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The context of this research is devoted to the construction of a equivalent acoustic impedance model for a soundproofing

scheme constituted of a three-dimensional porous medium inserted between two thin plates. Part I of this paper presents

the experiments performed and a probabilistic algebraic model of the wall acoustic impedance constructed using the

experimental data basis for the medium and high frequency ranges. The probabilistic algebraic model is constructed by

using the general mathematical properties of wall acoustic impedance operators (symmetry, odd and even functions with

respect to the frequency, decreasing functions when frequency goes to infinity, behavior when frequency goes to zero and

so onã). The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis. Finally,

this probabilistic algebraic model summarizes all the experimental data basis and consequently can be reused for the other

researches.

1. INTRODUCTION

In the medium and high frequency ranges, the modelling of a multilayer system containing

porous materials is very important for noise control in aircrafts, automobiles, buildings, etc.

Difficulties occur in modelling such multilayer systems and in validating them with experi-

mental data basis. Many works have already been published about experimental data bases

concerning the acoustic transmission through multilayer systems or concerning the surface

impedance of multilayer systems with a rigid wall [1-10]. Nevertheless, very little exists con-

cerning experimental data basis for the equivalent acoustic impedance of multilayer systems

with porous media and for the medium and high frequency ranges. Such experimental data

bases are necessary to understand the physics of such systems and to validate analytical and

numerical models in the medium and high frequency ranges. The main objective of the part

I of this paper is to present an experimental data basis concerning the equivalent acoustic

impedance of a multilayer system containing a porous medium and to propose a probabilistic

model which allows the experimental data basis to be synthesized and consequently, to be

reused by the community for other researches. In particular, this experimental data basis will

be used in part II [11] of this paper which is devoted to the validation of an analytical model of

such a multilayer system for the medium and high frequency ranges. The experimental multi-

layer system is constituted of a three-dimensional porous medium inserted between two thin
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plates. At a given frequency, the equivalent acoustic impedance of such a multilayer system is

the linear mapping between the pressure field applied to one plate and the jump of the normal

velocities to each plate. Such an equivalent acoustic impedance can be introduced in the mod-

els allowing vibro-acoustic predictions of complex mechanical systems. An experimental data

basis has specifically been constructed for this research [12] and corresponds to the experimen-

tal identification of the equivalent acoustic impedance in the frequency band [100,1600] Hz,

the medium and high ranges corresponding to the frequency band [300,1600] Hz. Using this

experimental data basis, a probabilistic algebraic model of the equivalent acoustic impedance

of the multilayer system is constructed. This probabilistic model synthesizes all the experi-

mental data basis through the use of a mean algebraic model and a random fluctuation model

[13,14]. The number of parameters of this model (correlation lengths) is minimum. A good

approximation of this experimental data basis is given by this model. Section 2 deals with

the experiment. In Section 3, the construction of the basic algebraic model for the equivalent

acoustic impedance is developed. Section 4 is devoted to the properties of the equivalent

acoustic impedance which are deduced from the analysis of the experimental data basis. In

Section 5, one presents the estimation of the mean values of the basic algebraic model param-

eters using the experimental data basis and finally, Section 6 deals with the construction of

the random model.

2. DESCRIPTION OF AN EQUIVALENT ACOUSTIC IMPEDANCE EXPERIMENT

An experiment [12] was carried out in an anechoic room in order to measure the equivalent

acoustic impedance of a multilayer system constituted of a three-dimensional porous medium

inserted between two thin plates in aluminium, denoted as P1 and P2 (see Figure 1). The

length and width of the multilayer system is 0.6 and 0.4 meter respectively. This multilayer

system is fixed in a rigid baffle. The geometry and the material properties of the experimental

multilayer system are described in Appendix A. The experimental analysis and the signal

processing are performed in the frequency domain. The angular frequency is denoted by ω.

Normal point forces to plate P1 are successively applied to the N = 25 points M1, . . . ,MN
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defined in Figure 2. The normal velocities at these N driving points are measured using

laser velocimetry (see Figure 3). Consequently, the N points M1, . . . ,MN in plate P1 are

driving and receiving points. In addition, the normal accelerations are measured at N points

M̃1, . . . , M̃N in plate P2 (see Figure 4) and then, the associated normal velocities are deduced

on plate P2. These N receiving points M̃1, . . . , M̃N in plate P2 are in correspondence with

the N points M1, . . . ,MN in plate P1 which means that, for all j = 1, . . . , N , point Mj and

point M̃j have the same coordinates x1 and x2 (but have a different coordinate x3). This

choice allows the jump of the normal velocities between the two sides of the multilayer system

to be calculated. Let F exp
k (ω) be the normal point force applied to point Mk belonging

to the N driving points M1, . . . ,MN in plate P1. Excitation F exp
k (ω) induces the normal

velocities V P1 exp
jk (ω) and V P2 exp

jk (ω) at receiving point Mj in plate P1 and at corresponding

receiving point M̃j in plate P2, respectively. Let ∆Vexp(ω) = (∆V exp
1k (ω), . . . ,∆V exp

Nk (ω)) with

∆V exp
jk (ω) = V P1 exp

jk (ω)−V P2 exp
jk (ω) be the jump of the normal velocities to the N couples of

points (Mj , M̃j). For each k fixed in {1, ..., 25} and for 8192 values of ω in the frequency band

of analysis [30,1600] Hz, the experimental measures allow the (N×N) complex matrix-valued

frequency response function [Hexp(ω)] to be constructed for a linear filter whose inputs are the

normal forces applied to N nodes of plate P1 and whose outputs are the jump of the normal

velocities at the N couples of points (Mj, M̃j). Consequently, one has

∆Vexp(ω) = [Hexp(ω)] Fexp(ω) in which [Hexp(ω)] =




∆V exp
11 (ω) ... ∆V exp

1N (ω)
...

∆V exp
N1 (ω) ... ∆V exp

NN (ω)




Fexp(ω) = (F exp
1 (ω), . . . , F exp

N (ω)). (‘ frf2 bis’)

Let B = [100, 1600]Hz be the frequency band of analysis for which the experimental frequency

response function [Hexp(ω)] is invertible. For ω in B, the experimental impedance N × N

complex matrix [Zexp(ω)] is then defined by

[Zexp(ω)] = [Hexp(ω)]−1 , ∀ω ∈ B . (‘ Zmm et Hexp’)
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3. CONSTRUCTION OF THE BASIC ALGEBRAIC MODEL FOR AN EQUIVALENT ACOUSTIC

IMPEDANCE

3.1 SETTING THE PROBLEM

The geometry of the multilayer system is shown in Figure 5. The interfaces between the porous

medium and the plates P1 and P2 are denoted by Σ1 and Σ2. The theoretical model which

is considered introduces an applied pressure field p acting on surface Σ0. The reference-plane

surface system of the multilayer system is denoted by S and coincides with surface Σ1. The

coordinates (x1, x2, x3) of a point belonging to the porous medium are given in the cartesian

system whose origin belongs to the reference-plane S. The x3 coordinate of the coupling

interface Σ1 (or Σ2) is 0 (or H) (in which H is the thickness of the porous medium). Below,

x̃ = (x1, x2) denotes the point belonging to reference plane S. Let S1 and S2 be the mid-planes

of the plates P1 and P2.

3.2 DEFINITION OF THE EQUIVALENT ACOUSTIC IMPEDANCE DENSITY FUNCTION

The experimental measures have been made in an anechoic room such that the effect of the

coupling between the external air and the multilayer system can be considered as negligible

compared to the effect of the viscous dissipation of the multilayer system. Let vP1(x̃, ω)

and vP2(x̃, ω) be the normal velocities at the point M in plate P1 and at the corresponding

point M̃ in plate P2 such that the corresponding points M and M̃ have the same coordinates

x̃ = (x1, x2). For fixed ω, the equivalent acoustic impedance is the integral operator  (ω)

defined by a density function z(x̃, x̃′, ω) with complex values such that

p(x̃, ω) ={ (ω) (vP1(., ω)− vP2(., ω))}(x̃)

=

∫

x̃′∈S

z(x̃, x̃′, ω) (vP1(x̃′, ω) − vP2(x̃′, ω)) dSx̃′ , (‘!rel op’)
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in which (x̃, x̃′) 7→ z(x̃, x̃′, ω) is called the equivalent acoustic impedance density function and

where dSx̃′ = dx̃′1 dx̃
′
2. It should be noted that the complex operator  (ω) is defined by the

complex bilinear form

<  (ω) u, v >=

∫

S

∫

S

z(x̃, x̃′, ω) u(x̃′) v(x̃) dSx̃ dSx̃′ . (‘!Z bilineaire’)

It is assumed that the reciprocity principles can be applied. Therefore, the complex operator (ω) is symmetric and consequently, z(x̃, x̃′, ω) satisfies the following symmetry property,

z(x̃, x̃′, ω) = z(x̃′, x̃, ω) . (‘!pte sym znoyau’)

Moreover, the system considered being a physical system, we have the property that  (−ω) = (ω) which yields

z(x̃, x̃′,−ω) = z(x̃, x̃′, ω) , (‘!pte conj znoyau’)

where a denotes the conjugate of the complex number a. Introducing the real and the imag-

inary parts of the equivalent acoustic impedance density function such that z(x̃, x̃′, ω) =

zR(x̃, x̃′, ω) + i zI(x̃, x̃
′, ω), from Eqs. (‘!pte sym znoyau’) and (‘!pte conj znoyau’), it can be

deduced that

zR(x̃, x̃′, ω) = zR(x̃′, x̃, ω) , zI(x̃, x̃
′, ω) = zI(x̃

′, x̃, ω) , (‘!pte sym znoyau RI’)

zR(x̃, x̃′,−ω) = zR(x̃, x̃′, ω) , zI(x̃, x̃
′,−ω) = −zI(x̃, x̃

′, ω) . (‘!pte conj znoyau RI’)
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The correspondance between the continuous model defined by Eq. (3) and the discrete experi-

mental model defined by Eq. (1) is obtained by discretizing Eq. (3) using the usual collocation

method with the N points of the mesh.

3.3 LOCAL EQUIVALENT ACOUSTIC IMPEDANCE

The local equivalent acoustic impedance denoted by zloc is defined by

p(x̃, ω) = zloc(x̃, ω) (vP1(x̃, ω) − vP2(x̃, ω)) , ∀x̃ ∈ S . (‘ formule Z avec F2’)

Sometimes, such a local equivalent impedance zloc is called the wall acoustic impedance [15,16].

From Eqs. (‘ rel op’) and (‘ formule Z avec F2’), it can be deduced that the local equivalent

acoustic impedance can be written as

z(x̃, x̃′, ω) = zloc(x̃, ω) δ0(x̃ − x̃′) , (‘ noyau z’)

in which, for all x̃′ belonging to S, δ0(x̃ − x̃′) is the Dirac function such as
∫

S
φ(x̃) δ0(x̃ −

x̃′) dSx̃ = φ(x̃′). It should be noted that zloc(x̃, ω) differs from z(x̃, x̃′, ω) by a surface element.

Introducing the real and the imaginary parts of the local equivalent acoustic impedance such

that zloc(x̃, ω) = zloc
R (x̃, ω) + i zloc

I (x̃, ω), from Eq. (‘ pte conj znoyau RI’), it can be deduced

that

zloc
R (x̃,−ω) = zloc

R (x̃, ω) , zloc
I (x̃,−ω) = −zloc

I (x̃, ω) . (‘ ptes ZR et ZI1’)

For all x̃ in S, the local equivalent acoustic impedance has to satisfy the following properties

(see [15])
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zloc
R (x̃, ω) > 0 , ∀ω ∈  ,

−ω zloc
I (x̃, ω) ≥ 0 , ∀ω ∈ [−ω0, ω0] in which ω0 > 0 ,

lim
ω→0

(−ω zloc
I (x̃, ω)) = α(x̃) ≥ αmin > 0 , (‘!ptes ZR et ZI2’)

in which αmin is a given real positive constant and x̃ 7→ α(x̃) is a positive-valued function

defined on S. Equation (‘!ptes ZR et ZI2’) means that zloc
I (x̃, ω) ∼ −α(x̃)/ω if ω → 0. For

all x̃ in S, the function ω 7→ zloc
R (x̃, ω) is a continuous function and we have

lim
ω→0

(ω zloc
R (x̃, ω)) = 0 . (‘!ptes ZR et ZI5’)

¿From Eqs. (‘!ptes ZR et ZI2’) and (‘!ptes ZR et ZI5’), one deduces that

zloc(x̃, ω) 6= 0 , ∀x̃ ∈ S , ∀ω , (‘!ptes ZR et ZI6’)

{i ω zloc(x̃, ω)}ω=0 = {−ω zloc
I (x̃, ω)}ω=0 = α(x̃) > 0 . (‘!ptes ZR et ZI7’)

The real part corresponds to the dissipative part of zloc(x̃, ω) (acoustic impedance resistance).

The imaginary part corresponds to the conservative part of zloc(x̃, ω) (acoustic impedance

reactance). Let ∆w(x̃, ω) = wP1(x̃, ω) − wP2(x̃, ω) be the difference between the normal

displacements of the two plates and let be ∆v(x̃, ω) = vP1(x̃, ω)−vP2(x̃, ω). Therefore, on has

∆v(x̃, ω) = i ω∆w(x̃, ω). Equation (‘!formule Z avec F2’) yields

p̂(x̃, ω) =zloc(x̃, ω) ∆v(x̃, ω)

=[−ω zloc
I (x̃, ω) + i ω zloc

R (x̃, ω)] ∆w(x̃, ω) . (‘!eq zeta’)
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Figure 6 displays a typical graph (see for instance [15]) for the functions ω 7→ zloc
R (x̃, ω) and

ω 7→ zloc
I (x̃, ω).

3.4 MODEL FOR THE EQUIVALENT ACOUSTIC IMPEDANCE DENSITY FUNCTION

Let ζ(x̃, ω) defined by ζ(x̃, ω) = z(x̃, x̃, ω), and let ζR(x̃, ω) and ζI(x̃, ω) be the real and the

imaginary parts of ζ(x̃, ω) such that ζ(x̃, ω) = ζR(x̃, ω) + i ζI(x̃, ω). As explained in Section

3.3, zloc(x̃, ω) differs from ζ(x̃, ω) by a surface element. Since zloc
R (x̃, ω) > 0, one then deduces

that ζR(x̃, ω) > 0. Let ρR(x̃, x̃′, ω) be the function corresponding to the normalization of

zR(x̃, x̃′, ω) and defined by

ρR(x̃, x̃′, ω) =
zR(x̃, x̃′, ω)√

ζR(x̃, ω) ζR(x̃′, ω)
. (‘ def rhoR z’)

For the imaginary part, there exists ω0 such that ζI(x̃, ω0) = 0, for all x̃. Consequently, the

normalization of the imaginary part is defined by

ρI(x̃, x̃
′, ω) =

zI(x̃, x̃
′, ω)√

|ζ(x̃, ω)| |ζ(x̃′, ω)|
. (‘ def rhoI z’)

One then obtains

z(x̃, x̃′, ω) =
√
|ζ(x̃, ω)| |ζ(x̃′, ω)|

(
ρR(x̃, x̃′, ω)×

√
ζR(x̃, ω)

|ζ(x̃, ω)|

√
ζR(x̃′, ω)

|ζ(x̃′, ω)|+i ρI(x̃, x̃
′, ω)

)
. (‘ def z rho’)

4 PROPERTIES OF THE EQUIVALENT ACOUSTIC IMPEDANCE DEDUCED FROM THE

EXPERIMENTAL ANALYSIS

4.1 EXPERIMENTAL ANALYSIS
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Figure 7 displays the graph of ω 7→ tr{Hexp(ω)Hexp(ω)⋆} with respect to the frequency and

shows that frequencies below 300 Hz belongs to the low frequency range (the modal domain),

and frequencies above 300 Hz belongs to the medium and high frequency ranges for which

the proposed algebraic model is constructed. When frequency increases, the experimental

equivalent acoustic impedance tends to be a diagonal matrix. For instance, at frequency

100 Hz, Figure 8 shows that the impedance matrix is not diagonal at all. Such a matrix

corresponds to an equivalent acoustic impedance which is not local in space (see Figure 9).

In opposite, at frequency 1200 Hz, this impedance matrix is a quasi-diagonal matrix which

means that the equivalent acoustic impedance is almost local in space. The detailed analysis

of the experimental data basis shows that the upper bound of the frequency for which the

equivalent acoustic impedance is non local in space is about 300 Hz (this is also the lower

bound for which the impedance is almost local in space). An additional detailed analysis of

the experimental data basis [13] shows that the experimental equivalent acoustic impedance

can be considered as homogeneous and isotropic with respect to the coordinates x1 and x2 for

frequencies greater than 300 Hz. This kind of analysis is too long and cannot be developed

here. It should be noted that at high frequencies, Figure 9 shows that the structure of the

impedance matrix is quasi-diagonal which is coherent with the physical point of view. Some

small differences appear especially around the points 1 and 25 which are the most far away

from each other relative to the symmetric point 13. These minor differences (not greater than

5− 8Pa.m−1s) are certainly due to experimental errors (especially, one reason could be that

the experimental lateral boundary conditions could induce some differences from one lateral

side to another one).

4.2 BASIC ALGEBRAIC MODEL

For frequencies greater than 300 Hz, the equivalent acoustic impedance density function is

then considered as homogeneous and isotropic. Therefore, the density function z(x̃, x̃′, ω)

depends only on ||x̃ − x̃′|| and is then rewritten as z(||x̃ − x̃′||, ω). Consequently, ζ(x̃, ω) does

not depend on x̃ and is rewritten as

10
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ζ(x̃, ω) = ζ(ω) , ζ(ω) = ζR(ω) + i ζI(ω) . (‘ def zeta sans x’)

Equation (‘ def z rho’) is then rewritten as

z(||x̃ − x̃′||, ω) = |ζ(ω)|
(
ρR(||x̃ − x̃′||, ω)

ζR(ω)

|ζ(ω)| + i ρI(||x̃ − x̃′||, ω)
)
. (‘ def z rho 2’)

The following algebraic models for the functions ρR(||x̃ − x̃′||, ω) and ρI(||x̃ − x̃′||, ω) are pro-

posed

ρR(||x̃ − x̃′||, ω) = e−||x̃−x̃′||/LR(ω) cos (2 π ||x̃ − x̃′||/λR(ω)) , (‘ modele rhoR’)

ρI(||x̃ − x̃′||, ω) = e−||x̃−x̃′||/LI(ω) cos
(
2 π ||x̃ − x̃′||/λI(ω) + φI(ω)

)
. (‘ modele rhoI’)

These algebraic models result from an analysis of the experimental data basis [13]. It should be

noted that the model of the real part depends on the parameter LR(ω) which is the length scale

controlling the exponential decreasing of the amplitude and on the parameter λR(ω) controlling

the wave length of the oscillations. The model of the imaginary part depends on similar

parameters LI(ω) and λI(ω) and on an additional parameter φI(ω) corresponding to a phase.

Equations (‘ def z rho 2’) to (‘ modele rhoI’) constitute the underlying algebraic model for the

construction of the mean model and the random model of the equivalent acoustic impedance.

It should be noted that the parameters LR, λR, LI , λI and φI have been chosen as a function

of ω, and consequently, ρR(||x̃ − x̃′||, ω) and ρI(||x̃ − x̃′||, ω) defined by Eqs. (‘ modele rhoR’)

and (‘ modele rhoI’) dependent on ω. Nevertheless, one will see in the next sections that the

values of these parameters will be chosen as quantities independent of ω. This assumption

results from a compromise between the simplicity of the model and its capability to represent

the experimental data basis. A more sophisticated mean algebraic model could be introduced

11



B. FAVERJON and C. SOIZE

in choosing these parameters as a function of the frequency. Such a solution has been studied

in [13] and the gain obtained is not significant with respect to the frequency independent

assumption retained for the mean model.

5. ESTIMATING THE MEAN VALUES OF THE BASIC ALGEBRAIC MODEL PARAMETERS

USING THE EXPERIMENTAL DATA BASIS

The objective is to estimate (1) the values of ζR(ω), ζI(ω) and |ζ(ω)| and (2) the parameters

LR, λR, LI , λI and φ
I

of the mean algebraic model.

5.1 CONSTRUCTION OF A REPRESENTATION OF ζR(ω)

Since the experimental values of ζexp
R (x̃j, ω) in the 25 measured points x̃1, ..., x̃25, are close

together (that is coherent with the introduced homogeneity assumption), an estimation of

ζexp
R (ω) is given by ζexp

R (ω) = 1
25

∑25
j=1 ζR(x̃j , ω) which represents the experimental mean

value. The following algebraic model for ζR(ω) is proposed

ζR(ω) = ζR 0 + (ζR max − ζR 0)

( |ω|
ωR0

)γR

e
−aR

∣∣ |ω|
ωR0

−1
∣∣bR

, (‘ modele zetaR’)

in which the parameters ζR 0, ζR max, ωR0, γR, aR and bR are fitted in minimizing
∫
B
|ζexp

R (ω)−

ζexp
R (ω)|2 dω in which B is the frequency band of analysis. The result of this minimization

yields

ζR 0 = 1.678 × 106 Pa.s.m−3 , ζR max = 4.717 × 106 Pa.s.m−3 , ωR0 = 5303 rad.s−1 ,

γR = 2 , aR = 46 , bR = 2 .

The frequency band of analysis B is equal to [100,1600] Hz. Figure 10 displays the graph of

ζexp
R (ω) and ζR(ω) over the frequency band B. The comparison is good.

12
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5.2 CONSTRUCTION OF A REPRESENTATION OF ζI(ω)

Similarly to the real part case, an estimation of ζexp
I (ω) is returned as

ζexp
I (ω) =

1

25

25∑

j=1

ζI(x̃j, ω)

which represents the experimental mean value. The following algebraic model for ζI(ω) is

proposed

ζI(ω) =
aI

ω

(
bI ω

4 + cI ω
2 − 1 +

dI

(ω2 − ω2
I0)

2 + eI ω2

)
, (‘ modele zetaI’)

in which the parameters ωI0, aI , bI , cI , dI andt eI are fitted in minimizing
∫
B
|ζexp

I (ω) −

ζexp
I (ω)|2 dω. The result of this minimization yields

ωI0 = 4.86 103 rad.s−1 , aI = 4.7 109 , bI = 8 10−16 ,

cI = 1 10−25 , dI = 1.6 1014 , eI = 2.4 106 .

Figure 11 displays the graph of ζexp
I (ω) and ζI(ω) over the frequency band B. The comparison

is good.

5.3 CALCULATION OF THE MODULUS |ζ(ω)| AND EXPERIMENTAL COMPARISONS

Figure 12 shows the comparison of |ζexp(ω)| with |ζ(ω)| over the frequency band [100,1600]

Hz, the moduli |ζexp(ω)| and |ζ(ω)| being calculated using the fitted representation of ζR(ω)

and ζI(ω).
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5.4 CALCULATION OF THE PHASE AND EXPERIMENTAL COMPARISONS

Phase φI(ω) be the phase defined by

cos(φI(ω)) =
ζI(ω)

|ζ(ω)| , ψI(ω) ∈ [0, π] . (‘ =te normalisation et rhoi homog’)

The corresponding experimental value is such that cos(φexp
I (ω)) = ζexp

I (ω)/|ζexp(ω)|. Figure

13 shows the comparison of φexp
I (ω) with φI(ω) over the frequency band [100,1600] Hz. It

should be noted that in Eq. (‘ modele rhoI’), the mean value φ
I

of the phase is then defined

as the following constant independent of ω,

φ
I

=
1

|B|

∫

B

φI(ω) dω . (‘ def phiI’)

¿From the experimental data basis, one obtains φ
I

= 1.1697 rad.

5.5 FITTING THE MEAN ALGEBRAIC MODEL

Concerning the real part, the mean algebraic model for ρR is defined by

ρR(||x̃ − x̃′||) = e−||x̃−x̃′||/L
R cos (2 π ||x̃ − x̃′||/λR) , (‘ defrhoR moyen’)

in which η = ||x̃ − x̃′||. In a first step, the mean experimental function

ρexp
R

(η) =
1

|B|

∫

B

ρexp
R (η, ω) dω

is introduced. This function is then deduced from the experimental data basis for the different

distances η1, η2, ... relative to the driving and receiving points. In a second step, the values

LR and λR are calculated in minimizing
∑

j |ρR
(ηj) − ρexp

R
(ηj)|2.

One obtains

14
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LR = 0.0664 , λR = 0.0771 . (‘ valeurs LR lambdaR’)

Figure 14 shows the graphs of η 7→ ρexp
R

(η) and η 7→ ρ
R
(η). Figure 15 displays the graphs of

the functions ω 7→ ρexp
R (η, ω) for all the receiving points having the same distance η = 0.075 m

and the corresponding graph of the function ω 7→ ρ
R
(η). This figure shows that the frequency

averaging introduced is well adapted to the present case and justifies the frequency independent

parameters assumption. Concerning the imaginary part, the mean model for ρI is defined by

ρI(η) = e−η/L
I cos

(
2 π η/λI + φ

I

)
. (‘ modele rhoI moyen’)

Similarly, one introduces the mean experimental function

ρexp
I

(η) =
1

|B|

∫

B

ρexp
I (η, ω) dω

which is deduced from the experimental data basis for the different distances η1, η2, ... Then,

since φ
I

= 1.1697 rad, the values LI and λI of the mean algebraic model are calculated in

minimizing
∑

j |ρI
(ηj) − ρexp

I
(ηj)|2. One obtains

LI = 0.0603 , λI = 0.0660 . (‘ valeurs LI lambdaI’)

Figure 16 shows the graphs of η 7→ ρexp
I

(η) and η 7→ ρ
I
(η). Figure 17 displays the graphs of

the functions ω 7→ ρexp
I (η, ω) for all the receiving points having the same distance η = 0.075 m

and the corresponding graph of the function ω 7→ ρ
I
(η). Similarly for the real case, Figure 17

shows that the frequency averaging introduced is well adapted to the present case and justifies

the frequency independent parameters assumption.
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6 CONSTRUCTION OF A RANDOM MODEL FOR ρR(η) and ρI(η)

The model relative to the local impedance (diagonal terms of the impedance matrix) leads to a

good model fitting the experimental data. Concerning the off-diagonal terms of the impedance

matrix, which are a function of the distance between the different points of the multilayer

system, the deterministic model defined by Eqs. (22)-(23) yields a reasonable approximation

with a significant dispersion with respect to all experimental points. Then, a stochastic

approach is proposed in order to increase the robustness of the algebraic model in its capability

to represent all the experimental data. A detailed analysis has been carried out in order to

define the parameters of the basic algebraic model which have to be modelled by a random

variable. The retained model is the basic algebraic model in which ζR and |ζ| are modelled

by the mean values estimated in Sections 5.1 and 5.3, LR and LI are modelled by LR and

LI estimated in Section 5.5 and where λR, λI and φI are modelled by mutually independent

random variables ΛR, ΛI and ΦI respectively, independent of frequency ω. By construction,

the mean values of these three random variables are λR, λI and φ
I

estimated in Sections 5.4

and 5.5.

6.1 ESTIMATING THE PROBABILITY DISTRIBUTIONS OF THE RANDOM PARAMETERS

Random variables ΛR and ΛI are positive-valued random variables and ΦI is a random variable

with values in [0, 2 π]. The maximum entropy principle is used to construct the probability

distribution [17] for each random variable ΛR, ΛI or ΦI . Below, Λr denotes either ΛR or

ΛI . It is assumed that the probability distribution of the random variable Λr is defined

by a probability density function pΛr
(λ) with respect to dλ. For random variable Λr, the

available information is constituted of the mean value mr
1 = E{Λr} and of the second order

moment mr
2 = E{Λ2

r}. Consequently, the maximum entropy principle consists in maximizing

entropy S defined by S(pΛr
(λ)) = −

∫ + pΛr
(λ) ln(pΛr

(λ)) dλ with the constraints defined by

the available informations and written as

16
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∫ +

λl pΛr
(λ) dλ = mr

l , for l=0, 1, 2 . (‘ def moments’)

One then obtains

pΛr
(λ) = ! +(λ)Cr

0 e
−µr

1 λ−µr
2 λ2

, (‘ def proba r’)

in which Cr
0 > 0, µr

1 and µr
2 > 0 have to be chosen such that the constraints be satisfied.

One has mr
0 = 1. The moment mr

1 = λr has been calculated in Section 5. The second order

moment mr
2 is estimated using the experimental data basis and yields mR

2 = 0.006994 (resp.

mI
2 = 0.005107). Consequently, the standard deviation σΛr

=
√
mr

2 − λr
2 is σΛR

= 0.0324

(resp. σΛI
= 0.0274). One then has to solve the three algebraic equations defined by the three

contraints defined by Eq. (‘ def moments’) in which mr
0, m

r
1 and mr

2 are given and where the

unknowns are Cr
0 > 0, µr

1 and µr
2 > 0. This calculation yields

CR
0 = 0.926 > 0 , µR

1 = −67.377 , µR
2 = 442.809 > 0

CI
0 = 1.012 > 0 , µI

1 = −81.157 , µI
2 = 622.792 > 0 .(‘ valeur ecarttype et lambdarmoy’)

Using the same methodology for random variable ΦI , the probability density function pΦI
(φ)

is written as

pΦI
(φ) = ![0,2π](φ)Cφ

0 e
−µφ

1
φ−µφ

2
φ2

, (‘ def densite proba phi’)

in which Cφ
0 , µφ

1 and µφ
2 have to be such that

∫ 2 π

0

φl pΦI
(φ) dφ = mφ

l , l = 0, 1, 2 , (‘ def contrainte phiI’)

17
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and where mφ
0 = 1, mφ

1 = φ
I

has been calculated in Section 5 and where the second order

moment mφ
2 is estimated with the experimental data basis and yields mφ

2 = 1.5085. Conse-

quently, the standard deviation σΛφ
=

√
mφ

2 − φ
I

2 is 0.3745 rad. The calculation of Cφ
0 , µφ

1

and µφ
2 yields

Cφ
0 = 10.776 , µφ

1 = 11.124 , µφ
2 = −1.623 . (‘ valeur ecarttype et phiImoy’)

6.2 CONSTRUCTION OF THE PROBABILISTIC ALGEBRAIC MODEL FOR ρR(η)

¿From the basic algebraic model and from the hypotheses introduced at Section 4.2, the

real-valued random variable ρR(η) is defined by

ρR(η) = e−η/L
R cos (2 π η/ΛR) . (‘ modele rhoR moyen proba’)

For a fixed value η of the distance, the confidence region of ρR(η), corresponding to a given

probability level Pc, is defined by the upper envelope ρ+
R(η) and the lower envelope ρ−R(η) such

that

P{ρ−R(η) < ρR(η) < ρ+
R(η)} ≥ Pc . (‘ def domaine’)

The mean value and the second order moment of the random variable ρR(η) are such that

E{ρR(η)α} =

∫ +∞

0

pΛR
(λ) {e−η/L

R cos (2 π η/λ)}α dλ , α = 1, 2 , (‘ def Erho˙R variance0’)

and the variance is

18
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σ2
ρR

(η) = E{ρR(η)2} − (E{ρR(η)})2 . (‘ def Erho˙R variance’)

The upper envelope is constructed by using Tchebychev’s inequality which, for a real-valued

centered random variable X , is written as

P(|X | ≥ ǫ) ≤ E{|X |2}/ǫ2 . (‘ def Tcheb’)

One then has

P{|ρR(η) −E{ρR(η)}| ≥ ǫR(η)} ≤ E{|ρR(η) − E{ρR(η)}|2}/ǫ2R(η) . (‘ def Tcheb 2’)

Using Eq. (‘ def Erho˙R variance’) yields

P{|ρR(η) −E{ρR(η)}| ≥ ǫR(η)} ≤ σ2
ρR

(η)/ǫ2R(η) , (‘ def Tcheb 3’)

and consequently,

P{|ρR(η) − E{ρR(η)}| < ǫR(η)} ≥ Pc , (‘ def Tcheb 4’)

in which Pc = 1 − σ2
ρR

(η)/ǫ2R(η). The probability level Pc being fixed, one obtains ǫR(η) =

σρR
(η)/

√
1 − Pc. Equation (‘ def Tcheb 4’) is rewritten as

P{−ǫR(η) +E{ρR(η)} < ρR(η) < ǫR(η) + E{ρR(η)}} ≥ Pc . (‘ def Tcheb 5’)

Comparing Eq. (‘ def Tcheb 5’) with Eq. (‘ def domaine’) yields
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ρ+
R(η) = E{ρR(η)} + ǫR(η) , ρ−R(η) = E{ρR(η)} − ǫR(η) . (‘ def rhoR- 2’)

The confidence region corresponding to a probability level equal to 0.95 is shown in Figure 18.

In this figure, each vertical solid line is constituted of a set of dot symbols corresponding to the

experimental values for a same distance η. It should be noted that almost all the significant

experimental data are inside the confidence region (95 %).

6.3 CONSTRUCTION OF THE PROBABILISTIC ALGEBRAIC MODEL FOR ρI(η)

Using the approach defined in Section 6.2, the real-valued random variable ρI(η) is defined by

ρI(η) = e−η/L
I cos (2 π η/ΛI + ΦI) , (‘ modele rhoI moyen proba’)

which depends on the random variables ΛI and ΦI . The confidence region of ρI(η) is defined

by

P(ρ−I (η) < ρI(η) < ρ+
I (η)) ≥ Pc , (‘ def Tcheb I 1’)

in which the upper envelope is defined by ρ+
I (η) = E{ρI(η)}+ ǫI(η) and the lower envelope is

defined by ρ−I (η) = E{ρI(η)} − ǫI(η) with ǫI(η) = σρI
(η)/

√
1 − Pc. The mean value and the

second order moment of the random variable ρI(η) are defined by

E{ρI(η)
α} =

∫ +∞

0

∫ 2 π

0

pΛI
(λ) pΦI

(φ) {e−η/L
I×cos (2 π η/λ+ φ)}α dλ dφ , α = 1, 2 .(‘ def Erho˙I

The variance is such that σ2
ρI

(η) = E{ρI(η)
2} − (E{ρI(η)})2. The confidence region corre-

sponding to a probability level equal to 0.95 is shown in Figure 19. In this figure, each vertical
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solid line is constituted of a set of dot symbols corresponding to the experimental values for a

same distance η. Similarly for the probabilistic model ρR(η), it can be shown that almost all

the significant experimental data are inside the confidence region (95 %).

7. CONCLUSIONS

Soundproofing schemes including porous materials are difficult to model. The objective of

part I of this paper is to construct an equivalent acoustic impedance for a multilayer system

constituted of a three dimensional porous medium inserted between two thin plates. The

construction of a probabilistic algebraic model is based on the introduction of an adapted

algebraic model and on the use of an experimental data basis specifically carried out for this

research. The probabilistic algebraic model is constituted of the mean algebraic model and of

the probability distribution of the random model parameters. A minimum number of param-

eters in the model is used and the parameters are fitted using the experimental data basis.

The probability distributions are modelled by using the entropy maximum principle. This

work has been performed in order to construct an algebraic representation which synthesizes

a large experimental data basis over the medium and high frequency ranges, using a small

number of parameters for the algebraic model. The comparison between this model and the

experiments are good and consequently, this model can be considered as a synthesis of this

experimental data basis and will be reused for other researches.
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APPENDIX A : GEOMETRY AND MATERIALS PROPERTIES OF THE EXPERIMENTAL

MULTILAYER SYSTEM

The multilayer system is constituted of a porous medium and of two plates in alumini for

which their thicknesses are hP1
= 1 mm and hP2

= 3 mm. Table 1 summarizes the plate

parameters. The porous medium is a polyurethan foam saturated in air whose thickness H

is 100 mm. Table 2 summarizes the air parameters. The parameters of the porous medium,

introduced in the Biot theory applied in the acoustic problems and characterizing the solid

phase and the fluid-solid coupling, have been measured [12,18]. A summary of these results

is presented in Table 3.
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Fig. 1. Description of the experiment.

Fig. 2. Location of the 25 driving and receiving points in plate P1.
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Fig. 3. For plate P1, 25 driving points excited with a shaker and 25 receiving points measured

using laser velocimetry.

Fig. 4. For plate P2, 25 receiving points measured by accelerometers.
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1200 Hz as a function of indices i and j. The light grey pixels correspond to the higher values

and the dark grey pixels to the lower values.
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Fig. 10. Graphs of ζR(ω) (solid line) and of ζexp
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Fig. 12. Graphs of |ζ(ω)| (solid line) and of |ζexp(ω)| (cross symbols) over the frequency band

[100,1600] Hz.
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Fig. 13. Graphs of φI(ω) (solid line) and φexp
I (ω) (cross symbols) over the frequency

band[100,1600] Hz.

0 0.1 0.2 0.3 0.4

−0.8

−0.4

0

0.4

0.8

Distance (m)

Fig. 14. Graph of the function η 7→ ρ
R
(η) (solid line) with η = ||x̃ − x̃′|| and graph of its

envelope (dashed line). Graph of the function η 7→ ρexp
R

(η) (cross symbols).
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Fig. 15. Graphs of the function ω 7→ ρexp
R (η, ω) (dotted lines) and graph of the function

ω 7→ ρ
R
(η) (solid line) for η = 0.075 m.

0 0.1 0.2 0.3 0.4

−0.8

−0.4

0

0.4

0.8

Distance (m)

Fig. 16. Graph of the function η 7→ ρ
I
(η) (solid line) with η = ||x̃ − x̃′|| and graph of its

envelope (dashed line). Graph of the function η 7→ ρexp
I

(η) (cross symbols).
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Fig. 17. Graphs of the function ω 7→ ρexp
I (η, ω) (dotted lines) and graph of the function

ω 7→ ρ
I
(η) (solid line) for η = 0.075 m.
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Fig. 18. Confidence region of η 7→ ρ
R
(η). Upper envelope η 7→ ρ+

R
(η) (upper thick solid line).

Lower envelope η 7→ ρ−
R

(η) (lower thick solid line). Mean algebraic model η 7→ ρ
R
(η) (thin

solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of

these experimental data (circle symbols).
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Fig. 19. Confidence region of η 7→ ρ
I
(η). Upper envelope η 7→ ρ+

I
(η) (upper thick solid line).

Lower envelope η 7→ ρ−
I

(η) (lower thick solid line). Mean algebraic model η 7→ ρ
I
(η) (thin

solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of

these experimental data (circle symbols).
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Table 1

Physical parameters for plates P1 and P2.

Parameters Value

Young’s modulus EP = 7.4 × 1010 Pa

Poisson’s ratio νP = 0.33

Structural damping factor ηP = ω aP
1 (ω) = 10−4

Mass density ρP = 2800 kg m−3

Table 2

Physical parameters for air into the porous medium.

Parameters Value

Mass density ρf = 1.213 kg m−3

Adiabatic bulk modulus Ka = 1.42 × 105 Pa

Viscosity ηf = 1.84 × 10−5 kg m−1s−1

Prandtl number Pr = 0.71

Specific heats ratio γ = 1.4

Table 3

Solid phase parameters and fluid-solid coupling parameters for the porous medium.

Parameters Value

Mass density of the solid phase ρ1 = 34.2 kg m−3

Young’s modulus E = 110000 Pa

Transverse modulus G = 40741 Pa

Structural damping factor ηs = ω a1(ω) = 0.09

Poisson’s ratio ν = 0.35

Porosity Φ = 0.96

Tortuosity α = 1.27

Resistivity σ = 10867 N s m−4

Viscous characteristic length Λ = 96 µm

Thermal characteristic length Λ′ = 288 µm
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