (91) to (96) and a
more suitable representation of randommatrices [M], [D] and [K] has to be used (see below). The secondmethod
consists in using the Monte Carlo calculation of multiple integrals with or without variance reduction procedures

[73-80]. This method is very efficient if there is a Monte Carlo simulation procedure of random matrices [M],
[D] and [K] which is the case for the method presented in Section 3.7, much more efficient than the method

presented in Section 3.8. For many applications, the numberN is sufficiently high and we can therefore consider

λM, λD and λK as positive integers without introducing any significant limitation in the model. The use of the

representation introduced in Section 3.7 also makes it easier to develop the perturbation method.

Applying Eq. (76) to random matrices [M], [D] and [K] with values in  +
N (!) and taking into account Eq. (18)

yields

[M] =
1

mM

mM∑

j=1

(
[LM]T Uj

) (
[LM]T Uj

)T
, (101)

[D] =
1

mD

mD∑

j=1

(
[LD]T Vj

) (
[LD]T Vj

)T
, (102)

[K] =
1

mK

mK∑

j=1

(
[LK]T Wj

) (
[LK]T Wj

)T
, (103)

in which

mM = N − 1 + 2λM , mD = N − 1 + 2λD , mK = N − 1 + 2λK , (104)

where λM, λD and λK are positive integers verifying Eq. (86) and given by Eqs. (88) to (90), and where [LM],
[LD] and [LK] are upper triangular matrices in  N (!) corresponding to the Cholesky factorization of matrices
[M], [D ] and [K ] in  +

N (!) such that

[M] = [LM]T [LM] , [D ] = [LD]T [LD] , [K ] = [LK]T [LK] . (105)

The set of all the components of random vectors U1, . . . ,UmM
with values in !N and of random vectors

V1, . . . ,VmD
andW1, . . . ,WmK

with values in !N is constituted ofmM×N +mD×N +mK×N independent

random variables, each of which is a real-valued second-order normalized Gaussian random variable (zero mean

value and unit variance).

For an efficient computation, Eqs. (101) to (103) can be rewritten as

[M] =
1

mM

mM∑

j=1

[Mj ] , [D] =
1

mD

mD∑

j=1

[Dj ] , [K] =
1

mK

mK∑

j=1

[Kj ] , (106)

in which random matrices [Mj ], [Dj ] and [Kj ] with values in  +
N (!) are such that

[Mj ] = Uj U
T
j , [Dj ] = Vj V

T
j , [Kj ] = Wj W

T
j , (107)

in which for j fixed and for α = 1, . . . ,N , we have

Uj = [LM]TUj , Vj = [LD]TVj , Wj = [LK]TWj . (108)
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5. Simple example

We consider the “mean finite element model” defined by Eq. (2) for which m = 50 and mrig = 0, frequency
band  of analysis is [1, 50] Hz and the mean mass, damping and stiffness matrices are such that [M ]jk = δjk,

[D ]jk = 2 ξ ωj δjk and [K ]jk = ω2
j δjk with 0 < ω1 < ω2 < . . . < ωm and ξ = 0.01. Eigenfrequencies

ω1, . . . , ωm correspond to independent samples of a uniformly distributed random variable over the frequency

band [5, 150]Hz and are such that ω1, ω20, ω21, ω25 andω50 are 5.04Hz, 47.87Hz, 50.71Hz, 60.28Hz and 137.38
Hz respectively. It should be noted that, for this simple example, the “mean finite element model” can be viewed

as a “generalized mean finite element model” which corresponds to the projection on the first structural modes of

a “mean finite element model” which is not described here and for which the damping operator is diagonalized by

the structural modes. Figure 2 shows the graph of the acceleration spectrum expressed in dB and defined by

ω 7→ dB(ω) = 10 log10(ω
4‖ [h(ω)] ‖2

F ) , (109)

in which [h(ω)] is defined by Eq. (3). We consider the reduced matrix model defined in Section 4 with N = 25
and three cases for the dispersion of the generalized mass, damping and stiffness random matrices (see Eqs. (87)

to (90)),

Case 1: δM = 0.2, δD = 0.2 and δK = 0.2 corresponding to λM = 312, λD = 258 and λK = 204.
Case 2: δM = 0.1, δD = 0.1 and δK = 0.1 corresponding to λM = 1287, λD = 1071 and λK = 855.
Case 3: δM = 0.03, δD = 0.03 and δK = 0.03 corresponding to λM = 14432, λD = 12026 and λK = 9630.
Cases 1, 2 and 3 correspond to high, medium and low dispersion respectively. We are interested in the random

acceleration spectrum expressed in dB and defined by

ω 7→ dB(ω) = 10 log10(ω
4‖ [HN (ω)] ‖2

F ) , (110)

in which random matrix [HN (ω)] is defined by Eq. (99). For each case, Monte Carlo numerical simulation is

carried out with nS samples, denoted as θ1, . . . , θnS
, for which the samples ω 7→ dB(ω; θ1), . . . , ω 7→ dB(ω; θnS

)
are numerically calculated on frequency band [1, 50] Hz with a sampling frequency step 0.1 Hz. For ω fixed, the

mean value of random variable dB(ω) is estimated by

E{dB(ω)} ≃ 1

nS

nS∑

j=1

dB(ω ; θj) . (111)

Finally, we introduce the functions ω 7→ dBmax(ω ;  ) and ω 7→ dBmin(ω ;  ) defined by
dBmax(ω ;  ) = max

j=1,...,nS

dB(ω ; θj) , dBmin(ω ;  ) = min
j=1,...,nS

dB(ω ; θj) , (112)

in which  = (θ1, . . . , θnS
). Figures 3 , 4 and 5 are related to cases 1, 2 and 3 for nS = 100 and Figures 6 ,

7 and 8 are related to cases 1, 2 and 3 for nS = 1000. Each figure shows four graphs: the graph of function

ω 7→ dB(ω) (thin solid line) defined by Eq. (109) related of the mean reduced matrix model, the graph of function
ω 7→ E{dB(ω)} (dashed line) estimated by Eq. (111) and finally, the graphs of functions ω 7→ dBmax(ω ;  ) and
ω 7→ dBmin(ω ;  ) (thick solid lines) defined by Eq. (112).
6. Conclusions

We have presented the theoretical basis of a new method allowing the random uncertainties to be modeled for

reduced matrix models in linear structural dynamics. The information used does not require the description of

the local parameters of the mechanical model. The probability model is deduced from the use of the entropy

optimization principle whose available information is constituted of the fundamental algebraic properties related

to the generalizedmass, damping and stiffness matrices which have to be positive-definite symmetric matrices, and

the knowledge of these matrices for the mean reduced matrix model. An explicit construction and representation

of the probability model have been obtained and are very well adapted to algebraic calculus and to Monte Carlo

numerical simulation in order to compute the responses of the dynamical system.
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Appendix A

This appendix concerns the calculation of the Jacobian matrix of transformation [L ] 7→ [G ] = [L ]T [L ] of
symmetric positive-definite matrix [G ]. Let [G ] be a positive-definite symmetric (n × n) real matrix (i.e.

[G ] ∈  +
n (!)) and let G̃jk be such that G̃jj = Gjj and G̃jk =

√
2Gjk if j < k. Consequently, there exists an

upper triangular matrix [L ] ∈  n(!) such that [G ] = [L ]T [L ] with [L ]ℓℓ > 0. For ℓ ≤ ℓ′, we define L̃ℓℓ′ such

that L̃ℓℓ = Lℓℓ and L̃ℓℓ′ =
√

2Lℓℓ′ if ℓ < ℓ′. A simple calculation yields G̃jj = L̃2
jj + 1

2

∑
ℓ<j L̃

2
ℓj and G̃jk =

L̃jjL̃jk + 1√
2

∑
ℓ<j L̃ℓjL̃ℓk if j < k. Let [ J̃ ] be the Jacobian matrix of the mapping {L̃ℓℓ′ , 1 ≤ ℓ ≤ ℓ′ ≤ n} 7→

{G̃jk , 1 ≤ j ≤ k ≤ n} defined by the previous equations. For 1 ≤ j ≤ k ≤ n and 1 ≤ ℓ ≤ ℓ′ ≤ n, we have

[ J̃ ]jk,ℓℓ′ = ∂G̃jk/∂L̃ℓℓ′ . We then deduce that det[ J̃ ] = 2n {Πn
ℓ=1L̃

n−ℓ+1
ℓℓ } and therefore, d̃G = |det[ J̃ ]| d̃L

in which d̃G is the measure defined by d̃G = Π1≤j≤k≤n dG̃jk = 2n(n−1)/4 Π1≤j≤k≤n dGjk and d̃L is the

measure defined by d̃L = Π1≤ℓ≤ℓ′≤n dL̃ℓℓ′ = 2n(n−1)/4 Π1≤ℓ≤ℓ′≤n dLℓℓ′ . Since L̃ℓℓ > 0, we deduce that

d̃G = 2n {Πn
ℓ=1L̃

n−ℓ+1
ℓℓ } d̃L.

Appendix B

This appendix concerns the transformation from rectangular to polar coordinates in!n. Let = (σ1, . . . , σn) be the
rectangular coordinates in !n and (r, !) be the polar coordinates such that ! = (θ1, . . . , θn−1). The transformation
is defined by σ1 = r sin θ1, σ2 = r cos θ1 sin θ2, . . . , σn−1 = r cos θ1 cos θ2 . . . cos θn−2 sin θn−1 and σn =
r cos θ1 cos θ2 . . . cos θn−2 cos θn−1, in which −π/2 < θj ≤ π/2 for j = 1, . . . , n−2 and −π < θn−1 ≤ π.
We have

∑n
j=1 σ

2
j = r2 and d = rn−1 h1(!) dr d! in which h1(!) = | cosn−2 θ1 cosn−3 θ3 . . . cos θn−2|.
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Fig. 1. Contour plot of function (σ1, σ2) 7→ c−1
Σ p[ ](σ1, σ2)
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Fig. 3. Acceleration spectrum in dB for case 1 andnS = 100
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Fig. 4. Acceleration spectrum in dB for case 2 andnS = 100
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Fig. 2. Acceleration spectrum in dB of the

“mean finite element model”
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Fig. 6. Acceleration spectrum in dB for case 1 and nS = 1000
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Fig. 7. Acceleration spectrum in dB for case 2 and nS = 1000
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Fig. 5. Acceleration spectrum in dB for case 3 andnS = 100
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Fig. 8. Acceleration spectrum in dB for case 3 and nS = 1000
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