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SUMMARY

Recently, a new approach, called a non-parametric model of random uncertainties, has been

introduced for modelling random uncertainties in linear and non-linear elastodynamics in the

low-frequency range. This non-parametric approach differs from the parametric methods

for random uncertainties modelling and has been developed in introducing a new ensemble

of random matrices constituted of symmetric positive-definite real random matrices. This

ensemble differs from the GOE and from the other known ensembles of the random matrix

theory. The present paper has three main objectives. The first one is to study the statistics of

the random eigenvalues of random matrices belonging to this new ensemble and to compare

with the GOE. The second one is to compare this new ensemble of random matrices with

the GOE in the context of the non-parametric approach of random uncertainties in structural

dynamics for the low-frequency range. The last objective is to give a new validation for the

non-parametric model of random uncertainties in structural dynamics in comparing, in the

low-frequency range, the dynamical response of a simple system having random uncertainties

modelled by the parametric and the non-parametric methods. These three objectives will allow

us to conclude about the validity of the different theories.
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1. INTRODUCTION

The randommatrix theory were introduced and developed inmathematical statistics byWishart

and others in the 1930s and was intensively studied by physicists and mathematicians in the

context of nuclear physics. These works began with Wigner [1] in the 1950s and received

an important effort in the 1960s by Wigner, Dyson, Mehta [2-4] and others. In 1965, Poter

[5] published a volume of important papers in this field, followed, in 1967 by the first edition

of the Mehta book [6] whose second edition [7] published in 1991 is an excellent synthesis

of the random matrix theory. For physical applications, the most important ensemble of the

random matrix theory, is the Gaussian Orthogonal Ensemble (GOE) for which the elements

are constituted of real symmetric random matrices with statistically independent entries and

which are invariant under orthogonal linear transformations.

The random matrix theory has been used in other domains that nuclear physics. In 1984 and

1986, Bohigas at al [8,9] found that the level fluctuations of the quantum Sinai’s billard were

able to be predicted with the GOE of random matrices. In 1989, Weaver [10] show that the

higher frequencies of elastodynamic structures constituted of small aluminium blocks have the

behavior of the eigenvalues of a matrix belonging to the GOE. Then, Legrand, Schmit and

Sornette [11-14] studied the high-frequency spectral statisticswith the GOE for elastodynamics

and vibration problems in the high-frequency range. More recently, Langley [15] show that

the system of natural frequencies in the high-frequency range of linear uncertain dynamic

systems is a non-Poisson point-process. All these results have clearly been validated for the

high-frequency range in elastodynamics but not at all for the low- and medium-frequency

ranges.

Recently, a new approach, called a non-parametric model of random uncertainties, has been

introduced [16-20] for modelling random uncertainties in linear and non-linear elastodynamics

in the modal range, that is to say, in the low-frequency range. This non-parametric approach

differs from the parametric [21-24] and stochastic finite element [25-30] methods for random

uncertainties modelling and has been developed in introducing a new ensemble of randomma-

trices constituted of symmetric positive-definite real random matrices [16,18]. This ensemble

differs from the GOE and from the other known ensembles of the random matrix theory. This

new ensemble is constructed using the maximum entropy principle [31-34] which allows the

probability distribution of positive symmetric real random matrices to be constructed using

only the available information. In order to improve the readability of this paper, one recalls

fundamentals of the non-parametric model of random uncertainties introduced in the papers

mentioned above.
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The present paper has threemain objectives. The first one is to study the statistics of the random

eigenvalues of randommatrices belonging to this new ensemble of symmetric positive-definite

real random matrices. This part will allow some properties of this new ensemble to be given

and to be compared to those of the GOE. The second one is to compare these two ensembles

of random matrices in the context of the non-parametric approach of random uncertainties in

dynamic systems for the low-frequency range. This comparison will be limited to the case for

which only the generalized stiffness matrix of the dynamic system is random, the generalized

mass and damping matrices being deterministic. This limitation is due to the fact that, in the

state of the art, the GOE does not allow a damped dynamic system to bemodelled while the new

ensemble allowsmass, damping and stiffness random uncertainties to be modelled. Finally, the

last objective of this paper is to give a new validation for the non-parametric model of random

uncertainties in fixed dynamic systems in comparing, in the low-frequency range, the dynamical

response of a simple system having random uncertainties modelled by the parametric and the

non-parametric methods. It should be noted that the extension to the free dynamic systems

having rigid body modes is straightforward using the additional developments introduced in

Ref. [16] for the semi-positive definite real randommatrices (instead of the positive-definite set

of random matrices). These three objectives will allow us to conclude about the validity of the

different theories and in particular, about the non-parametric modelling of random uncertainties

in dynamic systems.

1.1. BRIEF REVIEWONTHENON-PARAMETRICMODELOF RANDOMUNCERTAINTIES INVIBRATION

ANALYSIS

In this paper,  n(!), S
n(!) and  +

n (!) are the set of all the (n×n) real matrices, the set of all

the symmetric (n× n) real matrices and the set of all the positive-definite symmetric (n× n)

real matrices, respectively. One has  +
n (!) ⊂  

S
n(!) ⊂  n(!). If [A ] belongs to  n(!),

‖[A ]‖F = (tr{[A ] [A ]T})1/2 is the Frobenius norm of matrix [A ], where tr is the trace of the

matrices, det is the determinant of the matrices and [A ]T is the transpose of matrix [A ]. The

indicatrix function "B(b) of any set B is such that "B(b) is equal to 1 if b ∈ B and is equal

to zero if b /∈ B. The gamma function is defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. All

the random variables are defined on a probability space (A, T ,P) and E is the mathematical

expectation.

In this introduction, one briefly recalls the main ideas introduced in references [16-18] concern-

ing the non-parametric model in elastodynamics and vibrations for the low-frequency range

and one limits the developments to the case of linear dynamic systems.
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The two main assumptions introduced to construct such a non-parametric model of random

uncertainties in linear structural dynamics are:

(1) not using the local parameters of the boundary value problem modelling the dynamic

system, but using the generalized coordinates directly related to dynamics (non-parametric

approach);

(2) using the available information which is constituted of the mean reduced model constructed

with the n generalized coordinates of the mode-superposition method associated with the

elastic modes corresponding to the n lowest eigenfrequencies of the linear dynamic system

assumed to be fixed, damped and stable.

To satisfy these two main assumptions, the non-parametric probabilistic model of random

uncertainties consists in replacing the generalized diagonal mass matrix [M n] ∈  +
n (!), the

generalized full damping matrix [Dn] ∈  +
n (!) and the generalized diagonal stiffness matrix

[Kn] ∈  +
n (!) of the mean reduced model by the full random matrices [Mn], [Dn] and [Kn]

respectively, with values in  +
n (!). The probability model of each random matrix [Mn], [Dn]

and [Kn] is constructed using the entropy optimization principle [32-34] from information

theory [31], using only the available information. For instance, let us consider random matrix

[Kn] for which the available information is constituted of the following constraints.

(C1) The mean value E{[Kn]} of  +
n (!)-valued random matrix [Kn] is known and is equal to

the corresponding generalized matrix [Kn] ∈  +
n (!) of the mean reduced model,

E{[Kn]} = [Kn] ∈  +
n (!) . (1)

(C2) The second-order moment E
{
‖[Kn]−1‖2

F

}
of the Frobenius norm of the inverse of

random matrix [Kn] has to be finite

E
{
‖[Kn]−1‖2

F

}
< +∞ . (2)

Random matrix [Kn] has to be with values in  +
n (!) in order to obtain a mechanical system

with random uncertainties, which models a fixed and stable dynamic system. For instance

if there were uncertainties in the generalized mass matrix, the probability distribution should

be such that this random generalized mass matrix be positive definite. If not, the probability

model would be wrong because the generalized mass matrix of any dynamic system has to be

positive definite. It seems natural to introduce constraint (C1). Constraint (C2) is absolutely

necessary and allows a unique second-order random response of the dynamic system with

random uncertainties to exist as proved in references [18,20].
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It should be noted that such a non-parametric model of random uncertainties,

(1) allows the uncertainties for the parameters of the elastodynamic model to be taken into

account (similarly to the parametric approaches, but using a global approach),

(2) but also, allows themodel uncertainties to be taken into account, that is to say, modelling the

errors which cannot be reached through the model parameters (by definition, any parametric

approach cannot model the kind of uncertainties which correspond to non existing parameters

in the boundary value problem under consideration); for instance, the use of the thick plate

theory instead of the three-dimensional elasticity, etc.

1.2. SUMMARIZING THE PROBABILITY MODEL FOR SYMMETRIC POSITIVE-DEFINITE REAL RAN-

DOMMATRICES

In this subsection, one summarizes a part of the results developed in references [16-18],

concerning the construction of the probability model for random matrix [Kn] with values

in  +
n (!) using the entropy optimization principle for which the available information is

defined by Eqs. (1) and (2). This ensemble of random matrices has been developed for the

non-parametric approach of random uncertainties in the vibration analysis of dynamic systems.

A. Normalization and dispersion parameter of random matrix [Kn]

Since [Kn] is a positive-definite real matrix, there is an upper triangular matrix [LKn
] in n(!)

(Cholesky factorization) such that

[Kn] = [LKn
]T [LKn

] . (3)

Considering Eq. (3), random matrix [Kn] can be written as

[Kn] = [LKn
]T [GKn

] [LKn
] , (4)

in which matrix [GKn
] is a random variable with values in  +

n (!) such that

[GKn
] = E{[GKn

]} = [ In] , (5)

in which [ In] is the (n × n) identity matrix. Let δK > 0 be the real parameter defined by

δK =

{
E{‖ [GKn

] − [GKn
] ‖2

F}
‖ [GKn

] ‖2
F

}1/2

. (6)

Parameter δK allows the dispersion of the probability model of random matrix [Kn] to be

controlled. If n0 ≥ 1 is a given and fixed integer, then the dispersion of the probability
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model is defined by giving parameter δK , independent of n, a value such that 0 < δK <

{(n0 + 1)/(n0 + 5)}1/2. This upper bound for δK comes from the theory, is necessary for

that Eq. (2) holds and is not a severe limitation for applications. In general, dimension n of

the reduced matrix model is high, greater than 10 or 100. For instance, if n is greater than 10,

n0 can be chosen as n0 = 10 and consequently, this upper bound is 0.856 which corresponds

to a very high level of uncertainties which is generally not reached in the applications.

B. Probability distribution and second-order moments of random matrix [GKn
]

The probability distributionP[GKn ] of randommatrix [GKn
] is defined by a probability density

function [Gn] 7→ p[GKn ]([Gn]) from  
+
n (!) into !+ = [0 , +∞[, with respect to the measure

(volume element) d̃Gn on the set  S
n(!) of all the (n× n) real symmetric matrices defined by

d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij . (7)

One then has P[GKn ] = p[GKn ]([Gn]) d̃Gn with the normalization condition

∫

 
+
n (!)

p[GKn ]([Gn]) d̃Gn = 1 . (8)

Probability density function p[GKn ]([Gn]) is then written as

p[GKn ]([Gn]) = "
 

+
n (!)([Gn])×CGKn

×
(
det[Gn]

)(1−δ2
K)(2δ2

K)−1(n+1)

× exp{−(n + 1)(2δ2
K)−1 tr[Gn]} , (9)

in which positive constant CGKn
is such that

CGKn
=

(2π)−n(n−1)/4
(

n+1
2δ2

K

)n(n+1)(2δ2
K)−1

{
Πn

j=1Γ
(

n+1
2δ2

K

+ 1−j
2

)} . (10)

The covariance C
GKn

jk,j′k′ of random variables [GKn
]jk and [GKn

]j′k′ , defined by

C
GKn

jk,j′k′ = E
{
([GKn

]jk − [GKn
]jk)([GKn

]j′k′ − [GKn
]j′k′)

}
, (11)

is written as

C
GKn

jk,j′k′ =
δ2
K

n+1

{
δj′k δjk′ + δjj′ δkk′

}
, (12)

where δjk = 0 if j 6= k and δjj = 1. In particular, the variance of random variable [GKn
]jk is

such that

V
GKn

jk =
δ2
K

n+1
(1 + δjk) . (13)
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C. Additional properties of random matrix [GKn
]

Let b = (b1, . . . , bn) be any vector in  n. Its Euclidean norm ‖b‖ is such that ‖b‖2 =

b2
1 + . . . + b2

n. For θ fixed in A, the realization [GKn
(θ)]−1 of random matrix [GKn

]−1 is

a matrix belonging to !+
n ( ) and [GKn

(θ)]−1 b is a vector in  n whose Euclidean norm is

‖[GKn
(θ)]−1 b‖. One introduces the usualmatrix norm |||[GKn

(θ)]−1||| ofmatrix [GKn
(θ)]−1

defined by

|||[GKn
(θ)]−1||| = max

b∈ n,‖b‖=1
‖[GKn

(θ)]−1b‖ . (14)

Consequently, |||[GKn
(θ)]−1||| is the Euclidean normof the largest vector obtained by applying

[GKn
(θ)]−1 to any vector with a unit Euclidean norm. One then has the following inequality,

∀n ≥ n0 , E{|||[GKn
]−1|||2} ≤ CδK < +∞ , (15)

in which CδK
is a positive finite constant that is independent of n but that depends on δK . The

property defined by Eq. (15) is fundamental to prove the convergence of the random response

of the dynamic system with random uncertainties as dimension n goes to infinity as proved in

reference [18].

Let [G′
Kn

] be the random matrix with values in !+
n ( ) defined by [G′

Kn
] = [Ψn]T [GKn

] [Ψn]

in which [Ψn] is any real orthogonal matrix belonging to !n( ). One then has

p[G′

Kn
]([G

′
n]) d̃G′

n = p[GKn ]([G
′
n]) d̃G′

n , (16)

which proves the invariance of random matrix [GKn
] under real orthogonal transformations.

D.Monte Carlo numerical simulation of random matrix [GKn
]

The following algebraic representation of positive-definite real random matrix [GKn
] allows a

procedure for the Monte Carlo numerical simulation of random matrix [GKn
] to be defined.

Random matrix [GKn
] can be written as

[GKn
] = [LKn

]T [LKn
] , (17)

in which [LKn
] is an upper triangular random matrix with values in !n( ) such that:

(1) random variables {[LKn
]jj′ , j ≤ j′} are independent;

(2) for j < j′, real-valued random variable [LKn
]jj′ can be written as [LKn

]jj′ = σnUjj′ in

which σn = δK(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with

zero mean and variance equal to 1;
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(3) for j = j′, positive-valued random variable [LKn
]jj can be written as [LKn

]jj = σn

√
2Vj

in which σn is defined above and where Vj is a positive-valued gamma random variable for

which the probability density function pVj
(v) with respect to dv is written as

pVj
(v) =   +(v)

1

Γ
(

n+1
2δ2

K

+ 1−j
2

) v
n+1

2δ2
K

− 1+j
2

e−v . (18)

1.3. PROBABILITYMODEL FOR A RANDOMMATRIX BELONGING TO THE GOE

In this subsection, the random matrix [KGOE

n ] with values in !S
n(") is constructed by using the

Gaussian Orthogonal Ensemble (GOE) (concerning the GOE, see for instance reference [7] ).

In order to perform the comparisons with the model summarized in Section 1.2, it is assumed

that the mean value of randommatrix [KGOE

n ] is the positive-definite symmetric real matrix [Kn]

defined by Eq. (1), that is to say

E{[KGOE

n ]} = [Kn] ∈ !
+
n (") . (19)

A. Normalization and dispersion parameter of random matrix [KGOE

n ]

The developments of Section 1.2.A are used and consequently, random matrix [KGOE

n ] can be

written as

[KGOE

n ] = [LKn
]T [GGOE

Kn
] [LKn

] , (20)

in which matrix [GGOE

Kn
] is a random variable with values in !S

n(") such that

[GGOE

Kn
] = E{[GGOE

Kn
]} = [ In] . (21)

In order to compare the two sets of random matrices in the same conditions, the dispersion

parameter of random matrix [KGOE

n ] is taken as parameter δK of random matrix [Kn], defined

by Eq. (6). One then has

E{‖ [GGOE

Kn
] − [GGOE

Kn
] ‖2

F}
‖ [GGOE

Kn
] ‖2

F

= δ2
K . (22)

It should be noted that ‖ [GGOE

Kn
] ‖2

F = n. As themean value of a randommatrix [HGOE

n ] belonging

to the GOE is such thatE{[HGOE

n ]} = [ 0 ], randommatrix [GGOE

Kn
] constructed with the GOE has

to be written as

[GGOE

Kn
] = [ In] + [HGOE

n ] , (23)
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in which [HGOE

n ] belongs to the GOE, that is to say, is a random matrix with values in  S
n(!).

Consequently, random matrices [HGOE

n ], [GGOE

Kn
] and [KGOE

n ] are not positive matrices almost

surely. Let V
GGOE

Kn

jk be the variance of the random variable [GGOE

Kn
]jk such that

V
GGOE

Kn

jk = E
{
([GGOE

Kn
]jk − [GGOE

Kn
]jk)2

}
= E

{
([HGOE

n ]jk)2
}

. (24)

Random matrix [HGOE

n ] is constructed for that

V
GGOE

Kn

jk = V
GKn

jk =
δ2
K

n+1
(1 + δjk) , j and k ∈ {1, . . . , n} . (25)

B. Probability distribution and second-order moments of random matrix [HGOE

n ]

With respect to the volume element d̃Hn defined by Eq. (7), the probability density function

of random variable [HGOE

n ] belonging to the GOE, such that its second-order moments are

E
{
[HGOE

n ]jk

}
= [ 0 ] , E

{
([HGOE

n ]jk)2
}

=
δ2
K

n+1
(1 + δjk) , (26)

is written as

p[HGOE
n ]([Hn]) = Cn × exp

{
−(n+1)

4δ2
K

tr{[Hn]2}
}

, (27)

whereCn is the constant of normalization which can easily be calculated. Equation (27) shows

that real-valued random variables {[HGOE

n ]jk, j ≤ k} are mutually independent, second-order,
centered and Gaussian.

C. Additional properties of random matrix [HGOE

n ]

The probability density function of randommatrix [HGOE

n ] defined by Eq. (27) shows that [HGOE

n ]

is invariant under real orthogonal transformations. Random matrix [HGOE

n ] and consequently,

random matrices [GGOE

Kn
] and [KGOE

n ] are with values in  S
n(!) but not in  +

n (!). Consequently,

[HGOE

n ], [GGOE

Kn
] and [KGOE

n ] are not invertible almost surely and Eq. (15) does not hold neither for

[HGOE

n ] nor for [GGOE

Kn
] or [KGOE

n ].

D.Monte Carlo numerical simulation of random matrix [GGOE

Kn
]

As real-valued random variables {[HGOE

n ]jk, j ≤ k} are mutually independent, second-order,

centered and Gaussian with variances given by Eq. (26), then it is easy to perform a Monte

Carlo numerical simulation of random matrix [GGOE

Kn
] = [ In] + [HGOE

n ].
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2. STATISTICS OF THE RANDOM EIGENVALUES

2.1. INTRODUCING THE RANDOMGENERALIZED EIGENVALUE PROBLEMS

With respect to the generalized coordinates q = (q
1
, . . . , q

n
) ∈  

n associated with the elastic

modes corresponding to the n lowest positive eigenfrequencies 0 < ω1 ≤ . . . ≤ ωn of the

fixed and stable mean dynamic system, the mean generalized eigenvalue problem is written

(see Section 1.1) as

[Kn] q = λ [Mn] q . (28)

The matrix [Mn] ∈ !
+
n ( ) is the mean generalized diagonal mass matrix for which the

diagonal entries are the generalized masses of the elastic modes of the mean dynamic system.

The matrix [Kn] ∈ !
+
n ( ) is the mean generalized diagonal stiffness matrix for which the

diagonal entries are the n first eigenvalues 0 < λ1 ≤ . . . ≤ λn of the mean dynamic system,

such that λj = ω2
j . It should be noted that the mean generalized eigenvalue problem defined

by Eq. (28) gives n-uncoupled equations for the mean dynamic systems due to the usual

orthogonal properties of the elastic modes for a fixed (or a free) dynamic system. Let us

assume that random uncertainties concern only the stiffness operator (the mass operator is

certain for the reason given in the Introduction). The use of the non-parametric model of

random uncertainties for this dynamic system consists in introducing (see Section 1.1) the

random generalized eigenvalue problem associated with Eq. (28),

[Kn]Q = Λ̃ [Mn]Q . (29)

The probability model of the random matrix [Kn] with values in !+
n ( ) is defined in Section

1.2 and is such that [Kn] = [LKn
]T [GKn

] [LKn
] in which [LKn

]jk = λ
1/2
j δjk and where the

random matrix [GKn
] with values in !+

n ( ) is such that

E{[GKn
]} = [ In] , V

GKn

jk =
δ2
K

n+1
(1 + δjk) . (30)

The positive-valued random eigenvalues of Eq. (29) are denoted 0 < Λ̃1, . . . , Λ̃n. It should

be noted that the random generalized eigenvalue problem defined by Eq. (29) gives n-coupled

random equations.

In order to compare the two ensembles of random matrices defined in Sections 1.2 and 1.3,

a second random generalized eigenvalue problem is introduced by replacing random matrix

[Kn] by the random matrix [KGOE

n ] with values in !S
n( ), defined in Section 1.3, which is such

that [KGOE

n ] = [LKn
]T [GGOE

Kn
] [LKn

] where the random matrix [GGOE

Kn
] with values in !+

n ( ) is

such that

E{[GGOE

Kn
]} = [ In] , V

GGOE

Kn

jk =
δ2
K

n+1
(1 + δjk) . (31)

C. Soize, revised version, May 2002, Journal of Sound and Vibration 11



This second random generalized eigenvalue problem is then written as

[KGOE

n ]QGOE = Λ̃GOE [Mn]QGOE , (32)

for which the real-valued random eigenvalues are denoted Λ̃GOE

1 , . . . , Λ̃GOE

n . Finally, the order

statistics of random eigenvalues 0 < Λ̃1, . . . , Λ̃n and Λ̃GOE

1 , . . . , Λ̃GOE

n are introduced,

0 < Λ1 ≤ Λ2 ≤ . . . ≤ Λn , (33)

ΛGOE

1 ≤ ΛGOE

2 ≤ . . . ≤ ΛGOE

n . (34)

2.2. PROBABILITY DENSITY FUNCTIONS AND SECOND-ORDERMOMENTS OF THE RANDOM EIGEN-

VALUES

Let pΛj
(λ) dλ and pΛGOE

j
(λ) dλ be the probability distributions of random eigenvalues Λj and

ΛGOE

j respectively, corresponding to the order statistics defined by Eqs. (33) and (34). The mean

values mΛj
and mΛGOE

j
, and the standard deviations σΛj

and σΛGOE

j
of the random eigenvalues

Λj and ΛGOE

j are such that

mΛj
= E{Λj} , mΛGOE

j
= E{ΛGOE

j } , (35)

σ2
Λj

= E{Λ2
j} − m2

Λj
, σ2

ΛGOE

j
= E{(ΛGOE

j )2} − m2
ΛGOE

j
, (36)

in which the moments of order ν ≥ 1 are defined by

E{Λν
j } =

∫ +∞

0

λν pΛj
(λ) dλ , E{(ΛGOE

j )ν} =

∫ +∞

−∞

λν pΛGOE

j
(λ) dλ . (37)

For the general case considered, probability density functions pΛj
(λ) and pΛGOE

j
(λ) and the

second-order moments cannot be explicitly constructed. This is the reason why an approxima-

tion of these quantities will be constructed by using the Monte Carlo numerical simulation.

2.3. PROBABILITY DENSITY FUNCTIONS AND SECOND-ORDER MOMENTS OF THE RANDOM NOR-

MALIZED SPACINGS BETWEEN TWO CONSECUTIVE RANDOM EIGENVALUES

The random spacing ∆j (or ∆GOE

j ) between the two consecutive random eigenvalues Λj and

Λj+1 (or ΛGOE

j and ΛGOE

j+1) of the order statistics is defined by

∆j = Λj+1 − Λj , (or ∆GOE

j = ΛGOE

j+1 − ΛGOE

j ) , j ∈ {1, . . . , n − 1} . (38)

The mean value m∆j
(or m∆GOE

j
) of random variable ∆j (or ∆GOE

j ) is defined by

m∆j
= E{∆j} , (or m∆GOE

j
= E{∆GOE

j }) , j ∈ {1, . . . , n − 1} . (39)
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In Section 2.4, one will see that m∆j
(or m∆GOE

j
) depends on j. As usually, the random

normalized spacing Sj (or SGOE

j ) can be introduced and is defined by

Sj =
∆j

m∆j

, (or SGOE

j =
∆GOE

j

m∆GOE

j

) , j ∈ {1, . . . , n − 1} . (40)

It can easily be seen that the mean value mSj
= E{Sj} (or mSGOE

j
= E{SGOE

j }) of random
variables Sj (or SGOE

j ) is independent of j and is such that

mSj
= 1 , (or mSGOE

j
= 1) , j ∈ {1, . . . , n − 1} . (41)

For j fixed in {1, 2, . . . , n − 1}, let pSj
(s) (or pSGOE

j
(s)) be the probability density function

with respect to ds of positive-valued random variable Sj (or SGOE

j ), . Let σSj
(or σSGOE

j
) be the

standard deviation of random variable Sj (or SGOE

j ), such that

σ2
Sj

= E{S2
j } − 1 , (or σ2

SGOE

j
= E{(SGOE

j )2} − 1) , (42)

E{S2
j } =

∫ +∞

0

s2 pSj
(s) ds , (or E{(SGOE

j )2} =

∫ +∞

0

s2 pSGOE

j
(s) ds . (43)

Probability density function pSj
(s) (or pSGOE

j
(s)), and consequently, σSj

(or σSGOE

j
) depends,

a priori, on j (this statement will be verified in Section 2.4). Nevertheless, one will see

in Section 2.4, that function j 7→ σSj
(or j 7→ σSGOE

j
depends weakly on j. Consequently,

following the usual approach (see for instance reference [7]), one introduces the positive-valued

spacing random variable S (or SGOE) such that, for all θ fixed in A, S1(θ), . . . , Sn−1(θ) (or

SGOE

1 (θ), . . . , SGOE

n−1(θ)) are n − 1 independent realizations of random variable S (or SGOE).

It should be noted that this construction corresponds to an approximation. The probability

density function pS(s) (or pSGOE(s)) with respect to ds of positive-valued random variable S

(or SGOE) are usually called the spacing probability density function. Concerning the GOE, the

Wigner surmise for the spacing probability density function consists in writting (see [7]) that

pSGOE(s) ≃ pW (s) in which

pW (s) =   +(s)
π

2
s e−

π
4

s2

. (44)

However, a more general probability density function than pW (s) was introduced by Brody

[35] for fitting spacing probability density functions. This probability density function, denoted

pB(s), is written as

pB(s) =   +(s) a sα−1 e−b sα

, (45)

in which α > 0, a > 0 and b > 0 are such that
∫ +∞

0
pB(s) ds = 1 and

∫ +∞

0
s pB(s) ds = 1.

One then gets a = α b and b = {Γ(1 + 1/α)}α. Taking α = 2 yields pB(s) = pW (s). In

Section 2.4, it is proved that pB(s) with α < 2 is a better approximation of pS(s) and pSGOE(s)

than pW (s).
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2.4. COMPARISON OF THE TWO ENSEMBLES OF RANDOMMATRICES

Below, the ensemble of random matrices defined in Section 1.2 will be called the “positive-

definite” ensemble. One considers the mean reduced system with dimension n = 30, such

that, for all α and β in {1, . . . , 30},

[Mn]αβ = δαβ , [Kn]αβ = k1

∫ +1

−1

ϕ′′
α
(x)ϕ′′

β
(x) dx + k2

∫ +1

−1

ϕ
α
(x)ϕ

β
(x) dx , (46)

in which ϕ
α
(x) = sin(πα(1 + x)/2) and ϕ′′

α
is the second derivative of ϕ

α
with respect to x.

This model corresponds to an Euler beam in bending mode, with length 2, simply supported at

its ends, attached to a continuous elastic support along its length, for which the elastic bending

modes ϕ
α
are associated with the 30 lowest eigenfrequencies ωα such that

ω2
α = λα = k1

(απ

2

)4

+ k2 . (47)

For all the numerical examples considered in this paper, one takes k1 = 0.999 998 7 and

k2 = 2.027 850 8 × 10−7. Consequently, one has 1 ≤ λα ≤ 2 with λ1 = 1, λ2 = 1.000 185,

. . ., λ29 = 1.873 186, λ30 = 2. As explained in Section 2.2, the Monte Carlo numerical

simulation [36,37] and the usual mathematical statistics are used to estimatemΛj
,mΛGOE

j
,m∆j

,

m∆GOE

j
, σΛj

, σΛGOE

j
, σSj

, σSGOE

j
and probability density functions pΛj

, pΛGOE

j
, pSj

(s), pSGOE

j
(s),

pS(s), pSGOE(s), defined in Sections 2.2 and 2.3. Figures 1 to 8 (left and right) display the

results corresponding to the use of 106 realizations in the computation. There are two groups

of figures. Figures 1 to 4 correspond to δK = 0.25 (weak value of the dispersion parameter)

and Figures 5 to 8 correspond to δK = 0.50 (strong value of the dispersion parameter)

A. Results for δK = 0.25

Figures 1 compare the graph of function j 7→ mΛj
with the graph of function j 7→ mΛGOE

j

(Figure 1 on the left) and, j 7→ σΛj
with j 7→ σΛGOE

j
(Figure 1 on the right), the functions

being defined on the set {1, . . . , 30}. For this weak value of dispersion parameter δK , it can

be seen that the second-order moments of the random eigenvalues (order statistics) are similar

for the “positive-definite” ensemble and for the GOE. Figure 2 on the left displays the 30

graphs of probability density functions (pdf) {λ 7→ pΛGOE

j
(λ), j = 1, . . . , 30} for the GOE.

Figure 2 on the right displays the 30 graphs of pdf {λ 7→ pΛj
(λ), j = 1, . . . , 30} for the

“positive-definite” ensemble. For this weak value of δK , the graphs are similar for the two

ensembles of random matrices. Figures 3 compare the graph of function j 7→ m∆j
with the

graph of function j 7→ m∆GOE

j
(Figure 3 on the left) and , j 7→ σSj

with j 7→ σSGOE

j
(Figure 3

on the right). The results for the second-order moments of the random spacings are similar for
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the “positive-definite” ensemble and for the GOE. However, it should be noted (see Figure 3

on the right) that σSj
and σSGOE

j
depend lightly on j, as explained in Section 2.3. Figure 4-a

on the left shows the 30 graphs of pdf {s 7→ log10(pSj
(s)), j = 1, . . . , 30} compared with

the Wigner pdf s 7→ log10(pW (s)). This figure shows that, for s > 2.5, the Wigner pdf does

not fit well pdf {pSj
, j = 1, . . . , 30} in mean. Figure 4-a on the right shows the graph of

pdf s 7→ log10(pS(s)) (irregular thick solid line), in which pS(s) is estimated as explained in

Section 2.3, compared with the Wigner pdf s 7→ log10(pW (s)) (dashed line). For s > 2.5, it

can be seen that pW (s) does not fit well pS(s). Consequently, a Brody pdf s 7→ log10(pB(s))

has been fitted with α = 1.93 (thin solid line). Figures 4-b (left and right) are similar to

Figures 4-a, but correspond to the GOE instead of the “positive-definite” ensemble. Figure

4-b on the left show pdf {s 7→ log10(pSGOE

j
(s)), j = 1, . . . , 30} and s 7→ log10(pW (s)).

Figure 4-b on the right shows the graph of pdf s 7→ log10(pSGOE(s)) (irregular thick solid line),

s 7→ log10(pW (s)) (dashed line) and s 7→ log10(pB(s)) fitted with α = 1.93 (thin solid line).

The analysis of Figures 4-a and 4-b show that, for the two ensembles of random matrices,

the spacing probability density functions are similar. However, their assymptotic behavior at

infinity does not follow the Wigner pdf but are better fitted with the Brody pdf with α = 1.93.

B. Results for δK = 0.50

Figures 5 to 8 correspond to Figures 1 to 4 for the strong value of dispersion parameter δK

instead of its small value. Figures 5 compare the graphs of functions j 7→ mΛj
with j 7→ mΛGOE

j

(Figure 5 on the left) and, compare the graphs of functions j 7→ σΛj
with j 7→ σΛGOE

j
(Figure

5 on the right). For this strong value of dispersion parameter δK , the second-order moments

of the random eigenvalues (order statistics) are different for the “positive-definite” ensemble

and for the GOE, especially, for the standard deviations. For the “positive-definite” ensemble,

j 7→ σΛj
is a monotonic increasing function, that is not the case for function j 7→ σΛGOE

j

corresponding to the GOE. This point constitutes an important difference between the two

ensembles. It should be noted that, in dynamic systems, the random uncertainties increase with

frequency and consequently, the standard deviation σΛj
has to increase with j from j = 1.

This is the case for the “positive-definite” ensemble but not the case for the GOE, i.e for σΛGOE

j
.

Figure 6 on the left displays the 30 graphs of pdf {λ 7→ pΛGOE

j
(λ), j = 1, . . . , 30} for the

GOE. Figure 6 on the right displays the 30 graphs of pdf {λ 7→ pΛj
(λ), j = 1, . . . , 30} for

the “positive-definite” ensemble. The “positive-definite” ensemble yields results very different

from the GOE. Those given by the GOE are not good: in Figure 6 on the left, it can easily be

seen that pΛGOE

1
(λ) is not equal to zero for λ < 0. This means that random eigenvalue ΛGOE

1 (that

is to say the fundamental eigenfrequency of the dynamic system with random uncertainties)
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is not positive almost surely, that is not admissible for a stable dynamic system. In opposite,

the “positive-definite” ensemble gives good results. Figures 7 compare the graphs of functions

j 7→ m∆j
with j 7→ m∆GOE

j
(Figure 7 on the left) and , j 7→ σSj

with j 7→ σSGOE

j
(Figure 7 on

the right). Concerning the mean values (Figure 7 on the left), there is a significant difference

between the two ensembles while the difference is small for standard deviations σSj
and σSGOE

j

which depend lightly on j. Figures 8-a and 8-b, which correspond to the strong value of

dispersion parameter δK , are very similar to Figures 4-a and 4-b which correspond to the small

value of the dispersion parameter. Figures 8-a correspond to the “positive-definite” ensemble

and Figures 8-b to the GOE. For this strong value of the dispersion parameter, the Brody pdf

is well fitted with α = 1.91 instead of α = 1.93 for the small value.

3. NON-PARAMETRIC MODEL OF RANDOM UNCERTAINTIES

IN VIBRATION ANALYSIS

3.1. DEFINITIONOF THE MEAN REDUCEDMODEL OF THE DYNAMIC SYSTEM

One considers a fixed stable linear mean dynamic system for which the Fourier transform

u(x, ω)with respect to t of the vector-valued displacement field u(x, t), is defined on a bounded

domain Ω ⊂  
d with d ≥ 1, equipped with the measure denoted dx and such that |Ω| =

∫
Ω

dx

is the "volume" of domain Ω. For all ω belonging to the frequency band of analysis [0 , ωmax]

with ωmax > 0, the mean reduced model of dimension n ≥ 1 of this mean dynamic system

is obtained by using the usual mode-superposition method. The approximation un (x, ω) of

u(x, ω) with dimension n is then written as

un(x, ω) =
n∑

α=1

q
α
(ω) 

α
(x) , x ∈ Ω , (48)

(−ω2 [Mn] + iω [Dn] + [Kn]) q(ω) = f(ω) , (49)

in which  
1
, . . . , 

n
are the elastic modes corresponding to the n lowest eigenfrequencies

0 < ω1 ≤ ω2 ≤ . . . ≤ ωn of the mean dynamic system, q(ω) = (q
1
(ω), . . . , q

n
(ω)) ∈ !

n

is the complex vector of the generalized coordinates, f(ω) = (f1(ω), . . . , fn(ω)) ∈ !
n is the

complex vector of the generalized external forces, [Mn], [Dn] and [Kn] belong to "+
n ( ) and

represent the generalized diagonal mass matrix, the generalized full damping matrix and the

generalized diagonal stiffness matrix, respectively. It is assumed that the mass density of the

mean dynamic system is a constant equal to 1, that
∫
Ω
 

α
(x) ·  

β
(x) dx = δαβ and that the

generalized damping matrix is a diagonal matrix, such that

[Mn] = δαβ , [Dn] = 2 ξ ωref δαβ , [Kn] = ω2
αδαβ , (50)
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in which ξ > 0 and ωref > 0 are given positive constants. From Eq. (50), it can be deduced

that, for the mean dynamic system, the critical damping rates ξ
1
, . . . , ξ

n
of elastic modes

 
1
, . . . , 

n
are given by ξ

α
= ξ ωref/ωα. It should be noted that for the numerical examples

presented in this paper, the given mean value of the critical damping rates of the elastic modes

whose eigenfrequencies are inside the frequency band of analysis, is taken as 0.001. In this

case, the use of Eq. (50) yields as the minimumvalue of the critical damping rates ξ
α
, the value

0.0009, and as the maximum value, the value 0.0012. Consequently, for the mean dynamic

system, the use of a simple Rayleigh damping is sufficient in taking into account the objectives

of this paper. As observation of the mean dynamic system, one introduces the positive-valued

function ω 7→ en(ω) such that

en(ω) = ‖ω2 [ĥn(ω)]‖F , (51)

in which [ĥn(ω)] = (−ω2 [Mn] + iω [Dn] + [Kn])−1 is the generalized frequency response

function of the mean dynamic system and ‖[A ]‖F = (tr{[A ] [A ]∗})1/2 with [A ]∗ = [A ]T .

3.2. NON-PARAMETRICMODEL OF RANDOM UNCERTAINTIES

The non-parametric model of random uncertainties is introduced as explained in Section 1.1.

For preserving the coherence with Section 2.1, it is assumed that only the stiffness operator

is uncertain. Consequently, the use of the "positive-definite" ensemble for the non-parametric

modelling of random uncertainties leads us to the following random generalized frequency

response function of the random dynamic system,

[Hn(ω)] = (−ω2 [Mn] + iω [Dn] + [Kn])−1 , (52)

in which the probability model of random matrix [Kn] is defined in Section 1.2. The random

observation associated with Eq. (51), is the positive-valued random variable En(ω) defined by

En(ω) = ‖ω2 [Hn(ω)]‖F . (53)

If the generalized stiffness matrix is modelled by the GOE, then [Kn] is replaced by [KGOE

n ] for

which the probability model is defined in Section 1.3. In this case, En(ω) is denoted EGOE

n (ω).

3.3. COMPARISON OF THE TWO ENSEMBLES OF RANDOMMATRICES

Themean reducedmodel of the dynamic system is defined in Sections 2.4 and 3.1with ξ = 0.01

and ωref = 2π × 0.02 rad/s. The frequency band of analysis is such that ωmax = 2π ×
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0.22 rad/s. The value of the dispersion parameter is δK = 0.50. The Monte Carlo numerical

simulation method is carried out with ns = 40 000 realizations, denoted θ1, . . . θns
, for which

the realizations ω 7→ En(ω; θ1), . . ., ω 7→ En(ω; θns
) are numerically calculated for the two

ensembles of random matrices, with a sampling frequency step ∆ω = ωmax/300. For ω fixed

in [0 , ωmax], the mean values E{En(ω)} and E{EGOE

n (ω)}, and the standard deviations σEn
(ω)

and σEGOE
n

(ω), of random variables En(ω) and EGOE

n (ω) respectively, are usually estimated. For

the comparisons, one defines the functions ν 7→ dB(ν) and ν 7→ dBGOE(ν) such that

dB(ν) = log10(E{En(2πν)}) , dBGOE(ν) = log10(E{EGOE

n (2πν)}) . (54)

Finally, for the "positive-definite" ensemble and for the GOE, for all ν fixed in [0 , ωmax/2π],

the extreme value statistics associated with realizations θ1, . . . , θns
are defined by

dBmax(ν) = log10{max
k

En(2πν; θk)} , dBmin(ν) = log10{min
k

En(2πν; θk)} , (55)

dBGOE

max(ν) = log10{max
k

EGOE

n (2πν; θk)} , dBGOE

min(ν) = log10{min
k

EGOE

n (2πν; θk)} . (56)

Figures 9 and 10 are relative to the frequency band [0 , 0.22] Hz. Figure 9 on the left displays

(1) the response ν 7→ log10 en(2πν) of the mean dynamic system (dashed line), (2) the graphs

of functions ν 7→ dB(ν) (thick solid line) and ν 7→ dBGOE(ν) (thin solid line). Figure 9 on the

right displays the graphs of functions ν 7→ σEn
(2πν) (thick solid line) and ν 7→ σEGOE

n
(2πν)

(thin solid line). Figures 9 show an important difference between the "positive-definite"

ensemble and the GOE. As proved in Section 2.4.B, for the GOE, the first random eigenvalues

(the lowest eigenvalues of the order statistics) have a larger standard deviation than for the

"positive-definite" ensemble and their probability distributions are different. This is the reason

why the mean value and the standard deviation of the random responses are very different in the

frequency band [0 , 0.1] Hz for the two ensembles of random matrices. These differences can

also be seen in Figure 10 which shows (1) for the "positive-definite" ensemble, the graphs of

functions ν 7→ dB(ν) (thick dashed line), ν 7→ dBmax(ν) (upper thick solid line), ν 7→ dBmin(ν)

(lower thick solid line), (2) for the GOE, the graphs of functions ν 7→ dBGOE(ν) (thin dashed

line), ν 7→ dBGOE

max(ν) (upper thin solid line), ν 7→ dBGOE

min(ν) (lower thin solid line).

4. A VALIDATION POINT FOR THE NON-PARAMETRIC MODEL

OF RANDOM UNCERTAINTIES IN VIBRATION ANALYSIS

4.1. SETTING THE PROBLEM

As explained in Section 1.1 of the introduction, the non-parametric model of random uncer-

tainties in vibration analysis has been introduced to replace the usual parametric model for
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complex dynamic systems when the number of uncertain local parameters is large and above

all, to take into account the model uncertainties which cannot be modelled with the parametric

models. Nevertheless, as Section 3 shows that the results given by the two ensembles of random

matrices are very different, it is interesting to analyze a simple dynamic system with random

uncertainties which can easily be modelled by using the usual parametric approach, in order

to conclude if the use of the "positive-definite" ensemble is better than the use of the GOE for

the non-parametric model of random uncertainties in low-frequency vibration analysis. Con-

sequently, one considers the dynamic system with parametric random uncertainties for which

the associated mean dynamic system is defined in Section 2.4 and which is used in Section 3.

4.2. DEFINING THE DYNAMIC SYSTEMWITH PARAMETRIC RANDOMUNCERTAINTIES

One considers a dynamic systemwith parametric randomuncertainties on the stiffness operator,

for which themean dynamic system is defined in Sections 2.4 and 3.1. In the frequency domain,

the weak formulation of the corresponding boundary value problem is written as

−ω2

∫ +1

−1

U(x, ω) v(x) dx + 2iωξωref

∫ +1

−1

U(x, ω) v(x) dx + k1

∫ +1

−1

Y (x) U ′′(x, ω) v′′(x) dx

+ k2

∫ +1

−1

T (x) U(x, ω)v(x) dx =

∫ +1

−1

g(x, ω) v(x)dx , (57)

in which v′′ is the second derivative of v with respect to x and where the test function

v belongs to the admissible function space constituted of the "sufficiently differentiable"

real-valued functions v defined on Ω =] − 1 , +1[ and such that v(−1) = v(+1) = 0 and

v′′(−1) = v′′(+1) = 0. The external excitation is represented by the complex-valued force

field x 7→ g(x, ω) define on Ω. In Eq. (57), ξ ans ωref are defined in Section 3.3 and, k1 and k2

are defined in Section 2.4. Parameters Y (x) and T (x) are second-order stochastic processes

indexed by Ω with values in  +, statistically independent, such that

E{Y (x)} = 1 , E{T (x)} = 1 , ∀x ∈ Ω . (58)

For x fixed in Ω, Y (x) and T (x) are written as

Y (x) =
1

mY

mY∑

j=1

ZY
j (x)2 , T (x) =

1

mT

mT∑

j=1

ZT
j (x)2 , (59)

in which mY ≥ 1 and mT ≥ 1 are two finite positive integers and where ZY
1 , . . . , ZY

mY
,

ZT
1 , . . . , ZT

mT
are mY +mT independent copies of a stochastic process Zb defined as follows.

Stochastic process {Zb(x), x ∈  } is indexed by  , with values in  , second-order, centered,
Gaussian and stationary, such that

E{Zb(x)} = 0 , E{Zb(x)2} = 1 . (60)
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Let SZb
(k) be its power spectral density function defined on  with values in  +, related to its

autocorrelation function RZb
(η) = E{Zb(x + η)Zb(x)} by the equation

RZb
(η) =

∫

 

eikη SZb
(k) dk .

Power spectral density function is defined by

SZb
(k) =

L

πa

1

(1 + L2k2)
 [−b,b](k) , (61)

in which 0 < b < +∞ is a finite positive real constant and where a is such that a =

2
π

arctan(bL). It can then verified that

σ2
Y = E{Y (x)2} − 1 =

2

mY
, σ2

T = E{T (x)2} − 1 =
2

mT
. (62)

4.3. CONSTRUCTING THE RANDOM REDUCEDMODEL

The random reduced model of dimensionn is obtained by using the n elastic modesϕ
1
, . . . , ϕ

n

introduced in Section 2.4, associated with the n lowest eigenfrequencies ω1, . . . , ωn defined

by Eq. (47). From Eq. (57), it can be deduced that the approximation Un(x, ω) of U(x, ω) is

written as

Un(x, ω) =

n∑

α=1

Qα(ω) ϕ
α
(x) , x ∈ Ω , (63)

(−ω2 [Mn] + iω [Dn] + [Kparam
n ])Q(ω) = f(ω) , (64)

in which [Mn] = [In] (see Eq. (46)), [Dn] = 2 ξ ωref [In] (see Eq. (50)) and where Q(ω) =

(Q1(ω), . . . , Qn(ω)) is the random vector of the generalized coordinates and where f(ω) =

(f1(ω), . . . , fn(ω)) is the complex vector of the generalized external forces such that fα(ω) =
∫ +1

−1
g(x, ω) ϕ

α
(x) dx. Let [Kn]αβ = ω2

α δαβ be the matrix defined by Eq. (50) which can be

written as

[Kn] = [LKn
]T [LKn

] , [LKn
]αβ = ωα δαβ . (65)

In Eq. (64), the random matrix [Kparam
n ] can be written as

[Kparam
n ] = [LKn

]T [Gparam
Kn

] [LKn
] , (66)

where the random matrix [Gparam
Kn

] is such that

[G
param
Kn

]αβ =
k1

ωαωβ

∫ +1

−1

Y (x)ϕ′′
α
(x)ϕ′′

β
(x) dx +

k2

ωαωβ

∫ +1

−1

T (x)ϕ
α
(x)ϕ

β
(x) dx . (67)
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From Eqs. (58), (47) and (65), one deduces that

[Gparam
Kn

] = E{[Gparam
Kn

]} = [In] . (68)

In order to compare the non-parametric model with the parametric model, one introduces the

global dispersion parameter δparamK > 0 of random matrix [Gparam
Kn

] defined (see Eqs. (3) to (6))

by

δ
param
K =

{
E{‖ [G

param
Kn

] − [G
param
Kn

] ‖2
F }

‖ [Gparam
Kn

] ‖2
F

}1/2

. (69)

The random generalized frequency response function associated with Eq. (64) is written as

[Hn(ω)param] = (−ω2 [Mn] + iω [Dn] + [Kparam
n ])−1 . (70)

Finally, the random observation defined by Eq. (53) is written as

Eparam
n (ω) = ‖ω2 [Hparam

n (ω)]‖F . (71)

4.4. NUMERICAL ANALYSIS

Statistics related to stochastic process {E param
n (ω), ω ∈ [0 , ωmax]} are estimated by using the

Monte Carlo numerical simulation. Let N be a fixed integer sufficiently high. It is assumed

that b = Nπ/2. Domain [−1 , +1] is discretized with the sampling space step ∆ = 2/N . In

Eqs. (67), the integrals are discretized as follows,

[G
param
Kn

] ≃ ∆

N−1∑

ν=0

{
k1

ωαωβ

Y (xν)ϕ′′
α
(xν)ϕ′′

β
(xν) +

k2

ωαωβ

T (xν)ϕ
α
(xν)ϕ

β
(xν)

}
, (72)

in which the sampling points in the space domain are

xν = −1 + ν∆ , ν = 0, 1, . . . , N − 1 , (73)

and where Y (xν) and T (xν) are derived from Eq. (59). From Section 4.2, one then has to

compute independent realizations of stochastic process Zb. ForN fixed, one wishes stochastic

process Zb to be Gaussian. Consequently, one uses the approximation ZN
b (x) of Zb(x)

defined by

ZN
b (x) =

√
2δRe

{
N−1∑

ℓ=0

√
SZb

(kℓ)Rℓ e−2iπ ℓ−ikℓx

}
, Rℓ =

√
− ln ℓ , (74)
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in which Re{z} denotes the real part of the complex number z and where δ = 2b/N is the

sampling wave number step such that δ × ∆ = 2π/N (that is to say, δ = π). The sampling

points in the wave number domain are such that

kℓ = −b + (ℓ +
1

2
) δ , ℓ = 0, 1, . . . , N − 1 . (75)

In Eq. (74),  0, 1, . . . , N−1 and !0,!1, . . . ,!N−1 are 2N independent uniform real-

valued random variables on [0 , 1]. With this choice of the parameter values, the FFT algo-

rithm can be used to compute the independent realizations of the "N -valued random vector

(ZN
b (x0), . . . , Z

N
b (xN−1)).

4.5. NUMERICAL PARAMETERS AND COMPUTATION

The Monte Carlo numerical simulation method is carried out with ns = 40 000 realizations,

denoted θ1, . . . θns
. The realizations ω 7→ Eparam

n (ω; θ1), . . ., ω 7→ Eparam
n (ω; θns

) are numer-

ically calculated on the frequency band [0 , ωmax] with ωmax = 2π × 0.22 rad/s and with a

sampling frequency step∆ω = ωmax/300. The values of the numerical parameters are n = 30,

mY = mT = 4, N = 512, L = 0.076 m, δ = π = 3.1415 m−1, ∆ = 2/N = 0.0039 m,

b = Nπ/2 = 804.25 m−1 and a = 0.9896. Figure 11 on the left displays the graph of power

spectral density function k 7→ SZb
(k) and Figure 11 on the right displays the graph of auto-

correlation function η 7→ RZb
(k). The computation of parameter δparamK defined by Eq. (69)

yields δ
param
K = 0.4942 ≃ 0.50.

Figures 12 and 13 are relative to the frequency band [0 , 0.22] Hz. Figure 12 on the left displays

the response ν 7→ log10 en(2πν) of the mean dynamic system (dashed line) calculated in

Section 3.3 and the graph of function ν 7→ dBparam(ν) (thick solid line) such that

dBparam(ν) = log10(E{Eparam
n (2πν)}) . (76)

Figure 12 on the right displays the graph of the function ν 7→ σ
E
param
n

(2πν) (solid line) in

which σ
E
param
n

(ω) is the standard deviation of random variable E param
n (ω). Figure 13 displays

the graphs of functions ν 7→ dBparam(ν) (dashed line), ν 7→ dBparam
max (ν) (upper solid line) and

ν 7→ dBparam
min (ν) (lower solid line) in which

dBparam
max (ν) = log10{max

k
Eparam

n (2πν; θk)} , (77)

dBparam
min (ν) = log10{min

k
Eparam

n (2πν; θk)} . (78)
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4.6. COMPARISON OF THE PARAMETRIC MODELWITH THE NON-PARAMETRICMODEL

Due to the fact that δK = 0.50 ≃ δparamK = 0.4942, one can compare the results given by the

non-parametric approach (Figures 9 and 10) with the results given by the parametric approach

(Figures 12 and 13). These figures cleary prove that the non-parametric results look like the

parametric results when the "positive-definite" ensemble is used and is very different in the low-

frequency domain when the GOE is used. Consequently, the present results give an additional

validation point of the non-parametric model of random uncertainties for which the theory is

recalled in Sections 1.1 and 1.2 and which is based on the "positive-definite" ensemble.

5. CONCLUSIONS

This paper gives a new validation point of the non-parametric theory of random uncertainties

in vibration analysis, recently introduced by the author. It is proved that the "positive-definite"

ensemble of random matrices, which has been introduced in the context of the development of

this non-parametric approach, is well adapted to the low-frequency vibration analysis, while

the use of the Gaussian orthogonal ensemble (GOE) is not, particularly for strong values of

the dispersion parameter. In addition, as it is explained in previous papers devoted to the

construction of this non-parametric approach, the "positive-definite" ensemble allows random

uncertainties to be modelled for the damping operator while the GOE does not, in the present

state of the art.
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CAPTIONS ACCOMPANYING EACH FIGURE

Figure 1. Dispersion parameter δK = 0.25. Figure on the left: graphs of functions j 7→ mΛj

(thick solid line) and j 7→ mΛGOE

j
(thin solid line). Figure on the right: graphs of functions

j 7→ σΛj
(thick solid line) and j 7→ σΛGOE

j
(thin solid line).

Figure 2. Dispersion parameter δK = 0.25. Figure on the left: for j = 1, . . . , 30, graph of

function λ 7→ pΛGOE

j
(λ). Figure on the right: for j = 1, . . . , 30, graph of function λ 7→ pΛj

(λ).

Figure 3. Dispersion parameter δK = 0.25. Figure on the left: graphs of functions j 7→ m∆j

(thick solid line) and j 7→ m∆GOE

j
(thin solid line). Figure on the right: graphs of functions

j 7→ σSj
(thick solid line) and j 7→ σSGOE

j
(thin solid line).

Figure 4-a. “Positive-definite” ensemble; dispersion parameter δK = 0.25. Figure on the left:

for j = 1, . . . , 30, graph of function s 7→ log10(pSj
(s)) (irregular solid lines) and graph of

the Wigner pdf s 7→ log10(pW (s)) (regular solid line). Figure on the right: graph of function

s 7→ log10(pS(s)) (irregular thick solid line), graph of the Wigner pdf s 7→ log10(pW (s))

(dashed line) and graph of the Brody pdf s 7→ log10(pB(s)) with α = 1.93 (thin solid line).

Figure 4-b. Gaussian orthogonal ensemble; dispersion parameter δK = 0.25. Figure on the

left: for j = 1, . . . , 30, graph of function s 7→ log10(p
GOE

Sj
(s)) (irregular solid lines) and graph

of theWigner pdf s 7→ log10(pW (s)) (regular solid line). Figure on the right: graph of function

s 7→ log10(p
GOE

S (s)) (irregular thick solid line), graph of the Wigner pdf s 7→ log10(pW (s))

(dashed line) and graph of the Brody pdf s 7→ log10(pB(s)) with α = 1.93 (thin solid line).

Figure 5. Dispersion parameter δK = 0.50. Figure on the left: graphs of functions j 7→ mΛj

(thick solid line) and j 7→ mΛGOE

j
(thin solid line). Figure on the right: graphs of functions

j 7→ σΛj
(thick solid line) and j 7→ σΛGOE

j
(thin solid line).

Figure 6. Dispersion parameter δK = 0.50. Figure on the left: for j = 1, . . . , 30, graph of

function λ 7→ pΛGOE

j
(λ). Figure on the right: for j = 1, . . . , 30, graph of function λ 7→ pΛj

(λ).

Figure 7. Dispersion parameter δK = 0.50. Figure on the left: graphs of functions j 7→ m∆j

(thick solid line) and j 7→ m∆GOE

j
(thin solid line). Figure on the right: graphs of functions

j 7→ σSj
(thick solid line) and j 7→ σSGOE

j
(thin solid line).

Figure 8-a. “Positive-definite” ensemble; dispersion parameter δK = 0.50. Figure on the left:

for j = 1, . . . , 30, graph of function s 7→ log10(pSj
(s)) (irregular solid lines) and graph of
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the Wigner pdf s 7→ log10(pW (s)) (regular solid line). Figure on the right: graph of function

s 7→ log10(pS(s)) (irregular thick solid line), graph of the Wigner pdf s 7→ log10(pW (s))

(dashed line) and graph of the Brody pdf s 7→ log10(pB(s)) with α = 1.91 (thin solid line).

Figure 8-b. Gaussian orthogonal ensemble; dispersion parameter δK = 0.50. Figure on the

left: for j = 1, . . . , 30, graph of function s 7→ log10(p
GOE

Sj
(s)) (irregular solid lines) and graph

of theWigner pdf s 7→ log10(pW (s)) (regular solid line). Figure on the right: graph of function

s 7→ log10(p
GOE

S (s)) (irregular thick solid line), graph of the Wigner pdf s 7→ log10(pW (s))

(dashed line) and graph of the Brody pdf s 7→ log10(pB(s)) with α = 1.91 (thin solid line).

Figure 9. Non-parametric approach. Dispersion parameter δK = 0.50. Frequency band

[0 , 0.22] Hz (horizontal axis). Figure on the left: graphs of functions ν 7→ log10 en(2πν)

(dashed line), ν 7→ dB(ν) (thick solid line) and ν 7→ dBGOE(ν) (thin solid line). Figure on the

right: graphs of functions ν 7→ σEn
(2πν) (thick solid line) and ν 7→ σEGOE

n
(2πν) (thin solid

line).

Figure 10. Non-parametric approach. Dispersion parameter δK = 0.50. For the "positive-

definite" ensemble: graphs of functions ν 7→ dB(ν) (thick dashed line), ν 7→ dBmax(ν) (upper

thick solid line), ν 7→ dBmin(ν) (lower thick solid line). For the Gaussian orthogonal ensemble,

graphs of functions ν 7→ dBGOE(ν) (thin dashed line), ν 7→ dBGOE

max(ν) (upper thin solid line),

ν 7→ dBGOE

min(ν) (lower thin solid line).

Figure 11. Figure on the left: graph of power spectral density function k 7→ SZb
(k). Figure

on the right: graph of autocorrelation function η 7→ RZb
(k).

Figure 12. Parametric approach. Dispersion parameter δparamK = 0.4942. Frequency band

[0 , 0.22] Hz (horizontal axis). Figure on the left: graphs of functions ν 7→ log10 en(2πν)

(dashed line) and ν 7→ dBparam(ν) (thick solid line). Figure on the right: graph of function

ν 7→ σ
E
param
n

(2πν) (solid line).

Figure 13. Parametric approach. Dispersion parameter δparamK = 0.4942. Frequency band

[0 , 0.22] Hz (horizontal axis). Graphs of functions ν 7→ dBparam(ν) (dashed line), ν 7→
dBparam

max (ν) (upper solid line) and ν 7→ dBparam
min (ν) (lower solid line).
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