P. Bernard and G. Fleury, Stochastic Newmark method, Comput Stochast Mech, pp.365-73, 1999.
DOI : 10.1016/s0266-8920(01)00010-8

P. Bernard, M. Fogli, P. Bressolette, and M. Lemaire, Un algorithme de simulation stochastique par Markovianisation approche Âe application a Á la me Âcanique ale Âatoire, J Me Âcanique The Âorique Applique Âe, vol.3, issue.6, pp.905-50, 1984.

D. Declercq, Apport des polyno Ãmes d'Hermite a Á la mode Âlisation non Gaussienne et tests statistiques associe Âs. Thesis, 1998.

G. Deodatis and M. Shinozuka, Simulation of stochastic processes by spectral representation, Appl Mech Rev, vol.44, issue.4, pp.191-204, 1991.

L. Devroye, Non uniform random variate generation, 1986.
DOI : 10.1007/978-1-4613-8643-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.333.8896

M. Du¯o, Random iterative models, 1997.

Á. M. Gioffre, V. Giusella, and M. Grigoriu, Simulation of non-Gaussian field applied to wind pressure fluctuations, Probabilistic Engineering Mechanics, vol.15, issue.4, pp.339-384, 2000.
DOI : 10.1016/S0266-8920(99)00035-1

M. Grigoriu, Simulation of Stationary Non-Gaussian Translation Processes, Journal of Engineering Mechanics, vol.124, issue.2, pp.121-128, 1998.
DOI : 10.1061/(ASCE)0733-9399(1998)124:2(121)

K. Gurley and K. A. , Simulation of non Gaussian processes, Comput Stochast Mech, vol.11, issue.20, 1999.

K. Âe, P. Soize, and C. , Markovianization of non linear oscillators with colored input Actes de la confe Ârence de me Âcanique ale Âatoire a Á l'E Â cole Polytechnique de Turin, pp.135-50, 1982.

K. Âe, P. Soize, and C. , Mathematics of random phenomena, Dordrecht: Reidel, 1986.

M. Loe-Áve, Probability theory, 1960.

E. Pardoux and D. Talay, Discretization and simulation of stochastic differential equations, Acta Applicandae Mathematicae, vol.47, issue.1, pp.23-47, 1985.
DOI : 10.1007/BF01438265

E. Parzen, Stochastic processes, 1962.
DOI : 10.1137/1.9781611971125

F. Poirion, Numerical Simulation Of Homogeneous Non-Gaussian Random Vector Fields, Journal of Sound and Vibration, vol.160, issue.1, pp.25-42, 1993.
DOI : 10.1006/jsvi.1993.1003

F. Poirion, Effective methods in stochastic non linear dynamics Aero servoelasticity applications, Progress in stochastic structural dynamics, 1999.

F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields, Probabilistic Methods in Applied Physics, pp.17-53, 1995.
DOI : 10.1007/3-540-60214-3_50

URL : https://hal.archives-ouvertes.fr/hal-00770416

R. Popescu, G. Deodatis, and J. Prevost, Simulation of homogeneous nonGaussian stochastic vector fields, Probabilistic Engineering Mechanics, vol.13, issue.1, pp.1-13, 1998.
DOI : 10.1016/S0266-8920(97)00001-5

S. Sakamoto and R. Ghanem, Simulation of non Gaussian ®elds with the Karhunen Loeve and polynomial chaos expansions. Engineering Mechanics Conference

S. Sakamoto and R. Ghanem, Simulation of multi dimensinal non Gaussian non stationary random ®elds, Probab Engng Mech, 2002.

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-67, 1971.
DOI : 10.1121/1.1912338

J. Shohat and J. Tamarkin, The problem of moments, Mathematical Surveys, 1963.

C. Soize, Me Âthodes mathe Âmatiques en analyse du signal, 1993.

P. Spanos and B. Zeldin, Monte Carlo Treatment of Random Fields: A Broad Perspective, Applied Mechanics Reviews, vol.51, issue.3, pp.219-256, 1998.
DOI : 10.1115/1.3098999

D. Talay, Simulation and numerical analysis of stochastic differential systems: a review, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075246

F. Yamazaki and M. Shinozuka, Digital Generation of Non???Gaussian Stochastic Fields, Journal of Engineering Mechanics, vol.114, issue.7, pp.1183-97, 1988.
DOI : 10.1061/(ASCE)0733-9399(1988)114:7(1183)