Equivalent acoustic impedance model. Part 1: experiments and semi-physical model

B. Faverjon, Christian Soize

To cite this version:
TITLE:
EQUIVALENT ACOUSTIC IMPEDANCE MODEL: EXPERIMENTS AND SEMI-PHYSICAL MODEL. PART I

AUTHORS: B. FAVERJON and C. SOIZE

SHORT RUNNING HEADLINES: EXPERIMENTS AND SEMI-PHYSICAL IMPEDANCE MODEL

POSTAL ADDRESS:
Prof. C. Soize
Laboratoire de Mécanique
Université de Marne-La-Vallée
5 boulevard Descartes
77454 Marne-La-Vallée, Cedex 02
e-mail: soize@univ-mlv.fr
Telephone: 33 (0)1 60 95 77 91
Fax: 33 (0)1 60 95 77 99

Number of pages: 38
Number of tables: 3
Number of figures: 19
The context of this research is devoted to the construction of an equivalent acoustic impedance model for a soundproofing scheme constituted of a three-dimensional porous medium inserted between two thin plates. Part I of this paper presents the experiments performed and a probabilistic algebraic model of the wall acoustic impedance constructed using the experimental data basis for the medium and high frequency ranges. The probabilistic algebraic model is constructed by using the general mathematical properties of wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency, decreasing functions when frequency goes to infinity, behavior when frequency goes to zero and so on). The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis. Finally, this probabilistic algebraic model summarizes all the experimental data basis and consequently can be reused for the other researches.

1. INTRODUCTION

In the medium and high frequency ranges, the modelling of a multilayer system containing porous materials is very important for noise control in aircrafts, automobiles, buildings, etc. Difficulties occur in modelling such multilayer systems and in validating them with experimental data basis. Many works have already been published about experimental data bases concerning the acoustic transmission through multilayer systems or concerning the surface impedance of multilayer systems with a rigid wall [1-10]. Nevertheless, very little exists concerning experimental data basis for the equivalent acoustic impedance of multilayer systems with porous media and for the medium and high frequency ranges. Such experimental data bases are necessary to understand the physics of such systems and to validate analytical and numerical models in the medium and high frequency ranges. The main objective of the part I of this paper is to present an experimental data basis concerning the equivalent acoustic impedance of a multilayer system containing a porous medium and to propose a probabilistic model which allows the experimental data basis to be synthesized and consequently, to be reused by the community for other researches. In particular, this experimental data basis will be used in part II [11] of this paper which is devoted to the validation of an analytical model of such a multilayer system for the medium and high frequency ranges. The experimental multilayer system is constituted of a three-dimensional porous medium inserted between two thin
plates. At a given frequency, the equivalent acoustic impedance of such a multilayer system is the linear mapping between the pressure field applied to one plate and the jump of the normal velocities to each plate. Such an equivalent acoustic impedance can be introduced in the models allowing vibro-acoustic predictions of complex mechanical systems. An experimental data basis has specifically been constructed for this research [12] and corresponds to the experimental identification of the equivalent acoustic impedance in the frequency band [100,1600] Hz, the medium and high ranges corresponding to the frequency band [300,1600] Hz. Using this experimental data basis, a probabilistic algebraic model of the equivalent acoustic impedance of the multilayer system is constructed. This probabilistic model synthesizes all the experimental data basis through the use of a mean algebraic model and a random fluctuation model [13,14]. The number of parameters of this model (correlation lengths) is minimum. A good approximation of this experimental data basis is given by this model. Section 2 deals with the experiment. In Section 3, the construction of the basic algebraic model for the equivalent acoustic impedance is developed. Section 4 is devoted to the properties of the equivalent acoustic impedance which are deduced from the analysis of the experimental data basis. In Section 5, one presents the estimation of the mean values of the basic algebraic model parameters using the experimental data basis and finally, Section 6 deals with the construction of the random model.

2. DESCRIPTION OF AN EQUIVALENT ACOUSTIC IMPEDANCE EXPERIMENT

An experiment [12] was carried out in an anechoic room in order to measure the equivalent acoustic impedance of a multilayer system constituted of a three-dimensional porous medium inserted between two thin plates in aluminium, denoted as P_1 and P_2 (see Figure 1). The length and width of the multilayer system is 0.6 and 0.4 meter respectively. This multilayer system is fixed in a rigid baffle. The geometry and the material properties of the experimental multilayer system are described in Appendix A. The experimental analysis and the signal processing are performed in the frequency domain. The angular frequency is denoted by ω. Normal point forces to plate P_1 are successively applied to the $N = 25$ points M_1, \ldots, M_N.
defined in Figure 2. The normal velocities at these N driving points are measured using laser velocimetry (see Figure 3). Consequently, the N points M_1, \ldots, M_N in plate P_1 are driving and receiving points. In addition, the normal accelerations are measured at N points $\tilde{M}_1, \ldots, \tilde{M}_N$ in plate P_2 (see Figure 4) and then, the associated normal velocities are deduced on plate P_2. These N receiving points $\tilde{M}_1, \ldots, \tilde{M}_N$ in plate P_2 are in correspondence with the N points M_1, \ldots, M_N in plate P_1 which means that, for all $j = 1, \ldots, N$, point M_j and point \tilde{M}_j have the same coordinates x_1 and x_2 (but have a different coordinate x_3). This choice allows the jump of the normal velocities between the two sides of the multilayer system to be calculated. Let $F_{k}^{exp}(\omega)$ be the normal point force applied to point M_k belonging to the N driving points M_1, \ldots, M_N in plate P_1. Excitation $F_{k}^{exp}(\omega)$ induces the normal velocities $V_{P_1}^{exp}(\omega)$ and $V_{P_2}^{exp}(\omega)$ at receiving point M_j in plate P_1 and at corresponding receiving point \tilde{M}_j in plate P_2, respectively. Let $\Delta V^{exp}(\omega) = (\Delta V_{11}^{exp}(\omega), \ldots, \Delta V_{NN}^{exp}(\omega))$ with $\Delta V_{jk}^{exp}(\omega) = V_{jk}^{P_1,exp}(\omega) - V_{jk}^{P_2,exp}(\omega)$ be the jump of the normal velocities to the N couples of points (M_j, \tilde{M}_j). For each k fixed in $\{1, \ldots, 25\}$ and for 8192 values of ω in the frequency band of analysis $[30, 1600]$ Hz, the experimental measures allow the $(N \times N)$ complex matrix-valued frequency response function $[H^{exp}(\omega)]$ to be constructed for a linear filter whose inputs are the normal forces applied to N nodes of plate P_1 and whose outputs are the jump of the normal velocities at the N couples of points (M_j, \tilde{M}_j). Consequently, one has

\[
\Delta V^{\text{exp}}(\omega) = [H^{\text{exp}}(\omega)]F^{\text{exp}}(\omega) \quad \text{in which} \quad [H^{\text{exp}}(\omega)] = \begin{bmatrix}
\Delta V_{11}^{\text{exp}}(\omega) & \cdots & \Delta V_{1N}^{\text{exp}}(\omega) \\
\vdots & \ddots & \vdots \\
\Delta V_{N1}^{\text{exp}}(\omega) & \cdots & \Delta V_{NN}^{\text{exp}}(\omega)
\end{bmatrix}, \quad F^{\text{exp}}(\omega) = (F_1^{\text{exp}}(\omega), \ldots, F_N^{\text{exp}}(\omega)).
\]

Let $B = [100, 1600]$ Hz be the frequency band of analysis for which the experimental frequency response function $[H^{\text{exp}}(\omega)]$ is invertible. For ω in B, the experimental impedance $N \times N$ complex matrix $[Z^{\text{exp}}(\omega)]$ is then defined by

\[
[Z^{\text{exp}}(\omega)] = [H^{\text{exp}}(\omega)]^{-1}, \quad \forall \omega \in B.
\]
3. CONSTRUCTION OF THE BASIC ALGEBRAIC MODEL FOR AN EQUIVALENT ACOUSTIC IMPEDANCE

3.1 SETTING THE PROBLEM

The geometry of the multilayer system is shown in Figure 5. The interfaces between the porous medium and the plates P_1 and P_2 are denoted by Σ_1 and Σ_2. The theoretical model which is considered introduces an applied pressure field p acting on surface Σ_0. The reference-plane surface system of the multilayer system is denoted by S and coincides with surface Σ_1. The coordinates (x_1, x_2, x_3) of a point belonging to the porous medium are given in the cartesian system whose origin belongs to the reference-plane S. The x_3 coordinate of the coupling interface Σ_1 (or Σ_2) is 0 (or H) (in which H is the thickness of the porous medium). Below, $\tilde{x} = (x_1, x_2)$ denotes the point belonging to reference plane S. Let S_1 and S_2 be the mid-planes of the plates P_1 and P_2.

3.2 DEFINITION OF THE EQUIVALENT ACOUSTIC IMPEDANCE DENSITY FUNCTION

The experimental measures have been made in an anechoic room such that the effect of the coupling between the external air and the multilayer system can be considered as negligible compared to the effect of the viscous dissipation of the multilayer system. Let $v^{P_1}(\tilde{x}, \omega)$ and $v^{P_2}(\tilde{x}, \omega)$ be the normal velocities at the point M in plate P_1 and at the corresponding point \tilde{M} in plate P_2 such that the corresponding points M and \tilde{M} have the same coordinates $\tilde{x} = (x_1, x_2)$. For fixed ω, the equivalent acoustic impedance is the integral operator $Z(\omega)$ defined by a density function $z(\tilde{x}, \tilde{x}', \omega)$ with complex values such that

$$p(\tilde{x}, \omega) = \{Z(\omega) \left(v^{P_1}(., \omega) - v^{P_2}(., \omega) \right) \}(\tilde{x})$$

$$= \int_{\tilde{x}' \in S} z(\tilde{x}, \tilde{x}', \omega) \left(v^{P_1}(\tilde{x}', \omega) - v^{P_2}(\tilde{x}', \omega) \right) dS_{\tilde{x}'} ,$$

(\text{"rel op"})
in which \((\tilde{x}, \tilde{x}') \mapsto z(\tilde{x}, \tilde{x}', \omega)\) is called the equivalent acoustic impedance density function and where \(dS_{\tilde{x}'} = d\tilde{x}'_1 d\tilde{x}'_2\). It should be noted that the complex operator \(Z(\omega)\) is defined by the complex bilinear form

\[
< Z(\omega) u, v > = \int_S \int_S z(\tilde{x}, \tilde{x}', \omega) u(\tilde{x}') v(\tilde{x}) dS_{\tilde{x}} dS_{\tilde{x}'} .
\]

(‘\(\mathbb{Z}\) bilinéaire’)

It is assumed that the reciprocity principles can be applied. Therefore, the complex operator \(Z(\omega)\) is symmetric and consequently, \(z(\tilde{x}, \tilde{x}', \omega)\) satisfies the following symmetry property,

\[
z(\tilde{x}, \tilde{x}', \omega) = z(\tilde{x}', \tilde{x}, \omega) .
\]

(‘\(\mathbb{Z}\)pte sym znoyau’)

Moreover, the system considered being a physical system, we have the property that \(Z(-\omega) = \overline{Z(\omega)}\) which yields

\[
z(\tilde{x}, \tilde{x}', -\omega) = \overline{z(\tilde{x}, \tilde{x}', \omega)} ,
\]

(‘\(\mathbb{Z}\)pte conj znoyau’)

where \(\overline{a}\) denotes the conjugate of the complex number \(a\). Introducing the real and the imaginary parts of the equivalent acoustic impedance density function such that \(z(\tilde{x}, \tilde{x}', \omega) = z_R(\tilde{x}, \tilde{x}', \omega) + i z_I(\tilde{x}, \tilde{x}', \omega)\), from Eqs. (‘\(\mathbb{Z}\)pte sym znoyau’) and (‘\(\mathbb{Z}\)pte conj znoyau’), it can be deduced that

\[
z_R(\tilde{x}, \tilde{x}', \omega) = z_R(\tilde{x}', \tilde{x}, \omega) , \quad z_I(\tilde{x}, \tilde{x}', \omega) = z_I(\tilde{x}', \tilde{x}, \omega) ,
\]

(‘\(\mathbb{Z}\)pte sym znoyau RI’)

\[
z_R(\tilde{x}, \tilde{x}', -\omega) = z_R(\tilde{x}, \tilde{x}', \omega) , \quad z_I(\tilde{x}, \tilde{x}', -\omega) = -z_I(\tilde{x}, \tilde{x}', \omega) .
\]

(‘\(\mathbb{Z}\)pte conj znoyau RI’)

6
The correspondence between the continuous model defined by Eq. (3) and the discrete experimental model defined by Eq. (1) is obtained by discretizing Eq. (3) using the usual collocation method with the N points of the mesh.

3.3 LOCAL EQUIVALENT ACOUSTIC IMPEDANCE

The local equivalent acoustic impedance denoted by \(z_{\text{loc}} \) is defined by

\[
p(\tilde{x}, \omega) = z_{\text{loc}}(\tilde{x}, \omega) (v_{P_1}(\tilde{x}, \omega) - v_{P_2}(\tilde{x}, \omega)) , \quad \forall \tilde{x} \in S .
\]

Sometimes, such a local equivalent impedance \(z_{\text{loc}} \) is called the wall acoustic impedance [15,16]. From Eqs. \('\text{rel op}'\) and \('\text{forme Z avec F2}'\), it can be deduced that the local equivalent acoustic impedance can be written as

\[
z(\tilde{x}, \tilde{x}', \omega) = z_{\text{loc}}(\tilde{x}, \omega) \delta_0(\tilde{x} - \tilde{x}') ,
\]

in which, for all \(\tilde{x}' \) belonging to \(S \), \(\delta_0(\tilde{x} - \tilde{x}') \) is the Dirac function such as \(\int_S \phi(\tilde{x}) \delta_0(\tilde{x} - \tilde{x}') \, dS_{\tilde{x}} = \phi(\tilde{x}') \). It should be noted that \(z_{\text{loc}}(\tilde{x}, \omega) \) differs from \(z(\tilde{x}, \tilde{x}', \omega) \) by a surface element.

Introducing the real and the imaginary parts of the local equivalent acoustic impedance such that \(z_{\text{loc}}(\tilde{x}, \omega) = z_{\text{loc}}^R(\tilde{x}, \omega) + i z_{\text{loc}}^I(\tilde{x}, \omega) \), from Eq. \('\text{pte conj znoyau RI}'\), it can be deduced that

\[
z_{\text{loc}}^R(\tilde{x}, -\omega) = z_{\text{loc}}^R(\tilde{x}, \omega) , \quad z_{\text{loc}}^I(\tilde{x}, -\omega) = -z_{\text{loc}}^I(\tilde{x}, \omega) .
\]

For all \(\tilde{x} \) in \(S \), the local equivalent acoustic impedance has to satisfy the following properties (see [15])
\[z_{\text{loc}}^R(\tilde{x}, \omega) > 0 \quad \forall \omega \in \mathbb{R} , \]
\[-\omega z_{\text{loc}}^I(\tilde{x}, \omega) \geq 0 \quad \forall \omega \in [-\omega_0, \omega_0] \quad \text{in which} \quad \omega_0 > 0 , \]
\[\lim_{\omega \to 0} (-\omega z_{\text{loc}}^I(\tilde{x}, \omega)) = \alpha(\tilde{x}) \geq \alpha_{\text{min}} > 0 , \quad ('\text{ptes ZR et ZI2}') \]

in which \(\alpha_{\text{min}} \) is a given real positive constant and \(\tilde{x} \mapsto \alpha(\tilde{x}) \) is a positive-valued function defined on \(S \). Equation ('\text{ptes ZR et ZI2}') means that \(z_{\text{loc}}^I(\tilde{x}, \omega) \sim -\alpha(\tilde{x})/\omega \quad \text{if} \quad \omega \to 0 . \) For all \(\tilde{x} \) in \(S \), the function \(\omega \mapsto z_{\text{loc}}^R(\tilde{x}, \omega) \) is a continuous function and we have
\[\lim_{\omega \to 0} (\omega z_{\text{loc}}^R(\tilde{x}, \omega)) = 0 . \quad ('\text{ptes ZR et ZI5}') \]

From Eqs. ('\text{ptes ZR et ZI2}') and ('\text{ptes ZR et ZI5}'), one deduces that
\[z_{\text{loc}}(\tilde{x}, \omega) \neq 0 \quad \forall \tilde{x} \in S , \quad \forall \omega , \quad ('\text{ptes ZR et ZI6}') \]
\[\{i \omega z_{\text{loc}}(\tilde{x}, \omega)\}_{\omega=0} = \{-\omega z_{\text{loc}}^I(\tilde{x}, \omega)\}_{\omega=0} = \alpha(\tilde{x}) > 0 . \quad ('\text{ptes ZR et ZI7}') \]

The real part corresponds to the dissipative part of \(z_{\text{loc}}(\tilde{x}, \omega) \) (acoustic impedance resistance). The imaginary part corresponds to the conservative part of \(z_{\text{loc}}(\tilde{x}, \omega) \) (acoustic impedance reactance). Let \(\Delta w(\tilde{x}, \omega) = w^{P_1}(\tilde{x}, \omega) - w^{P_2}(\tilde{x}, \omega) \) be the difference between the normal displacements of the two plates and let be \(\Delta v(\tilde{x}, \omega) = v^{P_1}(\tilde{x}, \omega) - v^{P_2}(\tilde{x}, \omega) \). Therefore, on has \(\Delta v(\tilde{x}, \omega) = i \omega \Delta w(\tilde{x}, \omega) \). Equation ('\formule Z avec F2') yields
\[\hat{p}(\tilde{x}, \omega) = z_{\text{loc}}(\tilde{x}, \omega) \Delta v(\tilde{x}, \omega) \]
\[= [-\omega z_{\text{loc}}^I(\tilde{x}, \omega) + i \omega z_{\text{loc}}^R(\tilde{x}, \omega)] \Delta w(\tilde{x}, \omega) . \quad ('\text{eq zeta}') \]
Figure 6 displays a typical graph (see for instance [15]) for the functions $\omega \mapsto z_{\text{loc}}(\tilde{x}, \omega)$ and $\omega \mapsto z_{\text{loc}}^I(\tilde{x}, \omega)$.

3.4 MODEL FOR THE EQUIVALENT ACOUSTIC IMPEDANCE DENSITY FUNCTION

Let $\zeta(\tilde{x}, \omega)$ defined by $\zeta(\tilde{x}, \omega) = z(\tilde{x}, \tilde{x}, \omega)$, and let $\zeta_R(\tilde{x}, \omega)$ and $\zeta_I(\tilde{x}, \omega)$ be the real and the imaginary parts of $\zeta(\tilde{x}, \omega)$ such that $\zeta(\tilde{x}, \omega) = \zeta_R(\tilde{x}, \omega) + i\zeta_I(\tilde{x}, \omega)$. As explained in Section 3.3, $z_{\text{loc}}(\tilde{x}, \omega)$ differs from $\zeta(\tilde{x}, \omega)$ by a surface element. Since $z_{\text{loc}}^R(\tilde{x}, \omega) > 0$, one then deduces that $\zeta_R(\tilde{x}, \omega) > 0$. Let $\rho_R(\tilde{x}, \tilde{x}', \omega)$ be the function corresponding to the normalization of $z_R(\tilde{x}, \tilde{x}', \omega)$ and defined by

$$\rho_R(\tilde{x}, \tilde{x}', \omega) = \frac{z_R(\tilde{x}, \tilde{x}', \omega)}{\sqrt{\zeta_R(\tilde{x}, \omega)} \zeta_R(\tilde{x}', \omega)}.$$ \hspace{1cm} \text{('} \text{def rhoR z} \text{')}

For the imaginary part, there exists ω_0 such that $\zeta_I(\tilde{x}, \omega_0) = 0$, for all \tilde{x}. Consequently, the normalization of the imaginary part is defined by

$$\rho_I(\tilde{x}, \tilde{x}', \omega) = \frac{z_I(\tilde{x}, \tilde{x}', \omega)}{\sqrt{|\zeta(\tilde{x}, \omega)|} \zeta(\tilde{x}', \omega)}.$$ \hspace{1cm} \text{('} \text{def rhoI z} \text{')}

One then obtains

$$z(\tilde{x}, \tilde{x}', \omega) = \sqrt{|\zeta(\tilde{x}, \omega)|} \zeta(\tilde{x}', \omega) \left(\rho_R(\tilde{x}, \tilde{x}', \omega) \times \sqrt{\frac{\zeta_R(\tilde{x}, \omega)}{|\zeta(\tilde{x}, \omega)|}} \sqrt{\frac{\zeta_R(\tilde{x}', \omega)}{|\zeta(\tilde{x}', \omega)|}} + i \rho_I(\tilde{x}, \tilde{x}', \omega) \right).$$ \hspace{1cm} \text{('} \text{def z rho} \text{')}

4 PROPERTIES OF THE EQUIVALENT ACOUSTIC IMPEDANCE DEDUCED FROM THE EXPERIMENTAL ANALYSIS

4.1 EXPERIMENTAL ANALYSIS
Figure 7 displays the graph of $\omega \mapsto tr\{H^{exp}(\omega) H^{exp}(\omega)^{\ast}\}$ with respect to the frequency and shows that frequencies below 300 Hz belongs to the low frequency range (the modal domain), and frequencies above 300 Hz belongs to the medium and high frequency ranges for which the proposed algebraic model is constructed. When frequency increases, the experimental equivalent acoustic impedance tends to be a diagonal matrix. For instance, at frequency 100 Hz, Figure 8 shows that the impedance matrix is not diagonal at all. Such a matrix corresponds to an equivalent acoustic impedance which is not local in space (see Figure 9). In opposite, at frequency 1200 Hz, this impedance matrix is a quasi-diagonal matrix which means that the equivalent acoustic impedance is almost local in space. The detailed analysis of the experimental data basis shows that the upper bound of the frequency for which the equivalent acoustic impedance is non local in space is about 300 Hz (this is also the lower bound for which the impedance is almost local in space). An additional detailed analysis of the experimental data basis [13] shows that the experimental equivalent acoustic impedance can be considered as homogeneous and isotropic with respect to the coordinates x_1 and x_2 for frequencies greater than 300 Hz. This kind of analysis is too long and cannot be developed here. It should be noted that at high frequencies, Figure 9 shows that the structure of the impedance matrix is quasi-diagonal which is coherent with the physical point of view. Some small differences appear especially around the points 1 and 25 which are the most far away from each other relative to the symmetric point 13. These minor differences (not greater than $5 - 8 \, Pa.m^{-1}s$) are certainly due to experimental errors (especially, one reason could be that the experimental lateral boundary conditions could induce some differences from one lateral side to another one).

4.2 BASIC ALGEBRAIC MODEL

For frequencies greater than 300 Hz, the equivalent acoustic impedance density function is then considered as homogeneous and isotropic. Therefore, the density function $z(\tilde{x}, \tilde{x}', \omega)$ depends only on $||\tilde{x} - \tilde{x}'||$ and is then rewritten as $z(||\tilde{x} - \tilde{x}'||, \omega)$. Consequently, $\zeta(\tilde{x}, \omega)$ does not depend on \tilde{x} and is rewritten as
\[\zeta(\tilde{x}, \omega) = \zeta(\omega), \quad \zeta(\omega) = \zeta_R(\omega) + i \zeta_I(\omega). \]

Equation (‘\text{def zeta sans x}’) is then rewritten as

\[z(||\tilde{x} - \tilde{x}'||, \omega) = |\zeta(\omega)||\left(\frac{\zeta_R(\omega)}{\zeta(\omega)} + i \frac{\zeta_I(\omega)}{\zeta(\omega)}\right). \] (‘\text{def z rho 2}')

The following algebraic models for the functions \(\rho_R(||\tilde{x} - \tilde{x}'||, \omega) \) and \(\rho_I(||\tilde{x} - \tilde{x}'||, \omega) \) are proposed

\[\rho_R(||\tilde{x} - \tilde{x}'||, \omega) = e^{-||\tilde{x} - \tilde{x}'||/L_R(\omega)} \cos \left(2\pi \frac{||\tilde{x} - \tilde{x}'||}{\lambda_R(\omega)}\right), \quad \] (‘\text{modele rhoR}’)

\[\rho_I(||\tilde{x} - \tilde{x}'||, \omega) = e^{-||\tilde{x} - \tilde{x}'||/L_I(\omega)} \cos \left(2\pi \frac{||\tilde{x} - \tilde{x}'||}{\lambda_I(\omega)} + \phi_I(\omega)\right). \] (‘\text{modele rhoI}’)

These algebraic models result from an analysis of the experimental data basis [13]. It should be noted that the model of the real part depends on the parameter \(L_R(\omega) \) which is the length scale controlling the exponential decreasing of the amplitude and on the parameter \(\lambda_R(\omega) \) controlling the wavelength of the oscillations. The model of the imaginary part depends on similar parameters \(L_I(\omega) \) and \(\lambda_I(\omega) \) and on an additional parameter \(\phi_I(\omega) \) corresponding to a phase.

Equations (‘\text{def z rho 2}’) to (‘\text{modele rhoI}’) constitute the underlying algebraic model for the construction of the mean model and the random model of the equivalent acoustic impedance.

It should be noted that the parameters \(L_R, \lambda_R, L_I, \lambda_I \) and \(\phi_I \) have been chosen as a function of \(\omega \), and consequently, \(\rho_R(||\tilde{x} - \tilde{x}'||, \omega) \) and \(\rho_I(||\tilde{x} - \tilde{x}'||, \omega) \) defined by Eqs. (‘\text{modele rhoR}’) and (‘\text{modele rhoI}’) dependent on \(\omega \). Nevertheless, one will see in the next sections that the values of these parameters will be chosen as quantities independent of \(\omega \). This assumption results from a compromise between the simplicity of the model and its capability to represent the experimental data basis. A more sophisticated mean algebraic model could be introduced.
in choosing these parameters as a function of the frequency. Such a solution has been studied in [13] and the gain obtained is not significant with respect to the frequency independent assumption retained for the mean model.

5. ESTIMATING THE MEAN VALUES OF THE BASIC ALGEBRAIC MODEL PARAMETERS USING THE EXPERIMENTAL DATA BASIS

The objective is to estimate (1) the values of \(\zeta_R(\omega) \), \(\zeta_I(\omega) \) and \(|\zeta(\omega)|\) and (2) the parameters \(L_R, \lambda_R, L_I, \lambda_I \) and \(\phi_I \) of the mean algebraic model.

5.1 CONSTRUCTION OF A REPRESENTATION OF \(\zeta_R(\omega) \)

Since the experimental values of \(\zeta_{R,\text{exp}}(\tilde{x}_j, \omega) \) in the 25 measured points \(\tilde{x}_1, \ldots, \tilde{x}_{25} \), are close together (that is coherent with the introduced homogeneity assumption), an estimation of \(\zeta_{R,\text{exp}}(\omega) \) is given by

\[
\zeta_{R,\text{exp}}(\omega) = \frac{1}{25} \sum_{j=1}^{25} \zeta_{R}(\tilde{x}_j, \omega)
\]

which represents the experimental mean value. The following algebraic model for \(\zeta_R(\omega) \) is proposed

\[
\zeta_R(\omega) = \zeta_{R,0} + (\zeta_{R,\text{max}} - \zeta_{R,0}) \left(\frac{|\omega|}{\omega_{R,0}} \right)^{\gamma_R} e^{-a_R \left| \frac{|\omega|}{\omega_{R,0}} - 1 \right|^{b_R}},
\]

(\#modele \(\zeta_{R} \)) in which the parameters \(\zeta_{R,0} \), \(\zeta_{R,\text{max}} \), \(\omega_{R,0} \), \(\gamma_R \), \(a_R \) and \(b_R \) are fitted in minimizing \(\int_B |\zeta_{R,\text{exp}}(\omega) - \zeta_{R}(\omega)|^2 \, d\omega \) in which \(B \) is the frequency band of analysis. The result of this minimization yields

\[
\zeta_{R,0} = 1.678 \times 10^6 \text{ Pa.s.m}^{-3}, \quad \zeta_{R,\text{max}} = 4.717 \times 10^6 \text{ Pa.s.m}^{-3}, \quad \omega_{R,0} = 5303 \text{ rad.s}^{-1},
\]

\[
\gamma_R = 2, \quad a_R = 46, \quad b_R = 2.
\]

The frequency band of analysis \(B \) is equal to [100,1600] Hz. Figure 10 displays the graph of \(\zeta_{R,\text{exp}}(\omega) \) and \(\zeta_R(\omega) \) over the frequency band \(B \). The comparison is good.
5.2 CONSTRUCTION OF A REPRESENTATION OF $\zeta_I(\omega)$

Similarly to the real part case, an estimation of $\zeta_{I}^{exp}(\omega)$ is returned as

$$\zeta_{I}^{exp}(\omega) = \frac{1}{25} \sum_{j=1}^{25} \zeta_I(\bar{x}_j, \omega)$$

which represents the experimental mean value. The following algebraic model for $\zeta_I(\omega)$ is proposed

$$\zeta_I(\omega) = \frac{a_I}{\omega} \left(b_I \omega^4 + c_I \omega^2 - 1 + \frac{d_I}{(\omega^2 - \omega_{I0}^2)^2 + e_I \omega^2} \right), \quad (\text{\`modele zetaI}')$$

in which the parameters ω_{I0}, a_I, b_I, c_I, d_I and e_I are fitted in minimizing $\int_\mathcal{B} |\zeta_{I}^{exp}(\omega) - \zeta_{I}^{exp}(\omega)|^2 d\omega$. The result of this minimization yields

$$\omega_{I0} = 4.86 \times 10^3 \text{ rad.s}^{-1}, \quad a_I = 4.7 \times 10^9, \quad b_I = 8 \times 10^{-16}, \quad c_I = 1 \times 10^{-25}, \quad d_I = 1.6 \times 10^{14}, \quad e_I = 2.4 \times 10^6.$$

Figure 11 displays the graph of $\zeta_{I}^{exp}(\omega)$ and $\zeta_I(\omega)$ over the frequency band \mathcal{B}. The comparison is good.

5.3 CALCULATION OF THE MODULUS $|\zeta(\omega)|$ AND EXPERIMENTAL COMPARISONS

Figure 12 shows the comparison of $|\zeta_{I}^{exp}(\omega)|$ with $|\zeta(\omega)|$ over the frequency band $[100,1600]$ Hz, the moduli $|\zeta_{I}^{exp}(\omega)|$ and $|\zeta(\omega)|$ being calculated using the fitted representation of $\zeta_R(\omega)$ and $\zeta_I(\omega)$.
5.4 CALCULATION OF THE PHASE AND EXPERIMENTAL COMPARISONS

Phase $\phi_I(\omega)$ be the phase defined by

$$\cos(\phi_I(\omega)) = \frac{\zeta_I(\omega)}{|\zeta(\omega)|}, \quad \psi_I(\omega) \in [0, \pi].$$

(The normalisation and rho homog)

The corresponding experimental value is such that $\cos(\phi_I^{\text{exp}}(\omega)) = \frac{\zeta^{\text{exp}}_I(\omega)}{|\zeta^{\text{exp}}(\omega)|}$. Figure 13 shows the comparison of $\phi_I^{\text{exp}}(\omega)$ with $\phi_I(\omega)$ over the frequency band $[100,1600]$ Hz. It should be noted that in Eq. ("modele rhoI’), the mean value $\bar{\phi}_I$ of the phase is then defined as the following constant independent of ω,

$$\bar{\phi}_I = \frac{1}{|B|} \int_B \phi_I(\omega) \, d\omega.$$

("def phiI")

From the experimental data basis, one obtains $\bar{\phi}_I = 1.1697$ rad.

5.5 FITTING THE MEAN ALGEBRAIC MODEL

Concerning the real part, the mean algebraic model for ρ_R is defined by

$$\rho_R(||\tilde{x} - \tilde{x}'||) = e^{-||\tilde{x} - \tilde{x}'||/L_R} \cos \left(2 \pi \frac{||\tilde{x} - \tilde{x}'||}{\Lambda_R} \right),$$

("defrhoR moyen")

in which $\eta = ||\tilde{x} - \tilde{x}'||$. In a first step, the mean experimental function

$$L_R^{\text{exp}}(\eta) = \frac{1}{|B|} \int_B \rho_R^{\text{exp}}(\eta, \omega) \, d\omega$$

is introduced. This function is then deduced from the experimental data basis for the different distances η_1, η_2, \ldots relative to the driving and receiving points. In a second step, the values L_R and Λ_R are calculated in minimizing $\sum_j |L_R(\eta_j) - L_R^{\text{exp}}(\eta_j)|^2$.

One obtains
\[\lambda_R = 0.0664, \quad \Delta_R = 0.0771. \]

(‘\(\text{valeurs LR lambdaR}\)’)

Figure 14 shows the graphs of \(\eta \mapsto \rho_{\text{exp}}^R(\eta)\) and \(\eta \mapsto \rho_R(\eta)\). Figure 15 displays the graphs of the functions \(\omega \mapsto \rho_{\text{exp}}^R(\eta, \omega)\) for all the receiving points having the same distance \(\eta = 0.075\) m and the corresponding graph of the function \(\omega \mapsto \rho_{\text{r}}(\eta)\). This figure shows that the frequency averaging introduced is well adapted to the present case and justifies the frequency independent parameters assumption. Concerning the imaginary part, the mean model for \(\rho_I\) is defined by

\[\rho_I(\eta) = e^{-\eta/L_I} \cos \left(\frac{2 \pi \eta}{\lambda_I} + \phi_I \right). \]

(‘\(\text{modele rhoI moyen}\)’)

Similarly, one introduces the mean experimental function

\[\bar{\rho}_{\text{exp}}^I(\eta) = \frac{1}{|B|} \int_B \rho_{\text{exp}}^I(\eta, \omega) d\omega \]

which is deduced from the experimental data basis for the different distances \(\eta_1, \eta_2, \ldots\). Then, since \(\phi_I = 1.1697\) rad, the values \(L_I\) and \(\lambda_I\) of the mean algebraic model are calculated in minimizing \(\sum_j |\rho_I(\eta_j) - \bar{\rho}_{\text{exp}}^I(\eta_j)|^2\). One obtains

\[L_I = 0.0603, \quad \lambda_I = 0.0660. \]

(‘\(\text{valeurs LI lambdaI}\)’)

Figure 16 shows the graphs of \(\eta \mapsto \rho_{\text{exp}}^I(\eta)\) and \(\eta \mapsto \rho_I(\eta)\). Figure 17 displays the graphs of the functions \(\omega \mapsto \rho_{\text{exp}}^I(\eta, \omega)\) for all the receiving points having the same distance \(\eta = 0.075\) m and the corresponding graph of the function \(\omega \mapsto \rho_I(\eta)\). Similarly for the real case, Figure 17 shows that the frequency averaging introduced is well adapted to the present case and justifies the frequency independent parameters assumption.
6 CONSTRUCTION OF A RANDOM MODEL FOR $\rho_R(\eta)$ and $\rho_I(\eta)$

The model relative to the local impedance (diagonal terms of the impedance matrix) leads to a good model fitting the experimental data. Concerning the off-diagonal terms of the impedance matrix, which are a function of the distance between the different points of the multilayer system, the deterministic model defined by Eqs. (22)-(23) yields a reasonable approximation with a significant dispersion with respect to all experimental points. Then, a stochastic approach is proposed in order to increase the robustness of the algebraic model in its capability to represent all the experimental data. A detailed analysis has been carried out in order to define the parameters of the basic algebraic model which have to be modelled by a random variable. The retained model is the basic algebraic model in which ζ_R and $|\zeta|$ are modelled by the mean values estimated in Sections 5.1 and 5.3, L_R and L_I are modelled by \underline{L}_R and \underline{L}_I estimated in Section 5.5 and where λ_R, λ_I and ϕ_I are modelled by mutually independent random variables Λ_R, Λ_I and Φ_I respectively, independent of frequency ω. By construction, the mean values of these three random variables are $\overline{\lambda}_R$, $\overline{\lambda}_I$ and $\overline{\phi}_I$ estimated in Sections 5.4 and 5.5.

6.1 ESTIMATING THE PROBABILITY DISTRIBUTIONS OF THE RANDOM PARAMETERS

Random variables Λ_R and Λ_I are positive-valued random variables and Φ_I is a random variable with values in $[0, 2\pi]$. The maximum entropy principle is used to construct the probability distribution [17] for each random variable Λ_R, Λ_I or Φ_I. Below, Λ_r denotes either Λ_R or Λ_I. It is assumed that the probability distribution of the random variable Λ_r is defined by a probability density function $p_{\Lambda_r}(\lambda)$ with respect to $d\lambda$. For random variable Λ_r, the available information is constituted of the mean value $m_1 = E\{\Lambda_r\}$ and of the second order moment $m_2 = E\{\Lambda_r^2\}$. Consequently, the maximum entropy principle consists in maximizing entropy S defined by $S(p_{\Lambda_r}(\lambda)) = - \int_{\mathbb{R}^+} p_{\Lambda_r}(\lambda) \ln(p_{\Lambda_r}(\lambda)) d\lambda$ with the constraints defined by the available informations and written as
\[
\int_{\mathbb{R}^+} \lambda^l p_{\lambda^+}(\lambda) d\lambda = m^r_l , \quad \text{for } l=0,1,2 .
\] (\text{"def moments"})

One then obtains

\[
p_{\lambda^+}(\lambda) = 1_{\mathbb{R}^+}(\lambda) C^r_0 e^{-\mu^r_1 \lambda - \mu^r_2 \lambda^2} ,
\] (\text{"def proba \(\lambda^+ \)})

in which \(C^r_0 > 0 \), \(\mu^r_1 \) and \(\mu^r_2 > 0 \) have to be chosen such that the constraints be satisfied.

One has \(m^r_0 = 1 \). The moment \(m^r_1 = \lambda_\text{r} \) has been calculated in Section 5. The second order moment \(m^r_2 \) is estimated using the experimental data basis and yields \(m^R_2 = 0.006994 \) (resp. \(m^L_2 = 0.005107 \)). Consequently, the standard deviation \(\sigma_{\lambda^+} = \sqrt{m^R_2 - \lambda^r_\text{r}^2} \) is \(\sigma_{\lambda^+} = 0.0324 \) (resp. \(\sigma_{\lambda^+} = 0.0274 \)). One then has to solve the three algebraic equations defined by the three constraints defined by Eq. \(\text{\text{"def moments"}} \) in which \(m^r_0 \), \(m^r_1 \) and \(m^r_2 \) are given and where the unknowns are \(C^r_0 > 0 \), \(\mu^r_1 \) and \(\mu^r_2 > 0 \). This calculation yields

\[
C^R_0 = 0.926 > 0 \quad , \quad \mu^R_1 = -67.377 \quad , \quad \mu^R_2 = 442.809 > 0
\]
\[
C^L_0 = 1.012 > 0 \quad , \quad \mu^L_1 = -81.157 \quad , \quad \mu^L_2 = 622.792 > 0 .
\] (\text{"valeur ecarttype et lambdarmoy"})

Using the same methodology for random variable \(\Phi_I \), the probability density function \(p_{\Phi_I}(\phi) \) is written as

\[
p_{\Phi_I}(\phi) = 1_{[0,2\pi]}(\phi) C^\phi_0 e^{-\mu^\phi_1 \phi - \mu^\phi_2 \phi^2} ,
\] (\text{"def densite proba \(\phi \)})

in which \(C^\phi_0 \), \(\mu^\phi_1 \) and \(\mu^\phi_2 > 0 \) have to be such that

\[
\int_0^{2\pi} \phi^l p_{\Phi_I}(\phi) d\phi = m^\phi_l , \quad l = 0,1,2 ,
\] (\text{"def contrainte \(\phi \)"})
and where \(m_0^\phi = 1, m_1^\phi = \phi_i \) has been calculated in Section 5 and where the second order moment \(m_2^\phi \) is estimated with the experimental data basis and yields \(m_2^\phi = 1.5085 \). Consequently, the standard deviation \(\sigma_{\Lambda_\phi} = \sqrt{m_2^\phi - \phi_i^2} \) is 0.3745 rad. The calculation of \(C_0^\phi, \mu_1^\phi \) and \(\mu_2^\phi \) yields

\[
C_0^\phi = 10.776, \quad \mu_1^\phi = 11.124, \quad \mu_2^\phi = -1.623.
\]

(‘valeur ecarttype et phiImoy’)

6.2 CONSTRUCTION OF THE PROBABILISTIC ALGEBRAIC MODEL FOR \(\rho_R(\eta) \)

From the basic algebraic model and from the hypotheses introduced at Section 4.2, the real-valued random variable \(\rho_R(\eta) \) is defined by

\[
\rho_R(\eta) = e^{-\eta/L_R} \cos \left(2\pi \eta/\Lambda_R \right).
\]

(‘modele rhoR moyen proba’)

For a fixed value \(\eta \) of the distance, the confidence region of \(\rho_R(\eta) \), corresponding to a given probability level \(P_c \), is defined by the upper envelope \(\rho_R^+(\eta) \) and the lower envelope \(\rho_R^-\eta) \) such that

\[
P\{\rho_R^-\eta) \leq \rho_R(\eta) \leq \rho_R^+(\eta)\} \geq P_c.
\]

(‘def domaine’)

The mean value and the second order moment of the random variable \(\rho_R(\eta) \) are such that

\[
E\{\rho_R(\eta)^\alpha\} = \int_0^{+\infty} p_{\Lambda_R}(\lambda) \left\{ e^{-\eta/L_R} \cos \left(2\pi \eta/\lambda \right) \right\}^\alpha d\lambda, \quad \alpha = 1, 2, \quad (\text{‘def Erho'R variance0')}
\]

and the variance is

18
\[
\sigma_{\rho R}^2(\eta) = E\{\rho_R(\eta)^2\} - (E\{\rho_R(\eta)\})^2.
\] (‘\%'def Erho\'R variance)

The upper envelope is constructed by using Tchebychev’s inequality which, for a real-valued centered random variable \(X\), is written as

\[
P(|X| \geq \epsilon) \leq \frac{E\{|X|^2\}}{\epsilon^2}.
\] (‘\%'def Tcheb)

One then has

\[
P\{|\rho_R(\eta) - E\{\rho_R(\eta)\}| \geq \epsilon_R(\eta)\} \leq \frac{E\{|\rho_R(\eta) - E\{\rho_R(\eta)\}|^2\}}{\epsilon_R^2(\eta)}.
\] (‘\%'def Tcheb 2)

Using Eq. (‘\%'def Erho\'R variance) yields

\[
P\{|\rho_R(\eta) - E\{\rho_R(\eta)\}| \geq \epsilon_R(\eta)\} \leq \frac{\sigma_{\rho R}^2(\eta)}{\epsilon_R^2(\eta)}.
\] (‘\%'def Tcheb 3)

and consequently,

\[
P\{|\rho_R(\eta) - E\{\rho_R(\eta)\}| < \epsilon_R(\eta)\} \geq P_c,
\] (‘\%'def Tcheb 4)

in which \(P_c = 1 - \sigma_{\rho R}^2(\eta)/\epsilon_R^2(\eta)\). The probability level \(P_c\) being fixed, one obtains \(\epsilon_R(\eta) = \sigma_{\rho R}(\eta)/\sqrt{1-P_c}\). Equation (‘\%'def Tcheb 4) is rewritten as

\[
P\{-\epsilon_R(\eta) + E\{\rho_R(\eta)\} < \rho_R(\eta) < \epsilon_R(\eta) + E\{\rho_R(\eta)\}\} \geq P_c.
\] (‘\%'def Tcheb 5)

Comparing Eq. (‘\%'def Tcheb 5) with Eq. (‘\%'def domaine) yields
\[\rho^+_R(\eta) = E\{\rho_R(\eta)\} + \epsilon_R(\eta) \quad , \quad \rho^-_R(\eta) = E\{\rho_R(\eta)\} - \epsilon_R(\eta) . \quad (\text{"def rhoR- 2")} \]

The confidence region corresponding to a probability level equal to 0.95 is shown in Figure 18. In this figure, each vertical solid line is constituted of a set of dot symbols corresponding to the experimental values for a same distance \(\eta \). It should be noted that almost all the significant experimental data are inside the confidence region (95%).

6.3 CONSTRUCTION OF THE PROBABILISTIC ALGEBRAIC MODEL FOR \(\rho_I(\eta) \)

Using the approach defined in Section 6.2, the real-valued random variable \(\rho_I(\eta) \) is defined by

\[\rho_I(\eta) = e^{-\eta/L_I} \cos\left(2\pi \eta/\Lambda_I + \Phi_I\right) , \quad (\text{"modele rhoI moyen proba")} \]

which depends on the random variables \(\Lambda_I \) and \(\Phi_I \). The confidence region of \(\rho_I(\eta) \) is defined by

\[\mathcal{P}(\rho^-_I(\eta) < \rho_I(\eta) < \rho^+_I(\eta)) \geq P_c , \quad (\text{"def Tcheb I 1")} \]

in which the upper envelope is defined by \(\rho^+_I(\eta) = E\{\rho_I(\eta)\} + \epsilon_I(\eta) \) and the lower envelope is defined by \(\rho^-_I(\eta) = E\{\rho_I(\eta)\} - \epsilon_I(\eta) \) with \(\epsilon_I(\eta) = \sigma_{\rho_I}(\eta)/\sqrt{1-P_c} \). The mean value and the second order moment of the random variable \(\rho_I(\eta) \) are defined by

\[E\{\rho_I(\eta)^\alpha\} = \int_0^{+\infty} \int_0^{2\pi} p_{\Lambda_I}(\lambda) p_{\Phi_I}(\phi) \left\{e^{-\eta/L_I} \times \cos\left(2\pi \eta/\lambda + \phi\right)\right\}^\alpha d\lambda d\phi , \quad \alpha = 1, 2 . \quad (\text{"def ErhoI")} \]

The variance is such that \(\sigma^2_{\rho_I}(\eta) = E\{\rho_I(\eta)^2\} - (E\{\rho_I(\eta)\})^2 \). The confidence region corresponding to a probability level equal to 0.95 is shown in Figure 19. In this figure, each vertical
solid line is constituted of a set of dot symbols corresponding to the experimental values for a same distance η. Similarly for the probabilistic model $\rho_R(\eta)$, it can be shown that almost all the significant experimental data are inside the confidence region (95%).

7. CONCLUSIONS

Soundproofing schemes including porous materials are difficult to model. The objective of part I of this paper is to construct an equivalent acoustic impedance for a multilayer system constituted of a three dimensional porous medium inserted between two thin plates. The construction of a probabilistic algebraic model is based on the introduction of an adapted algebraic model and on the use of an experimental data basis specifically carried out for this research. The probabilistic algebraic model is constituted of the mean algebraic model and of the probability distribution of the random model parameters. A minimum number of parameters in the model is used and the parameters are fitted using the experimental data basis. The probability distributions are modelled by using the entropy maximum principle. This work has been performed in order to construct an algebraic representation which synthesizes a large experimental data basis over the medium and high frequency ranges, using a small number of parameters for the algebraic model. The comparison between this model and the experiments are good and consequently, this model can be considered as a synthesis of this experimental data basis and will be reused for other researches.

ACKNOWLEDGMENTS

The authors would like to thank ONERA which supports this research.
REFERENCES

APPENDIX A : GEOMETRY AND MATERIALS PROPERTIES OF THE EXPERIMENTAL MULTILAYER SYSTEM

The multilayer system is constituted of a porous medium and of two plates in alumini for which their thicknesses are $h_{P_1} = 1$ mm and $h_{P_2} = 3$ mm. Table 1 summarizes the plate parameters. The porous medium is a polyurethan foam saturated in air whose thickness H is 100 mm. Table 2 summarizes the air parameters. The parameters of the porous medium, introduced in the Biot theory applied in the acoustic problems and characterizing the solid phase and the fluid-solid coupling, have been measured [12,18]. A summary of these results is presented in Table 3.
LIST OF FIGURES

Figure 1 : Description of the experiment .. 28
Figure 2 : Location of the 25 driving and receiving points in plate P_1 28
Figure 3 : For plate P_1, 25 driving points excited with a shaker and 25 receiving points measured using laser velocimetry .. 29
Figure 4 : For plate P_2, 25 receiving points measured by accelerometers 29
Figure 5 : Geometry of the multilayer system ... 30
Figure 6 : Acoustic impedance resistance z_{R}^{loc} (solid line) and acoustic impedance reactance z_{I}^{loc} (dashed line) for a local equivalent acoustic impedance z^{loc} as a function of frequency ω. 30
Figure 7 : Graph of $\omega \mapsto \text{tr}\{H^{exp}(\omega)H^{exp}(\omega)^*\}$ with respect to the frequency 31
Figure 8 : Real part of the experimental impedance matrix $[Z^{exp}(2\pi \nu)]_{ij}$ at frequency $\nu = 100 \text{ Hz}$ as a function of indices i and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values .. 31
Figure 9 : Real part of the experimental impedance matrix $[Z^{exp}(2\pi \nu)]_{ij}$ at frequency $\nu = 1200 \text{ Hz}$ as a function of indices i and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values ... 32
Figure 10 : Graphs of $\zeta_R(\omega)$ (solid line) and of $\zeta_R^{exp}(\omega)$ (cross symbols) over the frequency band $[100,1600] \text{ Hz}$... 32
Figure 11 : Graphs of $\zeta_I(\omega)$ (solid line) and of $\zeta_I^{exp}(\omega)$ (cross symbols) over the frequency band $[100,1600] \text{ Hz}$... 33
Figure 12 : Graphs of $|\zeta(\omega)|$ (solid line) and of $|\zeta^{exp}(\omega)|$ (cross symbols) over the frequency band $[100,1600] \text{ Hz}$... 33
Figure 13 : Graphs of $\phi_I(\omega)$ (solid line) and $\phi_I^{exp}(\omega)$ (cross symbols) over the frequency band $[100,1600] \text{ Hz}$... 34
Figure 14: Graph of the function $\eta \mapsto \rho_R(\eta)$ (solid line) with $\eta = ||\tilde{x} - \tilde{x}'||$ and graph of its envelope (dashed line). Graph of the function $\eta \mapsto \rho_{\text{EXP}}(\eta)$ (cross symbols).

Figure 15: Graphs of the function $\omega \mapsto \rho_{\text{EXP}}^R(\eta, \omega)$ (dotted lines) and graph of the function $\omega \mapsto \rho_R(\eta)$ (solid line) for $\eta = 0.075$ m.

Figure 16: Graph of the function $\eta \mapsto \rho_{\text{EXP}}^I(\eta)$ (solid line) with $\eta = ||\tilde{x} - \tilde{x}'||$ and graph of its envelope (dashed line). Graph of the function $\eta \mapsto \rho_{\text{EXP}}(\eta)$ (cross symbols).

Figure 17: Graphs of the function $\omega \mapsto \rho_{\text{EXP}}^I(\eta, \omega)$ (dotted lines) and graph of the function $\omega \mapsto \rho_I(\eta)$ (solid line) for $\eta = 0.075$ m.

Figure 18: Confidence region of $\eta \mapsto \rho_R(\eta)$. Upper envelope $\eta \mapsto \rho_R^+(\eta)$ (upper thick solid line). Lower envelope $\eta \mapsto \rho_R^-(\eta)$ (lower thick solid line). Mean algebraic model $\eta \mapsto \rho_R(\eta)$ (thin solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of these experimental data (circle symbols).

Figure 19: Confidence region of $\eta \mapsto \rho_I(\eta)$. Upper envelope $\eta \mapsto \rho_I^+(\eta)$ (upper thick solid line). Lower envelope $\eta \mapsto \rho_I^-(\eta)$ (lower thick solid line). Mean algebraic model $\eta \mapsto \rho_I(\eta)$ (thin solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of these experimental data (circle symbols).
LIST OF TABLES

Table 1: Physical parameters for plates P_1 and P_2 ... 38
Table 2: Physical parameters for air into the porous medium 38
Table 3: Solid phase parameters and fluid-solid coupling parameters for the porous medium ... 38
Fig. 1. Description of the experiment.

Fig. 2. Location of the 25 driving and receiving points in plate P_1.
Fig. 3. For plate P_1, 25 driving points excited with a shaker and 25 receiving points measured using laser velocimetry.

Fig. 4. For plate P_2, 25 receiving points measured by accelerometers.
Fig. 5. Geometry of the multilayer system.

Fig. 6. Acoustic impedance resistance z_{loc}^R (solid line) and acoustic impedance reactance z_{loc}^I (dashed line) for a local equivalent acoustic impedance z_{loc} as a function of frequency ω.
Fig. 7. Graph of $\omega \mapsto tr\{H^{\exp}(\omega) H^{\exp}(\omega)^{*}\}$ with respect to the frequency.

Fig. 8. Real part of the experimental impedance matrix $[Z^{\exp}(2\pi\nu)]_{ij}$ at frequency $\nu = 100$ Hz as a function of indices i and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.
Fig. 9. Real part of the experimental impedance matrix \([Z_{\text{exp}}^{ij}(2\,\pi\nu)] \) at frequency \(\nu = 1200 \) Hz as a function of indices \(i \) and \(j \). The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

Fig. 10. Graphs of \(\zeta_R(\omega) \) (solid line) and of \(\zeta_{\text{exp}}^{R}(\omega) \) (cross symbols) over the frequency band [100,1600] Hz.
Fig. 11. Graphs of $\zeta_I(\omega)$ (solid line) and of $\zeta_{I, EXP}(\omega)$ (cross symbols) over the frequency band [100,1600] Hz.

Fig. 12. Graphs of $|\zeta(\omega)|$ (solid line) and of $|\zeta_{I, EXP}(\omega)|$ (cross symbols) over the frequency band [100,1600] Hz.
Fig. 13. Graphs of $\phi_I(\omega)$ (solid line) and $\phi_I^{exp}(\omega)$ (cross symbols) over the frequency band $[100,1600]$ Hz.

Fig. 14. Graph of the function $\eta \mapsto \rho_R(\eta)$ (solid line) with $\eta = ||\tilde{x} - \tilde{x}'||$ and graph of its envelope (dashed line). Graph of the function $\eta \mapsto \rho_R^{exp}(\eta)$ (cross symbols).
B. FAVERJON and C. SOIZE

Fig. 15. Graphs of the function \(\omega \mapsto \rho_{R}^{\exp}(\eta, \omega) \) (dotted lines) and graph of the function \(\omega \mapsto \rho_{R}(\eta) \) (solid line) for \(\eta = 0.075 \text{ m} \).

![Graph of the function \(\omega \mapsto \rho_{R}^{\exp}(\eta, \omega) \) and \(\omega \mapsto \rho_{R}(\eta) \) for \(\eta = 0.075 \text{ m} \).]

Fig. 16. Graph of the function \(\eta \mapsto \rho_{I}(\eta) \) (solid line) with \(\eta = ||\hat{x} - \hat{x}'|| \) and graph of its envelope (dashed line). Graph of the function \(\eta \mapsto \rho_{I}^{\exp}(\eta) \) (cross symbols).

![Graph of the function \(\eta \mapsto \rho_{I}(\eta) \) and \(\eta \mapsto \rho_{I}^{\exp}(\eta) \).]
Fig. 17. Graphs of the function $\omega \mapsto \rho_I^{\text{exp}}(\eta, \omega)$ (dotted lines) and graph of the function $\omega \mapsto \rho_I(\eta)$ (solid line) for $\eta = 0.075$ m.

Fig. 18. Confidence region of $\eta \mapsto \rho_R(\eta)$. Upper envelope $\eta \mapsto \rho_R^+(\eta)$ (upper thick solid line). Lower envelope $\eta \mapsto \rho_R^-(\eta)$ (lower thick solid line). Mean algebraic model $\eta \mapsto \rho_R(\eta)$ (thin solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of these experimental data (circle symbols).
Fig. 19. Confidence region of \(\eta \mapsto \rho_i(\eta) \). Upper envelope \(\eta \mapsto \bar{\rho}_i^+(\eta) \) (upper thick solid line). Lower envelope \(\eta \mapsto \bar{\rho}_i^-(\eta) \) (lower thick solid line). Mean algebraic model \(\eta \mapsto \bar{\rho}_i(\eta) \) (thin solid line). Experimental data (vertical solid line constituted of dot symbols). Mean value of these experimental data (circle symbols).
Table 1

Physical parameters for plates P_1 and P_2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>$E^P = 7.4 \times 10^{10}$ Pa</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>$\nu^P = 0.33$</td>
</tr>
<tr>
<td>Structural damping factor</td>
<td>$\eta^P = \omega a_1^P(\omega) = 10^{-4}$</td>
</tr>
<tr>
<td>Mass density</td>
<td>$\rho^P = 2800$ kg m$^{-3}$</td>
</tr>
</tbody>
</table>

Table 2

Physical parameters for air into the porous medium.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density</td>
<td>$\rho_f = 1.213$ kg m$^{-3}$</td>
</tr>
<tr>
<td>Adiabatic bulk modulus</td>
<td>$K_a = 1.42 \times 10^5$ Pa</td>
</tr>
<tr>
<td>Viscosity</td>
<td>$\eta_f = 1.84 \times 10^{-5}$ kg m$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>$Pr = 0.71$</td>
</tr>
<tr>
<td>Specific heats ratio</td>
<td>$\gamma = 1.4$</td>
</tr>
</tbody>
</table>

Table 3

Solid phase parameters and fluid-solid coupling parameters for the porous medium.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass density of the solid phase</td>
<td>$\rho_1 = 34.2$ kg m$^{-3}$</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>$E = 110000$ Pa</td>
</tr>
<tr>
<td>Transverse modulus</td>
<td>$G = 40741$ Pa</td>
</tr>
<tr>
<td>Structural damping factor</td>
<td>$\eta_s = \omega a_1(\omega) = 0.09$</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>$\nu = 0.35$</td>
</tr>
<tr>
<td>Porosity</td>
<td>$\Phi = 0.96$</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>$\alpha = 1.27$</td>
</tr>
<tr>
<td>Resistivity</td>
<td>$\sigma = 10867$ N s m$^{-4}$</td>
</tr>
<tr>
<td>Viscous characteristic length</td>
<td>$\Lambda = 96$ µm</td>
</tr>
<tr>
<td>Thermal characteristic length</td>
<td>$\Lambda' = 288$ µm</td>
</tr>
</tbody>
</table>