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Abstract
There are several methods in dynamic substructuring for numerical simulation of complex structures in the low-

frequency range, that is to say in the modal range. For instance, the Craig-Bampton method is a very efficient

and popular method in linear structural dynamics. Such a method is based on the use of the first structural

modes of each substructure with fixed coupling interface. In the medium-frequency range, i.e. in the non-

modal range, and for complex structures, a large number of structural modes should be computed with finite

element models having a very large number of degrees of freedom. Such an approach would not be efficient

at all and generally, cannot be carried out. In this paper, we present a new approach in dynamic substructuring

for numerical calculation of complex structures in the medium-frequency range. This approach is still based

on the use of the Craig-Bampton decomposition of the admissible displacement field but the reduced matrix

model of each substructure with fixed coupling interface, which is not constructed using the structural modes,

is constructed using the first eigenfunctions of the mechanical energy operator of the substructure with fixed

coupling interface related to the medium-frequency band. The method and a numerical example is presented.

1. Introduction

In the low-frequency range, the Craig-Bampton

method [2] is very efficient to calculate the dynam-

ical response of a complex structure modeled by fi-

nite element method. This method was initialy devel-

opped for discretized systems. The continuous ver-

sion for a conservative structure can be found in [4],

[5] and for a dissipative structure in [6], [7]. This

method is based on the use of the structural modes

of each substructure with fixed coupling interface al-

lowing a reduced matrix model to be constructed. It

is known that structural modes cannot be used to con-

struct such a reduced matrix model in the medium-

frequency range for many reasons (see for instance

[10], [7]). Recently, a method was proposed to con-

struct reduced matrix model in the medium-frequency

(MF) range [8]-[9]. In this paper, we present a new

approach for dynamic substructuring in the MF range.

This approach is similar to Craig-Bampton method,

but the structural modes for each substructure with

fixed coupling interface are replaced by the eigen-

functions associated with the highest eigenvalues of

the mechanical energy operator related to the MF

band for the substructure. In section 2, we present the

dynamic substructuring construction in the MF range.

Section 3 deals with the construction of eigenvector

basis used for the reduced matrix model of each sub-

structure in the MF range. Finally, an example is pre-

sented in section 4.

2. Dynamic substructuring con-

struction in the medium-

frequency range.

In this paper, the formulation is written in the fre-

quency domain and is based on the use of a finite

element model. In addition, it is assumed that the

structure is subdivided into two substructures. Gen-

eralization to several ones is straightforward.

2.1 Reduced matrix model for a sub-
structure.

We consider linear vibrations of a 3D viscoelastic

structure around a static configuration considered as

a natural state (without prestresses). The structure

is fixed and occupies a bounded domain  of R
 ,

with boundary   ! "  "! where "! is the part of

the boundary in which the displacement field is zero

(Dirichlet conditions). The outward unit normal to
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Figure 1 : Geometrical configuration.

  is denoted by n (see Figure 1). We introduce the

narrow MF band defined by

B ! ""B  
#"

$
# "B %

#"

$
& ! R

 # (1)

in which "B is the central frequency of the band and

#" is the bandwidth such that

#"

"B
" ' # "B  

#"

$
$ ( % (2)

The interval eB defined by

eB ! " "B  
#"

$
# "B %

#"

$
& # (3)

is associated with B. The structure is submitted to

an external body force field fgvol)x# "*# x $  g

and a surface force field fgsurf)x# "*# x $ +g, in

which " $ B & eB. Structure  is decomposed into

two substructures  ! and  " whose coupling inter-

face is ,. The boundaries of  ! and  " are writ-

ten as   ! ! +! & , and   " ! +# & +" & ,

respectively (see Figure 2). We consider finite ele-

ment meshes of  ! and  " which are assumed to be

compatible on coupling interface ,. For " in B & eB
and r $ f'# $g, we introduce the Cnr -valued vectors

U
r)"*, Fr)"* and Fr

$
)"* constitued of the nr DOFs,

the discretized forces induced by external forces gvol
and gsurf, and the discretized internal coupling forces

applied to coupling interface ,, respectively. The ma-

trix equation for substructure  r is then written as

"Ar)"*&Ur)"* ! F
r)"* % F

r
$)"* % (4)

in which symmetric (nr'nr) complex matrix "A
r)"*&

is the dynamical stiffness matrix of substructure  r
with a free coupling interface, which is defined by

"Ar)"*&!  """M r& % i""Dr)"*& % "Kr)"*& # (5)
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Figure 2 : Structure decomposed into 2 substructures.

where "Mr&, "Dr)"*& and "Kr)"*& are positive sym-

metric (nr ' nr) real matrices. It should be noted

that the damping and stiffness matrices depend on fre-

quency " because the material is viscoelastic. In ad-

dition, since " ! ( does not belong to B & eB, for all
" $ B & eB, matrix "A!)"*& of the free substructure
 ! is invertible (matrix "M

!& is positive definite and

matrices "D!)"*&# "K!)"*& are only positive), while

matrix "A")"*& of the fixed substructure  " is invert-

ible for any real " (matrices "M"&# "D")"*&# "K")"*&

are positive definite). Vector Ur)"* is written as

U
r)"* ! )Uri )"*#U

r
j)"** in which Uri )"* is the

C
nr m-valued vector of the nr  m internal DOFs

and Urj)"* is the C
m-valued vector of the m cou-

pling DOFs. Consequently, matrix "Ar)"*& and vec-

tor Fr)"* % F
r
$
)"* can be written as

"Ar)"*& !

!
"Arii)"*& "Arij)"*&

"Arij)"*&
T "Arjj)"*&

"
# (6)

F
r)"* % F

r
$)"* !

!
F
r
i )"*

F
r
j)"* % F

r
$'j)"*

"
# (7)

in which exponent T denotes the transpose of matri-

ces, and where Fr
$
!
#
(#Fr

$'j

$
$ C

nr m ' C
m. The

coupling conditions on interface , are written as

U
!
j )"* ! U

"
j )"* ! Uj)"* # (8)

F
!
$'j)"* % F

"
$'j)"* ! ( % (9)

The Craig-Bampton method [2] introduced for finite

element models is based on a fundamental mathemat-

ical property proved for the boundary value problems

in Ref. [4], consisting in writing (see Figure 3) the

admissible displacement vector space Cr for substruc-

ture  r with free coupling interface , as the direct

sum of the vector space Cr'$ of static liftings rela-

tive to coupling interface , (so called the space of
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Figure 3 : Substructuring principle .

static boundary functions) with the admissible dis-

placement vector Cr! for substructure  r with fixed

coupling interface !,

Cr " Cr!! ! Cr!  (10)

We then propose an approach for dynamic substruc-

turing in the MF range which is based on the use of

the fundamental property defined by Eq. (10) and on

the construction of a reduced matrix model for sub-

structure  r with fixed interface !. This construc-

tion is obtained in substituting the structural modes of

the associated conservative substructure by the eigen-

functions associated with the highest positive eigen-

values of the mechanical energy operator of this sub-

structure, relative to MF band B " eB (see [8]-[9]).

It should be noted that structural modes can only be

used in the LF range and cannot be used in the MF

range [10], [7]. In addition, we propose to construct

space Cr!! in considering the static liftings associated

with the stiffness operator at the central frequency "B
of band B. When applied to the finite element model,

this theory leads us to write

U
r
i #"$ " %&

r
ij 'U

r
j#"$ ( %P

r'qr#"$ $ (11)

in which %&r
ij ' is the #nr # m$ m$ real matrix defined

by

%&r
ij' " #%Kr

ii#"B$'
 " %Kr

ij#"B$'  (12)

Matrix %P r' is the #nr # m$ Nr$ real matrix whose

columns are the eigenvectors associated with the Nr

highest eigenvalues of the matrix of the mechanical

energy operator relative to band B " eB and con-

structed by the finite element method. Vector qr#"$ is

the CNr -valued vector of the generalized coordinates.

Consequently, physical DOFs can be written with re-

spect to fqr#"$$ Ur
j#"$g as!

U
r
i #"$

U
r
j#"$

"
"

#
%P r'

h
&r

ij

i
%)' %Im'

& !
q
r#"$

U
r
j#"$

"
$ (13)

in which %Im' is the #m$ m$ unity matrix. The

#nr$ Nr ( m$ real matrix on the right-hand side of

Eq. (13) being denoted by %Hr', we deduce that the re-

duced matrix model associated with Eq. (4) is defined

by the matrix %Ar#"$' and the vector FFFr#"$ such that

%Ar#"$' " %Hr'T %Ar#"$' %Hr' (14)

FFF r#"$ " %Hr'T
'
F

r#"$ ( Fr
!#"$

(
$ (15)

which is rewritten with respect to fqr#"$$ Ur
j#"$g as

%Ar#"$' "

!
%Ar

ii#"$' %Ar
ij#"$'

%Ar
ij#"$'

T %Ar
jj#"$'

"
$ (16)

FFFr#"$ "

!
FFFr

i #"$

FFF r
j#"$ ( F

r
!!j#"$

"
 (17)

with FFF r
i #"$ " %P r'T Fr

i #"$ and FFFr
j#"$ "

%&r
ij '

T
F

r
i #"$ ( F

r
j , and we have

%Ar#"$'

!
q
r#"$

U
r
j#"$

"
" FFF r#"$  (18)

2.2 Reduced matrix model for structure
 !  "   #.

Using the coupling conditions on interface ! defined

by Eqs. (8)-(9) and the reduced matrix models for

substructures  " and  # defined by Eqs. (16)-(18),

yields

%A#"$'

)* q
"#"$

q
##"$

Uj#"$

+, " FFF#"$ $ (19)

in which

%FFF#"$' "

)* FFF"
i #"$

FFF#
i #"$

FFF"
j#"$ (FFF#

j#"$

+, $ (20)

%A#"$' ")* %A"
ii#"$' %)' %A"

ij#"$'

%)' %A#
ii#"$' %A#

ij#"$'

%A"
ij#"$'

T %A#
ij#"$'

T %Ajj#"$'

+, $ (21)

in which %Ajj#"$' " %A
"
jj#"$' ( %A

#
jj#"$'.



3. Construction of  Pr! for the re-
duced matrix model of a sub-

structure with fixed coupling

interface in the MF range.

3.1 Finite element discretization of the
spectral problem related to the me-
chanical energy operator.

For the construction of  Pr!, we consider the partic-

ular external forces relative to substructure "r with

fixed coupling interface #, defined by F
r
i $!% &

"$!% Fr
 in which Fr

 is a C
nr m-valued vector in-

dependant of ! and where !  "$!% is a complex-

valued function defined on R such that "$!% & ' if

! #! B " eB and such that j"$!%j & j"$$!%j. Nodal

displacement vector Ur
i $!% of substructure "r with

fixed coupling interface # is such that

 Ar
ii$!%! Ur

i $!% & "$!% Fr
 & (22)

For all " in B " eB, matrix  Ar
ii$!%! is invertible and

 T r
ii$!%! &  Ar

ii$!%! ! is the matrix-valued frequency

response function. The finite element approximation

of the eigenvalue problem related to the mechanical

energy operator of substructure "r with fixed cou-

pling interface #, relative to MF band B " eB, is writ-
ten (see [8]-[9]) as

 Gr!  Er
B !  Gr!Pr & *r  Gr! Pr + (23)

in which Pr ! Rnr m is the eigenvector associ-

ated with the positive real eigenvalue *r,  Gr! is the

positive-definite symmetric $nr $ m+nr $ m% real

matrix corresponding to the finite element discretiza-

tion of the bilinear form $u+ v% 
R
"r

u$x% %v$x% dx

and where  Er
B ! is the positive-definite symetric $nr$

m+nr $m% real matrix which is written as

 Er
B ! &

(

1

Z
B

!#j"$!%j#  ern$!%! d! + (24)

in which

 ern$!%! & &e
n

 T r
ii$!%!!  M r

ii!  T r
ii$!%!

o
+ (25)

where &e is the real part of complex number and

where  T r
ii$!%! ! &  T r

ii$!%!
T
is the adjoint matrix.

It should be noted that  Er
B ! depends on MF band

B, but does not depend on the spatial part of the ex-

ternal excitation represented by Fr . The columns of

$nr $ m+Nr% real matrix  Pr! introduced in section

2.1 are the eigenvectors Pr
!+ & & & +P

r
Nr

associated with

the Nr highest eigenvalues *
r
! ' *r# ' & & & ' *rNr

of the generalized eigenvalue problem defined by Eq.

(23). We then have

 P r! &  Pr
! & & & P

r
Nr

! & (26)

3.2 Energy method implementation.

For each substructure "r with fixed coupling inter-

face #, we have to compute the Nr highest eigenval-

ues and corresponding eigenvectors of the generalized

symmetric eigenvalue problem with positive-definite

matrices defined by Eq. (23) that we can rewrite as

 Gr!  Er
B !  Gr!  P r! &  Gr!  P r! )r! + (27)

 P r!T  Gr!  P r! &  Inr m! + (28)

in which Eq. ( 28) defines the normalization and

where  )r! is the diagonal matrix of the eigenvalues

*r! + *
r
# + & & & + *

r
Nr

.

Consequently, using the subspace iteration method

(see for instance [1]) and introducing matrix  Rr!

such that  Rr! &  Gr!  Er
B !  Gr!, we have to calculate

the lowest eigenvalues and corresponding eigenvec-

tors of the following generalized eigenvalue problem

 Gr!  Sr! &  Rr!  Sr!  *r! + (29)

 Sr!T  Rr!  Sr! &  Inr m! + (30)

in which  *r! &  )! ! and  P r! &  Sr!  *r! !'#.

The dimension of the subspace used in the subspace

iteration method is equal to 8 & min f+Nr+ Nr ,

-g. To solve the eigenvalue problem defined by

Eqs. (29)-(30), matrix  Er
B ! is not explicitly cal-

culed. An indirect procedure is used (see Ref. [8]).

For each iteration of the subspace iteration algorithm,

we only need to calculate a $nr $ m+ 8% real ma-

trix  W r! &  Er
B !  Xr!, in which  Xr! is a given

$nr $ m+ 8% real matrix. For ! in B, the approxi-

mations  Dr$!%! *  Dr$!B%!,  Kr$!%! *  Kr$!B%!

are used and it is proved that  Wr! can be calculated

by  W r! & +1 &e Zr
 $'%! in which  Zr

 $t%! is the solu-

tion of LF equations in time domain associated with

MF equations, these LF equations being written in the

time domain as

 M r! .Y r
 $t%! ,  eDr

B ! /Y r
 $t%! ,  eKr

B ! Y r
 $t%!

& 0 $t% X
r! + (31)

 M r! .Zr
 $t%! ,  eDr

B ! /Zr
 $t%!, eKr

B ! Zr
 $t%!

&  M r! Y r
 

$$t%! + (32)



in which   !t" is the inverse Fourier trans-

form of b  !!" # b !! $ !B" with b !!" #
!

! !"j"!!"j" B!!", and

% eKr
B &#!!"

B %M
r&$i!B%D

r!!B"&$%K
r!!B"& ' !''"

% eDr
B &#%D

r!!B"& $ ( i!B %M
r& ( !')"

The LF equations (31) and (32) associated with the

MF frequency band B, are solved by using the New-

mark method ([1]). The sampling time step is given

by Shannon’s theorem * # (+,*! and the integra-

tion time step of the step-by-step integration method

is written as *t # *,- in which - . + is an integer.

the initial time tI and the final time tF are respectively

defined by tI # !I and tF # J in which I . +

and J . + are integers. The details of the method

can be found in [8].

4. Example

We consider a rectangular, homogeneous, isotropic

thin plate, simply supported, with a constant thickness

,()"+, # m, width ,(-m, length +(,m, mass density

./,, kg,m#, constant damping rate ,(,+, Young’s

modulus ((+"+,!! N,m", Poisson’s ratio 5 # ,((0.

Two point masses of ' kg and ) kg are located at

points !,((' ,()" and !,('-' ,(.-", and three springs

having the same stiffness coefficient (('// N,m are

attached normally to the plate and located at points

!,(((' ,((/", !,(''' ,(-)" and !,())' ,(/'". Conse-

quently, the master structure defined above is not ho-

mogeneous. This master structure is decomposed into

two substructures (see Figure 4). The first one has a

length ,(1m and the second one, a length ,()m

y

y y
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Figure 4 : Master structure (a simply supported plate in

bending mode) decomposed into two substructures.

We are interested in the prediction of the response

of the coupled substructures in the MF narrow band

B! # (+ " %-,, ' --,& rad,s and the MF broad

band B" # (+ " %)-, ' 1-,& rad,s. The validation

of dynamic substructuring method in the MF range

presented above is obtained in comparing the fre-

quency response functions calculed for the coupled

substructures with those which are directly calculed

for the master structure. The finite element model is

constructed using 4-nodes bending plate elements.

The finite element mesh of the master structure is

shown in Figure 5. The mesh size is ,(,+m",(,+m

and numerical informations are summarized in

tables 1 and 2. We have m # +)0, n! # /0/0 and

n" # 1,,0. The total number of DOFs of the master

structure is n # !n! ! m"$ !n" ! m"$m # +)/)0.

Number Number Matrix size

of nodes of DOFs

Master plate 5151 14849 14849  14849

Subplate 1 3111 8989 8989  8989

Subplate 2 2091 6009 6009  6009

Table 1 : Number of nodes and DOFs, size of matrices.

Master plate Subplate 1 Subplate 2

Stiffness matrix 348997 211103 140639

Mass matrix 42775 25810 17110

Table 2 : Number of nonzeros entries in the matrices of

the finite element model.
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Figure 5 : Finite element mesh of the master structure.

For each structure, it is assumed that damping matrix

is proportional to its stiffness matrix with a damp-

ing coefficient ; # (<,!
B 

with < # ,(,+. The

master structure is submitted to a random excitation

fF!t" ' t $ Rg which is an R
n-valued mean-square

stationary centered second-order stochastic process

indexed by R whose matrix-valued spectral density

function %SF!!"& is written as %SF!!"& # %B& %B&T .



The entries of  n  s! real matrix "B#, with s $ %&,

are & or ' and matrix "B# is such that "B#T "B# $

"Is#. The DOFs excited correspond to the normal

displacements at nodes uniformly distributed over

the master plate. The mean-square stationary re-

sponse fU t! % t " Rg of the master structure is Rn-

valued second-order stochastic process whose matrix-

valued spectral density function  SU!!"# is writ-

ten as  SU!!"# $  T !!"#  SF!!"#  T !!"# in which

 T !!"# is the matrix-valued frequency response func-

tion of the master structure. We then deduce that

 SU!!"# $  U!!"#  U!!"# with U $  T !!"#  B#.

We then introduce the power spectral density func-

tion e!!" $ trf SU!!"#g which can be written as

e!!" $ trf U!!"#  U!!"# g.

Figure 6 shows the graph of function ' "#

%& log
 !
e!'+'" for the master structure on the

 & , ()&# Hz broad frequency band. This graph de-

fines the reference solution
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Figure 6 : Convergence of reduced model over the

 !""  !!"# Hz narrow band for the master structure.

Figures 7 to 9 are correspond to results obtained by

MF dynamic substructuring. For frequency band B 
and for each substructure *r with fixed coupling in-

terface, the distribution of highest eigenvalues /r $

/r! $ 0 0 0 of the generalized eigenvalue problem de-

fined by Eq. (23) is shown in Figure 7. For each sub-

structure, there is a strong decrease in the eigenvalues

which means there exists possibility of constructing

an efficient reduced model for this substructure in the

MF range. For frequency band B , order Nr of the

reduced model is +& for r $ % and ,& for r $ '.

In figure 8, each dashed line corrresponds to the re-

sponse ' "# %& log
 !
e!'+'" calculated with the MF

dynamic substructuring method for different values of

N and N!. The solid line corresponds to the refer-

ence solution; this figure shows the convergence of

the MF dynamic substructuring method asN andN!

increase.
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Figure 7 : Graph of function k  ! $
r

k
for k $ % % % %  !",

showing the distribution of eigenvalues of energy operator

for r $ % (graph on the the left) and r $ & (graph on the

the right).
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Figure 8 : MF dynamic substructuring results for the

 !""  !!"# Hz narrow frequency band : convergence with

respect to N and N!

Finally, Figure 9 shows the comparison between the

reference solution and the MF dynamic substructur-

ing solution calculed with N $ +& and N! $ ,& for

broad frequency band B! which is written as union of

four narrow frequency bands.
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5. Conclusion

The numerical results obtained correspond to a first

validation of the dynamic substructuring method in

the medium-frequency range presented in this paper.

These first results are good enough and more ad-

vanced validations are in progress.
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