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ABSTRACT

The paper deals with an experimental validation of a nonparametric probabilistic model of non

homogeneous uncertainties for dynamical systems. The theory used, recently introduced, allows

model uncertainties and data uncertainties to be simultaneously taken into account. An experiment

devoted to this validation was specifically developed. The experimental model is constituted

of two simple dural rectangular plates connected together with a complex joint. In the mean

mechanical model, the complex joint which is constituted of two additional plates attached with

40 screw-bolts, is modeled by a homogeneous orthotropic continous plate with constant thickness,

as usual. Consequently, the mean model introduces a region (the joint) which has a high level of

uncertainties. The objective of the paper is to present the experiment and the comparisons of the

theoretical prediction with the experiments.

PACS numbers: 43.40

Keywords: Random uncertainties; Dynamical systems; Experiments;

INTRODUCTION

In order to improve the robustness of the prediction models of complex dynamical systems, random

uncertainties have to be taken into account. There are two main types of uncertainties : (1) model

uncertainties which are induced by the modeling process which allows the mathematical model of

the real dynamical systems to be constructed and (2) data uncertainties which correspond to the

errors on the parameters of the constructed model. It is well known that probabilistic parametric

approaches are very efficient to model the data uncertainties (for instance, see Refs. 1 to 7).

However, probabilistic approaches do not allow model uncertainties to be taken into account. This is

the reason why a nonparametric probabilistic model of random uncertainties for dynamical systems
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has recently been proposed8,9. This nonparametric approach allows model uncertainties and data

uncertainties to be simultaneously taken into account. Without re-explaining all the details of this

nonparametric approach, hereafter, we summarize the principal idea. First, it should be noted that

any probability measure can be constructed using the maximum entropy principle9 with appropriate

constraints. Consequently, when a probability measure has to be constructed, the problem is to

utilize the constraints defined by the better available information. For dynamical systems, the

most important available information is relative to the operators of the nominal model (such as

the mass, damping and stiffness operators of the nominal model presently called the mean model)

and to their algebraic properties. Modeling random uncertainties leads the corresponding operators

of the dynamical system to be random and to verify the same algebraic properties (positiveness,

invertibility, etc). For the actual dynamical system, the corresponding operators are unknown but it

can be state that these operators have to verify the same algebraic properties which are absolutely

general for any dynamical system. In addition, for the statistical identification of the predictive

model, the actual dynamical system under consideration have to be considered as a realization

of a random dynamical system. For a given operator of the predictive model, the probabilistic

parametric approach of data uncertainties yields an operator range which is a subset  par ⊂  of an

appropriate functional space  and which can be too "small" due to the presence of additional model

uncertainties. This means that, if the model uncertainties are large, the corresponding operator of the

actual dynamical system does not belong to subset  par. The proposed probabilistic nonparametric

approach consists in constructing a "bigger subset"  nonpar using only the known general algebraic

properties which hold for any dynamical system. Consequenty, by construction,  nonpar contains

subset  par (that is to say  par ⊂  nonpar) and then, the operator of the actual dynamical system

belongs to  nonpar. Then, a probability measure is constructed on  nonpar and this is done using the

maximum entropy principle with the constraints defined by all the available information related to

the given operator of the dynamical system.

In Refs. 8 and 9, the theory is presented for master dynamical systems with homogeneous random

uncertainties. Generally, for complex dynamical systems, random uncertainties are not homo-

geneous. The level of uncertainty is different from a part to another one. For instance, if we

consider two simple structures connected together with a complex joint, the uncertainties of the

mean mechanical model are important in the part constituted of the joint and are small in the

two parts constituted of the two simple structures. Consequently, the nonparametric probabilistic
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model of random uncertainties has been extended to the case of non homogeneous uncertainties by

using a substructuring technique10−12. Such an approach combines the Craig-Bampton dynamic

substructuring method13 and the nonparametric probabilistic model.

In order to validate the nonparametric probabilistic model of non homogeneous uncertainties for

complex dynamical systems, an experiment has specifically been carried out14. In this paper, we

present this experiment and the experimental validation of the theory developed in Refs. 8 to 12

and which constitutes the first experimental validation of the proposed nonparametric probabilistic

approach.

The experimental set-up is made up of two dural rectangular plates connected together by a complex

joint constituted of two additional plates and 40 screw bolts. Then, the dynamical system has three

natural subdomains. The first one is a simple rectangular plate, the second one is a complex joint

and the third one is an another simple rectangular plate. In order to evaluate the role played by the

value and by the distribution of the screwing-couples, 21 configurations corresponding to 21 values

and distributions of the screwing-couples have been tested.

The mean numerical model is constituted of a finite element model of a simplified schematization

of the dynamical system for which the complex joint is replaced by an equivalent simple orthotropic

continuous plate with constant thickness. The modeling uncertainties are induced by the introduction

of such a simple schematization of the complex joint. The finite element model of the orthotropic

continuous plate modeling the complex joint has been updated using the first seventh experimental

elastic modes. Nevertheless, in spite of this dynamical updating, the mean finite element model

cannot correctly predict the frequency response functions on a broad frequency band, especially

when the frequency increases. The comparisons of the experimental frequency response functions

with the mean finite element model clearly show that the mean model is good for the low-frequency

range but is not able to predict the experimental responses for higher frequencies. The introduction

of a nonparametric model of non homogeneous random uncertainties allows the robustness of the

prediction to be improved.

In Section I, the experimental set-up is presented. Section II deals with the mean mechanical

model and its finite element modeling. In Section III, we present the comparisons of the frequency

responses given by the mean model with the experimental frequency responses. Section IV is

devoted to the comparisons of the random frequency responses of the stochastic model with the

experimental frequency responses. Below, FRF means "frequency response function".
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I. EXPERIMENT

The experiment which is briefly described below was performed at ONERA14. The system studied

is constituted of two simple rectangular thin plates connected by a bolted joint, as explained in

Section Introduction.

A. Description of the experimental set-up

The two simple plates of the experimental system are noted P1 and P3. Plate P1 is a rectangular

dural plate with thickness 0.003 m, width 0.40 m and lenght 0.60 m. Plate P3 is a rectangular dural

plate with thickness 0.003 m, width 0.50 m and lenght 0.60 m. Plates P1 and P3 are connected

on their lenght by a joint constituted of two rectangular plates with thickness 0.002 m, width

0.14 m and lenght 0.60 m (see Fig. 1) and are attached with two lines of 20 screw-bolts. The

experimental dynamical system is hanged with a very low eigenfrequency. The excitation is done

with an electrodynamic shaker located in plate P3 (see kexit in Fig. 1). The response is identified

with 29 accelerometers. Below, we present experimental measurements for the two accelerometers

located at point kexit (driving force) in plate P3 and at point kobs in plate P1 (see Fig. 1).

B. Experimental configurations

In order to study the influence of the screw-bolt prestresses, 21 experimental configurations were

defined. Each experimental configuration corresponds to a given value of each screw-bolt prestress

for the 40 screw-bolts. The prestresses of these 40 screw-bolts correspond to the realization of a

random screwing-couple of each screw-bolt. The probability distribution is uniform on the interval

[2, 5]N × m. The 21 experimental configurations were tested.

C. Experimental measurements

For each experimental configuration j = 1, . . . , 21, the data collected are the accelerations

{A
exp,j
k (f), k = 1, . . . , 29}, for f in B = [20, 2000] Hz. From the measured accelerations,

the displacements U
exp,j
k (f) are easily deduced. For each f in B, we introduce the functions

f 7→ Max
exp

k (f) and f 7→ Min
exp

k (f) related to the 21 experimental configurations and defined

by

Max
exp

k (f) = max
j=1,...,21

{10 log10(|Uexp,j

k (f)|2)}, (1)
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Min
exp

k (f) = min
j=1,...,21

{10 log10(|Uexp,j

k (f)|2)}. (2)

D. Influence of the screw-bolt prestresses

Figure 2 displays the experimental results of the displacement FRF modulus for observation

point kobs in plate P1. The upper and lower curves correspond to the graphs of functions

f 7→ Max
exp
kobs

(f) and f 7→ Min
exp
kobs

(f) respectively. It can be seen that the dispersion in-

duced by the random screw-bolt prestresses is completely negligible in the [0, 200]Hz frequency

band, is small in [200, 800]Hz and is still limited in the [800, 2000]Hz frequency band. It can be

concluded that the screw-bolt prestresses induce a small dispersion which is increasing with the

frequency.

II. MEAN MECHANICAL MODEL OF THE EXPERIMENTAL CONFIGURATIONS

This Section deals with the construction of the mean mechanical model of the experimental config-

urations and with the updating of the finite element model.

A. Mean mechanical model

We consider the complete structure Ω whose dimension is 0.9 m× 0.6 m in a Cartesian coordinate

system (O X Y Z) defined in Fig. 3. This structure is constituted of three substructures Ω1 (plate

P1), Ω2 (joint) and Ω3 (plate P3), whose lenghts are 0.33 m, 0.14 m and 0.43 m respectively. The

thickness of substructures Ω1 and Ω3 is 0.003 m. The joint is modeled by substructure Ω2 whose

thickness is 0.007 m (corresponding to 0.002 + 0.003 + 0.002, see Fig. 3). The coupling interface

between Ω1 and Ω2 is Σ1, and between Ω2 and Ω3 is Σ2.

Plates P1 (substructure Ω1) and P3 (substructure Ω3) are made in dural and consequently are

modeled by a homogeneous isotropic material whose measured characteristics are the following:

mass density 2800 kg/m3, Young’s modulus 7.05× 1010 N/m2, Poisson’s rate 0.33 and damping

rate 0.2%. If the joint (substructure Ω2) is modeled by a homogeneous and isotropic plate with

thickness 0.007m, then the seven lowest eigenvalues of the structure Ω can never been predicted with

a sufficient accuracy when the prediction is compared with the experiments. It can be concluded that

an orthotropic medium is required for the mean model of the joint. Such an orthotropic model was

developed and the characteristic properties were identified by updating the finite element model
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(see Section II.C). The mass of each accelerometer (0.0007kg) is introduced in the model. An

appropriate system of four springs models the experimental hanging.

The modal damping rates have been experimentally identified for the ten first elastic modes. The

mean value of these experimental damping rates is 0.2%. For the mean damping of each sub-

structure, a hysteretic model is used. Consequently, the mean damping matrix of each substructure

is proportional to the mean stiffness matrix with a coefficient equal to 2β/(2πf) in which β = 0.002

and where f is the frequency in Hz.

The coordinates of excitation point kexit are (0.77, 0.45, 0). In the frequency domain, the driving

force is a constant normal force applied to the plate P3 (substructure Ω3) over frequency band B

and is equal to 1. The normal displacement at points kexit and kobs (corresponding to the location

of two accelerometers) are observed to characterize the dynamical responses of structure Ω. The

coordinates of observation point kobs are (0.09, 0.36, 0).

B. Mean finite element model of the experimental configurations

The mean finite element models of the three substructures Ω1, Ω2 and Ω3 are constructed with

compatible meshes constituted of 4-nodes bending plate elements. The mesh size is 0.01m×0.01m.

The assembled structure Ω has 16653 DOFs, the number of internal DOFs of Ω1 (plate P1), Ω2

(joint) and Ω3(plate P3) is 6039, 2379 and 7869 respectively. The number of coupling DOFs for

each interface Σ1 and Σ2 is 183. The observation DOFs corresponding to the normal displacement

at driving point kexit and at observation point kobs are noted dofexit and dofobs respectively (see

Fig. 3).

C. Properties of the mean model

The mesh size of the mean finite element model has been adapted to the wave numbers of the highest

mode in the frequency band B = [0 , 2000] Hz of analysis. The modal density of the mean structure

is such that there are 8 modes in the frequency band [20 , 100] Hz, 27 modes in [100 , 500] Hz,

29 modes in [500 , 1000] Hz, 33 modes in [1000 , 1500] Hz and finally, 29 modes in [1500 , 2000]

Hz. For the mode corresponding to the highest eigenfrequency in frequency band B (the highest

mode), the corresponding wave numbers n and m in X and Y directions (see Fig. 3) are n = 15

and m = 10. Since mean finite element mesh is such that there are 90 finite element nodes in X

and direction and 60 finite element nodes in Y direction, the spatial sampling for the highest mode

is 6 nodes per "half wavelength" in each direction. Consequently, the mean finite element mesh is
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sufficiently refined to give converged results in the sense of the mean model.

D. Updating the mean finite element model

In order to improve the quality of the mean finite element model, the mean finite element model

of the joint (substructure Ω2) has been updated with respect to the seven lowest eigenfrequencies

which have been measured. The updated model for substructure Ω2 corresponds to an orthotropic

material whose Young’s moduli are EX = 1.90 × 1010 N/m2 and EY = 7.40 × 1010 N/m2 and

whose in-plane shear modulus is 1.23 × 1010 N/m2. Moreover, the mass of each screw-bolt is

taken into account and the resulting mass density of substructure Ω2 is equal to 3086 kg/m3. The

seven lowest experimental eigenfrequencies are 20.35 Hz, 22.12 Hz, 37.97 Hz, 52.80 Hz, 57.99 Hz,

66.58 Hz and 84.70 Hz, while the calculated eigenfrequencies with the updated mean finite element

model are 20.35 Hz, 22.54 Hz, 40.25 Hz, 53.32 Hz, 57.10 Hz, 66.36 Hz and 84.02 Hz.

III. RESPONSE OF THE MEAN MODEL AND COMPARISONS WITH THE EXPERI-

MENTAL RESULTS

In this Section, the response of the mean model calculated by using the Craig-Bampton dynamic

substructuring method is compared with the experimental results. Figures 4 and 5 are related to

the driving point kexit and to the observation point kobs respectively. Each figure is relative to the

FRF modulus in dB for the displacement and compares the mean numerical predictions with the

experimental upper and lower envelopes. Although the updating of the mean finite element model

using the experiments has been carried out, for frequencies greater than 400 Hz, Figures 4 and 5

clearly show that the updated mean model is not sufficiently accurate to predict the experimental

response for frequencies greater than 400Hz. Figures 7 and 9 can be used as a zoom (magnified

figures) for studying frequencies less than 400 Hz and show that, in fact, the updated mean finite

element model is not sufficiently accurate to predict the experimental response for frequencies

greater than 100Hz. It should be noted that the number of DOFs for such a system is relatively

high with respect to the usual state of art for this type of finite element modeling. Since the effect

of the screwing couple is under control through the experimental configurations, it is clear that the

main source of uncertainty does not come from this phenomena, but from the model errors (model

uncertainties) whose effects increase with frequency (errors induced by the schematization used for

modeling a complex joint by a simple continuous plate). Data errors (data uncertainties) exist as

well.
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IV. NONPARAMETRIC MODEL OF NON HOMOGENEOUS RANDOM UNCERTAIN-

TIES AND COMPARISONSWITH THE EXPERIMENTAL RESULTS

As explained in Section III, a model uncertainties associated with the mean model constructed in

Section II have to be taken into account to increase the robustness of the prediction due to the

unsatisfaying prediction given by the mean model. The dispersion parameter δ which allows the

nonparametric probabilistic model to be controled is defined in Ref. 9 and is a dimensionless

parameter belonging to interval [0, 1]. Such a parameter is similar to the variation index in statistics

(δ = 0 corresponds to no uncertainties and δ = 1 to the biggest possible level of uncertainty).

Moreover, the level of uncertainty is more important in the substructure modeling the joint. In order

to model such non homogeneous random uncertainties, the nonparametric probabilistic method

proposed in Refs. 10 to 12 is used.

Althought the goal of this paper is not to present some methods for identifying δ parameters,

hereinafter, we summarize the principle possible methods: (i) Since such a nonparametric model

of random uncertainties allows model errors to be taken into account, δ parameters can be used as

global parameters to carry out a sensitivity analysis with respect to the model errors and data errors.

With such an approach, δ is not fixed but has to belong to an interval. This method has been used

in this paper for calibrating the values of δ parameters for the two plates and for the joint. (ii) A

second method consists in peforming an experimental identification using an appropriate inverse

method. Such a research is in progess. (iii) A third method consists in calibrating δ parameters

by using a parametric approach. An example of such a method is given in Ref. 15. (iv) A fourth

method consists in constructing an estimation of δ for a given type of substructures (for instance for

a given type of joints) using any one of the two above methods.

A. Definition of the uncertainty level

A sensitivity analysis has been carried out with respect to the dispersion parameters δM , δD and

δK related to the mass, damping and stiffness uncertainties in each substructure. Concerning the

details of this analysis, we refer the reader to Ref. 10. From this analysis, it can be deduced that

a low level of uncertainties has to be introduced in substructures Ω1 and Ω3, and a high level of

uncertainties has to be used for substructure Ω2 modeling the joint. Since the mass distribution

of the mean model is relatively well known (with respect to frequency band B), we have taken

δM1 = δM2 = δM3 = 0 for the three substructures. Finally, the optimal values for the δD and
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δK parameters (corresponding to a confidence region of the stochastic response associated with a

probability of 0.95) are δD1 = δD3 = 0.10, δD2 = 0.80, and δK1 = δK3 = 0.15, δK2 = 0.80.

These values correspond to a high level of uncertainties in substructure Ω2 (the joint) for the

stiffness and the damping. Since the mass of the mean model is updated with the experiment, no

significant errors exist for the mass. It should be noted that if a moderate level of uncertainty is

considered for substructure Ω2, then it is not sufficient to obtain a confidence region in which the

experimental results are. In addition, it seems to be inconsistent to increase the level of uncertainty

in substructures Ω1 and Ω3 modeling plates P1 and P3, but substructure Ω2 has to be considered

with a high level of uncertainty.

B. Comparisons calculation-measurement

Let U(f) =
(

U1(f), . . . , Un(f)
)

be the random response of struture Ω. A confidence region,

constructed by using the Tchebychev inequality, is defined by the upper and lower envelopes

f 7→ dB+
k (f) and f 7→ dB−

k (f) of the FRF modulus in dB for the displacement and corresponding

to a given probability level Pc such that

P{dB−

k (f) < dBk(f) < dB+
k (f)} ≥ Pc , (3)

in which the random variable dBk(f) is defined by dBk(f) = 10 log10(|Uk(f)|2) and where the

lower envelope dB−

k (f) and the upper envelope dB+
k (f) are such that

dB−

k (f) = 2dB0
k(f) − dB+

k (f) , (4)

dB0
k(f) = 20 log10(|E{Uk(f)}|) , (5)

dB+
k (f) = 20 log10 {|E{Uk(f)}|+ ak(f)} , ak(f) =

σUk(f)√
1 − Pc

, (6)

in which E{Uk(f)} and σUk(f) are the mean value and the standard deviation of the complex-valued

random variable Uk(f). Figures 6 to 9 display the comparisons between the experiment and the

prediction. It should be noted that the mean value E{Uk(f)} and the standard deviation σUk(f)

can easily be deduced from Eqs. (4)-(6). Figures 6 and 7 are relative to the displacement at driving

point kexit over frequency band [20, 2000]Hz (see Fig. 6) and [20, 1000]Hz (zoom given by Fig.

7). Figure 8 and 9 are relative to the displacement at observation point kobs over frequency band

[20, 2000]Hz (see Fig. 8) and [20, 1000]Hz (zoom given by Fig. 9). On each figure, it can be

seen (1) the gray region whose upper and lower envelopes are defined by the graphs f 7→ dB+
k (f)

J. Acoust. Soc. Am. 9 H. Chebli & C. Soize, Second revised version, october 2003



and f 7→ dB−

k (f) and which corresponds to the confidence region with Pc = 0.95, constructed

using the probabilistic numerical model, (2) the thick solid line corresponding to the response of the

mean finite element model and (3) the upper and lower thin solid lines corresponding to the upper

and lower envelopes of the experimental FRF for the displacements. It can be seen that the gray

region contains almost all the experimental results (in the 0.95 probability) and that the bandwith

of this region increases with the frequency. This is consistent with the fact that the role played by

uncertainties increase with the frequency.

In order to explain the efficiency of the proposed nonparametric probabilistic method of non

homogeneous model uncertainties, we focuss the analysis given below on a particular aspect of

this experimental comparison. Let us consider the resonance predicted by the mean finite element

model at frequency 660Hz (see the peak of the thick solid line in Fig. 7). The corresponding

experimental resonance is given at frequency 628Hz (see the peak of the upper and the lower thin

solid lines in Fig. 7). If the mean model was perfectly correct, these two resonances should be

loacted at the same frequency. It is not the case. It can be seen that the gray region is not centered

around the response of the mean finite element model but is shifted allowing the confidence region

to include the experimental resonance at 628Hz. Such an analysis can be reproduced for almost all

the differences appearing between the experimental results and the prediction over all the frequency

band.

V. CONCLUSIONS

We have presented an experimental validation of the nonparametric model of random uncertainties

proposed in Ref. 9 for the case of non homogeneous uncertainties induced by a complex joint.

The experimental comparisons show the efficiency of the theory proposed and show that such a

theory has to predict a confidence region which has to increase with the frequency, that is the

case for this theory. Finally, this paper shows that, in a broad low-frequency range, the use of

such a nonparametric probabilistic model allows the dynamical responses of a structure including

a complex joint to be predicted by using a usual mean mechanical model of the joint.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Experimental mechanical system.

FIG. 2. Experimental frequency response function at observation point kobs: graphs of functions

f 7→ Max
exp

kobs
(f) (upper solid line) and f 7→ Min

exp

kobs
(f) (lower solid line).

FIG. 3. Mean mechanical model of the experimental mechanical system.

FIG. 4. Experimental comparisons at driving point kexit over frequency band [20, 2000]Hz:

numerical prediction of the frequency response function modulus in dB (thick solid line) and,

experimental graphs of f 7→ Max
exp

kexit
(f) (upper thin solid line) and f 7→ Min

exp

kexit
(f) (lower

thin solid line).

FIG. 5. Experimental comparisons at observation point kobs over frequency band [20, 2000]Hz:

numerical prediction of the frequency response function modulus in dB (thick solid line) and,

experimental graphs of f 7→ Max
exp

kobs
(f) (upper thin solid line) and f 7→ Min

exp

kobs
(f) (lower thin

solid line).

FIG. 6. Experimental comparisons at driving point kexit over frequency band [20, 2000]Hz:

confidence region prediction in dB with the probabilistic numerical model (gray region), numerical

prediction in dB of the mean model (thick solid line) and experimental graphs of f 7→ Max
exp
kexit

(f)

(upper thin solid line) and f 7→ Min
exp
kexit

(f) (lower thin solid line).

FIG. 7. Experimental comparisons at driving point kexit over frequency band [20, 1000]Hz:

confidence region prediction in dB with the probabilistic numerical model (gray region), numerical

prediction in dB of the mean model (thick solid line) and experimental graphs of f 7→ Max
exp
kexit

(f)

(upper thin solid line) and f 7→ Min
exp
kexit

(f) (lower thin solid line).

FIG. 8. Experimental comparisons at observation point kobs over frequency band [20, 2000]Hz:

confidence region prediction in dB with the probabilistic numerical model (gray region), numerical

prediction in dB of the mean model (thick solid line) and experimental graphs of f 7→ Max
exp
kobs

(f)

(upper thin solid line) and f 7→ Min
exp

kobs
(f) (lower thin solid line).

FIG. 9.Experimental comparisons at observation point kobs over frequency band [20, 1000]Hz:

confidence region prediction in dB with the probabilistic numerical model (gray region), numerical

prediction in dB of the mean model (thick solid line) and experimental graphs of f 7→ Max
exp
kobs

(f)

(upper thin solid line) and f 7→ Min
exp

kobs
(f) (lower thin solid line).
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