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Abstract

In structural dynamics, a predictive model is constructed by developing a mathematical-

mechanical model of a designed system in order to predict the response of the real system

which is the manufactured system realized from the designed system. The mathematical-

mechanical modelling process of the designed system introduces two fundamental types of

uncertainties: the data uncertainties and the model uncertainties. Uncertainties have to be

taken into account for improving the predictability of the model. Model uncertainties can-

not be modelled by using the usual parametric probabilistic approach. Recently, a general

non-parametric probabilistic approach of model uncertainties for dynamical systems has been

proposed using the random matrix theory. This paper gives a comprehensive overview of

this approach in developing its foundations in simple terms and in illustrating all the concepts

and the tools introduced in the general theory, by using a simple example. This paper deals

with (1) notions of designed systems, real systems, mean models as predictive models, errors

and uncertainties; (2) the definition of a simple example in linear elastodynamics; (3) a com-

prehensive overview of the non-parametric probabilistic approach of model uncertainties for

predictive models in structural dynamics; (4) a summary of the random matrix ensembles which

are necessary for the non-parametric modelling of random uncertainties; (5) the estimation of

the dispersion parameters of the non-parametric probabilistic model using experimental data;

(6) the method to solve the stochastic equation of the dynamical system with non-parametric

probabilistic model of random uncertainties; (7) a numerical simulation and the validation for

the simple example.
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1. Introduction

In structural dynamics, a predictive model is constructed by developing a mathematical-

mechanical model of a designed system in order to predict the response of the real system

which is the manufactured system realized from the designed system. The mathematical-

mechanical modelling process of the designed system introduces two fundamental types of

uncertainties: the data uncertainties and the model uncertainties. Uncertainties have to be

taken into account for improving the predictability of the model.

Data uncertainties concern the parameters of the mathematical-mechanical model such as

the geometrical parameters, the boundary conditions, the elasticity tensor of the constitutive

equation, etc. The best approach to take into account data uncertainties is the parametric

probabilistic approach which consists in modelling the parameters of the model by random

quantities such as vector-valued random variables or stochastic fields. In this context, general

methods for computational stochastic mechanics can be found in Ref. [1]. The most important

computational stochastic tool for random continuous media and for continuous stochastic

systems is the stochastic finite element method introduced in Refs. [2,3], whose general

developments can be found in Refs. [4-7] and for which non-gaussian aspects are introduced

in Refs. [8,9]. The parametric probabilistic approach can be used in low-frequency dynamics,

in particular for random eigenvalue problems of large random systems [10,11], and also in

medium-frequency dynamics [12,13].

Model uncertainties cannot be modelled by using the parametric probabilistic approach. Re-

cently, a general non-parametric probabilistic approach of model uncertainties for dynamical

systems has been proposed using the random matrix theory. The objective of this paper is to

give a comprehensive overview of this approach in developing its foundations in simple terms

and in illustrating all the concepts and the tools introduced in the general theory, by using a

simple example. Such an approach has been introduced in the context of model uncertainties

for linear dynamical systems. The bases of this theory can be found in Refs. [14,15]. Some

complements concerning the random eigenvalue problems are given in Ref. [16]. The case

of non homogeneous model uncertainties in complex dynamical systems has been studied in

Ref. [17], the case of uncertain dynamical systems in the medium-frequency range is presented

in Ref. [18] and the case of the dynamic response of mistuned bladed disks is analysed in

Ref. [19]. For transient dynamics and for frequency dynamics of dynamical systems with

model uncertainties, numerical validations can be found in Refs. [20] and [16] respectively,

and experimental validations can be found in Refs. [21] and [22] respectively. An extension
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of this non-parametric propabilistic approach of model uncertainties for non-linear dynami-

cal systems is introduced in Ref. [23] and an application to transient non-linear dynamics of

uncertain dynamical systems with elastic stops can be found in Ref. [24]. Finally, Ref. [25]

introduces (1) two additional sets of random matrices useful for fluid-structure interaction

problems in the field of elastoacoustics and (2) a methodology for performing the experimental

identification of the non-parametric probabilistic approach.

Section 2 deals with notions of designed systems, real systems, mean models as predictive

models, errors and uncertainties. In Section 3, a simple example is defined in linear elastody-

namics and allows the notions introduced in Section 2 to be illustrated. Section 4 is devoted to

a comprehensive overview of the non-parametric probabilistic approach of model uncertainties

for predictive models in structural dynamics. The foundations and the concepts are presented

in simple terms by using the simple example defined in Section 3. Section 5 deals with a sum-

mary of the random matrix ensembles which are necessary for the non-parametric modelling

of random uncertainties. Section 6 is devoted to the estimation of the dispersion parameters

of the non-parametric probabilistic model. The method to solve the stochastic equation of

the dynamical system with the non-parametric probabilistic model of random uncertainties

is presented in Section 7. Finally, in Section 8, one presents a numerical simulation and a

validation of the theory for the simple example presented in Sections 3 and 4.

Comments concerning notation used

In this paper, the following notations are used:

(1) A lower case letter is a real or complex deterministic variable (e.g. f ).

(2) A boldface lower case letter is a real or complex deterministic vector (e.g. f = (f1, . . . , fn).

(3) An upper case letter is a real or complex random variable (e.g. F ).

(4) A boldface upper case letter is a real or complex random vector (e.g. F = (F1, . . . , Fn)).

(5) An upper case letter between brackets is a real or complex deterministic matrix (e.g. [A ]).

(6) A boldface upper case letter between brackets is a real or complex random matrix (e.g.

[A]).

(7) Any deterministic quantities above (e.g. f, f, [A ]) with an underline (e.g. f, f, [A ]) means

that these detrministic quantities are related to the mean model (or to the nominal model).

(8) The overline means the conjugate of a complex variable.
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2. Errors and uncertainties in a predictive model of a real system

In this section, one introduces the design system, the real system, themeanmodel as a predictive

model and the notion of errors and uncertainties related to the mean model.

2.1. The designed system

In the context of engineering mechanics, the designed system is the mechanical system con-

ceived by the designers and analysts. A designed system is defined by geometrical parameters,

by the choice of materials and many other parameters. A designed system can be a very simple

mechanical system such as an elastic bar or a very complex system such as an aircraft.

2.2. The real system

The real system is the manufactured system realised from the designed system. Consequently,

the real system is a man-made-physical system which is never exactly known ( for instance,

the geometry does not exactly coincide with the geometry of the designed system). The real

system has then to be considered as an uncertain system with respect to the designed system.

Uncertainties do not only affect the geometry, but also the boundary conditions, the materials,

the mass density distribution, etc.

(A) Complex real system: Generally, for a complex real system (such an aircraft for instance),

only one manufactured system can be considered as available to perform experiments in order

to reduce the level of uncertainties that exist in the real system with respect to the designed

system. It should be noted that, even if such experiments can be performed, a complex real

system is always under observable which means that only a few information can be deduced

from experiments for reducing the level of uncertainties with respect to the knowledge of the

designed system.

(B) Simple real system: Sometimes, for a simple real system, several manufactured systems

S(θ1), . . . ,S(θν) can be obtained from the same designed system. Then, if the number ν

of real systems is sufficiently high, then the mathematical statistics [26] can be used for

estimating a probabilistic model of the real system in order to characterize the uncertainties

with respect to the designed system. In such a case, S(θ1), . . . ,S(θν) have to be considered

as ν independent realizations of a unique unknown random system S. Nevertheless, the real

system is always under observable and consequently, the probabilistic model of any parameters

cannot be correctly estimated. This means that the uncertainties of the real system with respect

to the knowledge of the designed system cannot be completely suppressed.
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(C) Simple or complex real system: It can be concluded that, for a simple or a complex real

system, the statistical estimation of random system S has to be considered as not realistic

and therefore, the real system has to be considered as an uncertain system with respect to the

designed system.

2.3. The mean model as a predictive model. Errors and uncertainties

The objective of the predictive model is to predict the output vexp of the real system for a given

input fexp. For instance, the predictive model will be developed to predict the static displacement

field of a static system subjected to a given external static load or, will be developed to predict

the transient displacement field of a dynamical system subjected to an external impulsive load

induced by a shock. Such a predictive model is constructed by developing a mathematical-

mechanical model of the designed system for a given input (see Fig. 1). Consequently, the

mean model has an input f modelling fexp, an output v modelling vexp and exhibits a parameter

s for which data have to be given (it should be noted that the parameter can be a real number,

a real vector, a real function, a field, a vector-valued function, etc.).

(A) Errors: The errors are related to the construction of an approximate output vn of output

v of the mean model for a given input f and for a given parameter s. For instance, if the

mean model is a boundary value problem (BVP) defined on a bounded domain, the use of the

Finite Element Method [27] for constructing a n-dimensional space approximation of the BVP

solution, introduces an error ‖v − vn‖ related to the finite element mesh size, where ‖ · ‖ is

an appropriate norm. If a dynamical problem is studied, the use of a time integration scheme

introduces an additional error related to the time sampling and to the time step. Errors have

to be reduced and controled using adapted methods developed in applied mathematics and in

numerical analysis [28].

(B) Uncertainties: Below, input f and parameter s related to the mean model will be called

the data of the mean model. The mathematical-mechanical modelling process of the designed

system introduces two fundamental types of uncertainties: the data uncertainties and the model

uncertainties.

(B.1) Data uncertainties: Input f of the mean model does not exactly represent input fexp of the

real system and, there are uncertainties on parameter s of the mean model. For instance, a static

load represented by a point force is an approximation of the reality; the use of a given value

of the Young modulus for a given elastic material is not an exact value (which is unknown),
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but corresponds to an uncertain value; the elastic constants of a complex joint between two

substructures are uncertain, etc. Data uncertainties have to be taken into account for improving

the predictability of the mean model. The best approach to take into account data uncertainties

is the parametric probabilistic approach consisting in modelling the data of the mean model by

random quantities (see Section 1).

(B.2) Model uncertainties: The mathematical-mechanical modelling process used for con-

structing the mean model induces model uncertainties with respect to the designed system.

This type of uncertainties is mainly due to the introduction of simplifications in order to

decrease the complexity of the mean model which is constructed. For instance, a slender

cylindrical elastic medium will be modelled by using the beam theory (such as an Euleror a

Timoshenko beam), a thick rectangular plate elastic medium will be modelled by using the

thick plate theory (such as the Midlin plate theory), a complex joint constituted of an assem-

blage of several plates attached together by lines of bolts will be modelled by an equivalent

homogeneous orthotropic plate, etc. It is clear that the introduction of such simplified models

yields a mean model whose variations of parameter s do not allow the model uncertainties to

be reduced. Model uncertainties have to be taken into account for improving the predictability

of the mean model. As explained above, the parametric probabilistic approach cannot be used

(this point will be revisited in Section 4). This is the reason why a non-parametric probabilistic

approach is proposed.

(C) Predictability of the mean model: The error between the prediction vn calculated with the

mean model and the response vexp of the real system can be measured by ‖vexp − vn‖. Clearly,

the mean model can be considered as a predictive model if this error is sufficiently small. In

general, due to data uncertainties and model uncertainties, this error is not sufficiently small

and has to be reduced in modelling data uncertainties and model uncertainties.

3. Defining a simple example in linear elastodynamics

In order to simply explained the main ideas of the non-parametric probabilistic approach of

model uncertainties for predictive models, a very simple example is introduced in the field of

linear elastodynamics.

3.1. The designed system

The designed system is a slender cylindrical elastic medium Ω defined in a cartesian co-ordinate

system (Oxyz) (see Fig.2). The cylinder has a rectangular section whose height and width are
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h2 and h3 respectively. The lenght is h1 such that h2 ≪ h1 and h3 ≪ h1. One then has

Ω =

{
(x, y, z) , x ∈ ]0 , h1[ , y ∈ ] − h2

2
,
h2

2
[ , z ∈ ] − h3

2
,
h3

2
[

}
. (1)

The elastic medium is made of a composite material. This structure is simply supported as

shown in Fig. 2. The other parts of the boundary ∂Ω of domain Ω are free.

3.2. The real system

Figure 3 shows the real system corresponding to the designed system defined in Fig. 2. There

are uncertainties on the geometry due to the manufacturing tolerances. The domain of the

real system is ΩRS which differs from Ω. The simply supported conditions are not exactly

realized and the composite material does not exactly correspond to the given specifications

of the designed system. This real system is excited by a frequency-dependent pressure field

pexp(ω) which is constant in space on the part ΓRS of the boundary ∂ΩRS such that

ΓRS =

{
(x, y, z) , x ∈ ]x0 − ε , x0 + ε[ , y =

h2

2
, z ∈ ] − ε , +ε[

}
. (2)

Let B be the frequency band of analysis defined by

B =]0 , ωmax] , 0 < ωmax < +∞ . (3)

We are interested in the dynamics of the real system in frequency band B, induced by

pressure field excitation pexp(ω) applied on ΓRS and in particular, in observing the com-

ponent vexp(x, y, z; ω) of the displacement field (uexp, vexp, wexp) on the line defined by

{(x, 0, 0) , x ∈ [0 , h1]}

3.3. The mean model as a predictive model

The mean model, as the predictive model of the real system defined in Fig. 3, is constructed

from the designed system defined in Fig. 2. This mean model is constituted of a damped

homogeneous Euler elastic beam with length h1, simply supported at x = 0 and x = h1 (see

Fig. 4). Assuming that 2ε/h1 ≪ 1, pressure field pexp(ω) on ΓRS is modelled by a point force

(0, g(ω), 0) located at x0, such that

g(ω) = −
∫

ΓRS

pexp(ω) ds = −4ε2pexp(ω) , ω ∈ B . (4)

Therefore, the mean model input f modelling fexp is the force field (0, g(ω)δ0(x − x0), 0).

For ω in B, this external force induces flexural vibrations in the plane (Oxy) for which the
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transversal displacement (following Oy) is noted v(x, ω) . Consequently, for all ω fixed in

B, the mean model is defined by the following boundary value problem consisting in finding

{v(x, ω) , x ∈ ]0 , h1[} such that

−ω2ρ
ℓ
v(x, ω)− iω2ξ

√
ρ

ℓ
k

∂2v(x, ω)

∂x2
+ k

∂4v(x, ω)

∂x4
= g(ω)δ0(x − x0) , x ∈]0 , h1[ , (5)

v(0, ω) = v(h1, ω) =
∂2v(0, ω)

∂x2
=

∂2v((h1, ω)

∂x2
= 0 , (6)

in which k = y j is the mean flexural stiffness modulus, j = h3h
3
2/12 is the mean inertia

moment of the beam section around axis Oz, y is the mean Young modulus, ρ
ℓ

= ρh2h3 is

the mean mass density by unit of length, ρ is the mean mass density, i =
√
−1, ξ is the mean

critical damping rate.

3.4. Frequency response approximation constructed using the mean reduced model

For all ω fixed in B, the approximation vn(x, ω) of frequency response v(x, ω) of the mean

model can then be constructed by using the following mean reduced model deduced from the

usual modal analysis,

vn(x, ω) =
n∑

α=1

q
α
(ω) vα(x) , x ∈]0 , h1[ , (7)

in which qn(ω) = (q
1
(ω), . . . , q

n
(ω)) is the complex vector of the generalized co-ordinates

which is the unique solution of the complex matrix equation,

(−ω2[ Mn] + iω[ Dn] + [ Kn]) qn(ω) = fn(ω) , ω ∈ B . (8)

In Eq. (8), generalized mass, damping and stiffness matrices [ Mn], [ Dn] and [ Kn] of the

mean model are diagonal (n × n) real matrices such that

[ Mn]αβ = ρ
ℓ
δαβ , [ Dn]αβ = 2ξ ρ

ℓ
ωα δαβ , [ Kn]αβ = ρ

ℓ
ω2

α δαβ , (9)

with δαα = 1 and δαβ = 0 if α 6= β, and where 0 < ω1 < . . . < ωn are the eigenfrequencies

of the mean system such that

ωα =

√
k

ρ
ℓ

(
απ

h1

)2

, α = 1, 2, . . . , n . (10)

These eigenfrequencies are associated with the eigenmodes v1(x), . . . , vn(x) defined by

vα(x) =

√
2

h1

sin(
απ

h1

x) , α = 1, 2, . . . , n , (11)

with the orthogonality properties
∫ h

1

0
vα(x) vβ(x) dx = δαβ . Finally, fn(ω) is the complex

vector of the generalized forces such that fn(ω) = (f
1
(ω), . . . , f

n
(ω)) in which

f
α
(ω) = g(ω) vα(x0) , α = 1, 2, . . . , n . (12)
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3.5. Errors related to the use of a mean reduced model

As explained in Section 2.3 (A), the mean model error is due to the use of the approximation

vn(x, ω) of v(x, ω) for predicting vexp(x, ω) and can be measured by estimating the following

norm,

‖v − vn‖ =

{∫

ω∈B

∫ h
1

0

|v(x, ω)− vn(x, ω)|2 dx dω

}1/2

. (13)

It can be seen that ‖v − vn‖2 =
∑+∞

α=n+1

∫
B
|q

α
(ω)|2 dω and, if ω 7→ g(ω) is a bounded

function on B, then it can be proved that

lim
n→+∞

‖v − vn‖ = 0 . (14)

Equation (14) shows that the error can be reduced as much as it is desired. Below, it is assumed

that n is chosen sufficiently large for that the error can be considered as negligible with respect

to data uncertainties and model uncertainties. It should be noted that a similar reasoning can

be used if the finite element analysis is used for constructing an approximation of the solution

of the boundary value problem defined by Eqs. (5) and (6).

3.6. Predictability of the mean model and updating with experimental data

For a sufficiently large value of n, the predictability level of the mean model can be measured

in estimating the norm ‖vexp − vn‖ such that

‖vexp − vn‖2 =

∫

ω∈B

∫ h
1

0

|vexp(x, 0, 0; ω)− vn(x, ω)|2 dx dω . (15)

From Eqs. (5) and (6), it can be seen that there are m = 6 independent positive-valued

parameters which are h1, h2, h3 for the geometry, y and ξ for the constitutive equation, ρ for

the mass density. Consequently, parameter s is such that

s = (h1, h2, h3, y, ξ, ρ) ∈ Dm ⊂  m , (16)

in which Dm is the subset of  m such that

Dm =]0 , +∞[× . . . × ]0 , +∞[ m times . (17)

Approximation vn of vexp depends on s ∈ Dm and is then rewritten as vn
s (x, ω). Let us

assume that the available experimental data allow vexp(x, 0, 0; ω) to be known for x ∈]0 , h1[

and ω ∈ B (in fact, it is known for a finite set of discrete values of x and ω). In this condition,
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the nominal value s of the parameter can be updated in a value σ allowing the predictability of

the mean model to be increased, that is to say, such that

‖vexp − vn
σ‖ = min

s∈Dm

‖vexp − vn
s ‖ . (18)

Below, in order to simplify the notation, σ is rewritten as s. Consequently, σ will represent the

nominal value of the parameter or its updated value using the experimental data (if these data

are available, that is not always the case, in particular for the complex dynamical systems). It

should be noted that error ‖vexp−vn
s ‖ is generally not sufficiently small due to data uncertainties

and particularly, due to model uncertainties. Therefore, the predictability of the nominal mean

model (the mean model with the nominal value of the parameter) or the predictability of the

updated mean model (the mean model with the updated value of the parameter) is not sufficient

and has to be improved by using a probabilistic approach of uncertainties.

3.7. Predictability level in terms of the generalized matrices of the mean reduced model

Let [ M
exp
n ], [ D

exp
n ] and [ K

exp
n ] be the positive-definite symmetric (n × n) real generalized

matrices of the real system (experimental generalized matrices) corresponding to generalized

matrices [ Mn], [ Dn] and [ Kn] of the mean reduced model. These matrices cannot directly

be identified by using experimental modal analysis [34,35], but correspond to a transformation

of the experimentally identified matrices by a transformation depending on the experimental

elastic modes and on the elastic modes of the mean model (see Section 6). The predictability

level of the mean model can then also be measured by comparing matrices [ M
exp
n ], [ D

exp
n ] and

[ Kexp
n ] with matrices [ Mn], [ Dn] and [ Kn] respectively. Consequently, one has to introduce

norms of matrices. Let [An] be a (n × n) real matrix. The Frobenius norm and the matrix

norm of matrix [An] are defined by

‖[An]‖F = (tr{[A ]T [A ]})1/2 , ‖[An]‖ = max
b∈ n,‖b‖=1

‖[An] b‖ , (19)

and verify the following inequalities

‖[An]‖ ≤ ‖[An]‖F ≤
√

n ‖[An]‖ , (20)

in which ‖b‖2 = b2
1 + . . . + b2

n is the Euclidean norm of b = (b1, . . . , bn) in  n. Noting A as

M , D or K, one has

‖[An] − [Aexp
n ]‖ ≤ ‖[An] − [Aexp

n ]‖F , (21)

which shows that the norm ‖[An] − [Aexp
n ]‖F allows the distance (between matrix [An] of

the nominal or updated mean model with matrix [A
exp
n ] of the real system) to be estimated.

C. Soize, submitted Jan. 2004 to JSV for USD Special Issue, revised version Oct. 5, 2004 11



Due to data and model uncertainties, for the generalized mass, damping or stiffness matrix,

this distance is not sufficiently small and has to be reduced by using a probabilistic model of

uncertainties.

4. Foundations of the non-parametric probabilistic approach of model uncertainties

The objective of this section is to explain the main ideas and the foundations of the non-

parametric probabilistic approach for data and model uncertainties, using the simple example

presented in Section 3. In a first part, one recalls the usual parametric probabilistic approach of

data uncertainties and one investigates the limitation of such an approach to take into account

model uncertainties. In a second step, the non-parametric probabilistic approach is introduced

and it is shown that the random matrix theory has to be used to obtain a constructive approach.

4.1. Algebraic notations

(A) Euclidean space: Let x = (x1, . . . , xn) be a vector in  n. The Euclidean space  n is

equipped with the usual inner product (x, y) 7→<x , y>=
∑n

j=1 xjyj and the associated norm

‖x‖ =<x , x>1/2.

(B) Matrix sets: Let !n,m( ) be the set of all the (n × m) real matrices, !n( ) = !n,n( )

be the set of all the square (n × n) real matrices, !S
n( ) be the set of all the (n × n) real

symmetric matrices, !+0
n ( ) be the set of all the (n× n) real symmetric semipositive definite

matrices and !+
n ( ) be the set of all the (n×n) real symmetric positive-definite matrices. We

then have !+
n ( ) ⊂ !+0

n ( ) ⊂ !S
n( ) ⊂ !n( ) . (22)

4.2. Probability distribution of a symmetric random matrix

Let [An] be a random matrix with values in !S
n( ) which means that [An]T = [An]. The

probability distributionP[An] of random matrix [An] is defined by a probability density function

[An] 7→ p[An]([An]) from !S
n( ) into  + = [0 , +∞[, with respect to the measure (volume

element) d̃An on !S
n( ), if

P[An](d̃An) = p[An]([An]) d̃An . (23)

Volume element d̃An on !S
n( ), is defined (see [14]) by

d̃An = 2n(n−1)/4 Π1≤i≤j≤n d[An]ij , (24)
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in which d[An]ij is the Lebesgue measure on  for real variable [An]ij . The normalization

condition is then written as

∫ S
n(!)

p[An]([An]) d̃An = 1 . (25)

For instance, the Gaussian Orthogonal Ensemble (GOE) of random matrices is constituted of

random matrices [An] for which the probability density function is written as p[An]([An]) =

Cn × exp(−λ tr{[An]2}), in which λ is a positive constant and Cn is the normalization

constant which is calculated by using Eq. (25) and an adapted algebraic method (see for

instance [31,16]). Let S = (S1, . . . , Sm) be a random vector with values in  m whose

probability distribution PS(ds) on  m is defined by a probability density function s 7→ pS(s)

with respect to ds = ds1 . . . dsm, that is to say PS(ds) = pS(s) ds. Let s 7→ [an(s)] be a given

function from  m into !S
n( ) such that [An] = [an(S)] is a second-order random matrix with

values in !S
n( ) that is to say such that E{‖[An]‖2

F } < +∞ in which E is the mathematical

expectation. Then, the probability distribution P[An](d̃An) on !S
n( ) of random matrix [An]

is defined by a probability density function p[An]([An]) with respect to d̃An and

E{‖[An]‖2
F } =

∫ S
n(!)

‖[An]‖2
F p[An]([An]) d̃An

=

∫!m

‖[an(s)]‖2
F pS(s) ds . (26)

4.3. Parametric probabilistic approach

Consider the example presented in Section 3. The parametric probabilistic approach of data

uncertainties consists in modelling parameter s in Dm (with m = 6, see Eqs. (16) and (17)) by

an  m-valued second-order random variable S = (S1, . . . , S6) with

S1 = H1 , S2 = H2 , S3 = H3 , S4 = Y , S5 = Ξ , S6 = R , (27)

whose support of its probability distribution PS(ds) is Dm. From Eqs. (7) to (11), it can be

deduced that, for x fixed in ]0 , h1[ and for ω fixed in B, approximation vn(x, ω) of frequency

response v(x, ω) of the mean model becomes a complex-valued random variable V n
par(x, ω)

such that

V n
par(x, ω) =

n∑

α=1

Qpar
α (ω) V par

α (x) , x ∈]0 , h1[ , (28)

in which V
par
α (x) =

√
2/S1 sin(απx/S1). The "n-valued random variable Qn

par(ω) =

(Q
par
1 (ω), . . . , Q

par
n (ω)) has to verify the following random equation

(−ω2[Mpar,n] + iω[Dpar,n] + [Kpar,n])Qn
par(ω) = fn(ω) , ω ∈ B , (29)
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where fn(ω) is defined by Eq. (12). The generalized mass, damping and stiffness random

matrices [Mpar,n], [Dpar,n] and [Kpar,n] are defined by

[Mpar,n] = [mn(S)] , [Dpar,n] = [dn(S)] , [Kpar,n] = [kn(S)] , (30)

in which the functions s 7→ [mn(s)], s 7→ [dn(s)] and s 7→ [kn(s)] from Dm into  +
n (!), are

defined by

[mn(s)]αβ = µ(s) δαβ , [dn(s)]αβ = 2s5 µ(s) ωα(s) δαβ , [kn(s)]αβ = µ(s) ωα(s)2 δαβ ,

(31)

in which s = (s1, . . . , s6), µ(s) = s2s3s6, with

s1 = h1 , s2 = h2 , s3 = h3 , s4 = y , s5 = ξ , s6 = ρ , (32)

and where

ωα(s) =

√
s4 s3 s2

2

12 s6 s1

(
απ

s1

)2

= cpar(s) α2 , α ≥ 1 , (33)

in which cpar(s) is defined by the first Eq. (33). The random eigenfrequencies associated with

the random elastic modes {V par
α (x), α = 1, . . . , n} are {Ωα = ωα(S), α = 1, . . . , n}.

(A) Fundamental properties of the generalized random matrices: Noting A as M, D or K, and

a as m, d or k, since for all s ∈ Dm, matrix [an(s)] belongs to  +
n (!), it can be deduced that

random matrix [Apar,n] = [an(S)] (see Eq. (30)) is such that

[Apar,n] ∈  +
n (!) almost surely . (34)

In addition, it can be proved (see Ref. [15,23]) that, for all ω fixed in B, the random Eq. (29)

has a unique second-order random solution Qn
par(ω) if and only if one has

E{‖[Apar,n]−1‖2
F } < +∞ . (35)

Equations (34) and (35) define the two fundamental properties for random matrices [Mpar,n],

[Dpar,n] and [Kpar,n].

(B) Ranges of the mappings defining the generalized random matrices: Let Apar,n be the range

of mapping s 7→ [an(s)] from Dm ⊂ !m into  +
n (!), that is to say,

Apar,n = {[An] ∈  +
n (!) , [An] = [an(s)] for s ∈ Dm} . (36)

Clearly, one has

Apar,n ⊂  +
n (!) , (37)

in which Apar,n is a smaller set than  +
n (!) because, for any s in Dm, [An] = [an(s)] is a

diagonal matrix in  +
n (!) (see also next Section (C)).
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(C) Non capability of the parametric approach to span any positive values of the eigenfre-

quencies: First, it should be noted that {[an(s)], x ∈ Dm} does not coincide with the set of

all the diagonal matrices in  +
n (!). Instead of giving an additional proof of this fundamental

property, let us concentrate the developments on the difficulties of the parametric approach

to represent any model uncertainty. When parameter s = (h1, h2, h3, y, ξ, ρ) runs through

all the possible values of vector s in Dm, the eigenfrequencies of the dynamical system are

given by Eq. (33). Let ∆α(s) = ωα+1(s) − ωα(s) be the distance between two successive

eigenfrequencies. One then has ∆α(s) = (2α + 1) cpar(s) and consequently, the spacing rate

distribution δα(s) = ∆α+1(s)/∆α(s) is such that

δα(s) = 1 +
2

2α + 1
, α ≥ 1 . (38)

Equation (38) shows that δα(s) is independent of s and, therefore, when s runs through Dm,

any spacing rate distribution {δα(s), α ≥ 1} cannot be spanned by the parametric approach.

However, it can clearly be seen that model uncertainties can lead the spacing rate distribution

to be different. For the simple example considered, the eigenfrequencies of the 3D elastic body

defined in Fig. 2 does not have the spacing rate distribution defined by Eq. (38).

(D) Probability distribution of the generalized random matrices: Let Apar,n be the range of

mapping s 7→ [an(s)] defined in Section 4.3 (B). The probability distribution P[Apar,n] of random

matrix

[Apar,n] = [an(S)] , (39)

is then the image of probability distribution PS on Dm by the mapping s 7→ [an(s)] from Dm

onto Apar,n and consequently, is a probability distribution on Apar,n ⊂  +
n (!). Probability

distribution PS and then, probability distribution P[Apar,n], have to be such that Eq. (35) holds,

i.e.,

E{‖[Apar,n]−1‖2
F } =

∫

Dm

‖[an(s)]−1‖2
F PS(ds)

=

∫

Apar,n

‖[An]−1‖2
F P[Apar,n](d̃An) < +∞ . (40)

Clearly, the condition defined by Eq. (40) is not satisfied for any probability distribution

PS(ds) on Dm. For instance, for A = M and a = m, Eqs. (30) and (31) yield [Mpar,n]−1 =

(RH2H3)
−1 [In] in which [In] is the identity matrix. Therefore, one has E{‖[Mpar,n]−1‖2

F } =

n E{(RH1)
−2}. Assuming that R, H2 and H3 are three independent random variables, one

has

E{‖[Mpar,n]−1‖2
F } = n

∫ 1

r2
PR(dr)

∫ 1

h2
2

PH2
(dh2)

∫ 1

h2
3

PH3
(dh3) . (41)
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For instance, if PR(dr) =  ]0,+∞[(r)(1/ρ) exp(−r/ρ) dr, then R is a second-order random

variable with values in ]0, +∞[, such that E{R} = ρ and is invertible almost surely. Never-

theless, the inverse R−1 is not a second-order random variable because E{R−2} = +∞. In

such a case, one has E{‖[Mpar,n]−1‖2
F } = +∞. It can be concluded that PS(ds) has to satisfy

necessay conditions for that Eq. (40) holds for [Mpar,n], [Dpar,n] and [Kpar,n]. For a complex

mechanical system having a large number of random parameters such as random fields, the

construction of a probability model of the parameters is not so easy to perform in order to

preserve the property defined by Eq. (40) which, however, has absolutely to be satisfied.

(E) Probability of the stochastic model with the parametric probabilistic approach of random

uncertainties: Similarly to Eq. (15), the predictability of the stochastic model defined by

Eqs. (28) and (29) can be measured by the norm |||vexp − V n
par||| such that

|||vexp − V n
par|||2 =

∫

ω∈B

∫ h
1

0

E{|vexp(x, 0, 0; ω)− V n
par(x, ω)|2} dx dω . (42)

As explained in Section 3.7, the predictability level of the stochastic model can also be

evaluated in comparing the generalized random matrices of the random reduced model with

the corresponding matrices for the real system estimated from experiments. Consequently, the

following norm (square of the norm) allows the distance between random matrix [Apar,n] =

[an(S)] and matrix [ A
exp
n ] of the real system to be calculated

E{‖[Apar,n] − [ Aexp
n ]‖2

F} =

∫

Dm

‖[an(s)] − [ Aexp
n ]‖2

F PS(ds)

=

∫

Apar,n

‖[An] − [ Aexp
n ]‖2

F P[Apar,n](d̃An) < +∞ . (43)

Clearly, matrix [ A
exp
n ] relative to the real system belongs to set !+

n (") but, due to model

uncertainties, [ Aexp
n ] does not generally belong to subset Apar,n ⊂ !+

n (") (see Fig. 5) and the

mean-square error defined by Eq. (43) is then not sufficiently small.

4.4. Introduction of the non-parametric probabilistic approach

As previously, M, D or K (mass, damping of stiffness generalized matrix) are denoted as A.

The problem is then to introduce a non-parametric probabilistic approach of data uncertainties

and model uncertainties in order to increase the predictability of the model, for instance, in

reducing the mean-square error defined by Eq. (43).
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(A) Non-parametric probabilistic approach: The non-parametric probabilistic model of ran-

dom uncertainties consists in substituting each random diagonal matrix [Apar,n] in Eq. (29) by

a full random matrix [An] whose probability distribution P[An](d̃An) is directly constructed

by using the available information deduced from the mean reduced model defined by Eqs. (7)

to (12), instead of constructing the probability distribution as the image of probability distri-

bution PS by mapping s 7→ [an(s)]. Therefore, from Eqs. (7) and (8), it is deduced that the

non-parametric probabilistic model of random uncertainties is written as

V n(x, ω) =
n∑

α=1

Qα(ω) vα(x) , x ∈]0 , h1[ , (44)

(−ω2[Mn] + iω[Dn] + [Kn])Qn(ω) = fn(ω) , ω ∈ B . (45)

(B) Available information for each random generalized matrix: With the non-parametric

probabilistic approach, it is assumed that the mean reduced model defined in Section 3.4

constitutes the fundamental available information. Taking into account the algebraic properties

defined by Eqs. (34) and (35), it can be deduced the following available information for each

random generalized matrix [An]:

[An] ∈  +
n (!) almost surely , (46)

E{[An]} = [An] ∈  +
n (!) , (47)

E{‖[An]−1‖2
F } = c < +∞ , (48)

in which c is an unknown constant which is positive and finite.

(C) Constructing the probability distribution of the generalized randommatrices: The problem

is then to construct probability distribution P[An](d̃An) on subset  +
n (!) such that Eqs. (46)

to (48) be satisfied. Such a construction has been performed by using the entropy optimization

principle (see Refs. [14,15,25]) and will be summarized in Section 5.

(D) Capability of the non-parametric approach to take into account model uncertainties: The

mean-square error between random matrix [An] and experimental matrix [Aexp
n ] is given by

E{‖[An] − [Aexp
n ]‖2

F } =

∫ +
n (!)

‖[An] − [Aexp
n ]‖2

F P[An](d̃An) < +∞ . (49)

Equation (49) has to be compared to Eq. (43). Since Apar,n ⊂  +
n (!), one can take P[An] =

P[Apar,n], which means that the support of probability distribution P[An] is Apar,n. In this case,

one has [An] = [Apar,n] which proves that the non-parametric approach has the capability to

model data uncertainties. In addition, since the support of P[An] is +
n (!) withApar,n ⊂  +

n (!)
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(see Eq. (37)), the non-parametric probabilistic approach allows a larger class of random

matrices to be constructed and consequently, has, a priori, the capability to take into account

model uncertainties. For instance, let us assume that the model uncertainties are sufficiently

high for that [Aexp
n ] 6∈ Apar,n (see Fig. 5). Since [Aexp

n ] belongs to  +
n (!), Eq. (49) shows that

there exists a probability distribution P[An] on  +
n (!) which allows the mean-square error to

be reduced. For instance, taking P[An](d̃An) = δ0([An] − [A
exp
n ]), in which δ0 is the Dirac

measure on  n(!), leads the error to be zero because [Aexp
n ] belongs to  +

n (!). Of course,

P[An] cannot be arbitrarily chosen on +
n (!) but has to be constructed using the random matrix

theory presented in Section 5. Consequently and intuitively, it can be assumed that there is a

probability measure P[An] on  +
n (!) verifying the properties defined by Eqs. (46) to (48), and

such that

∫ +
n (!)

‖[An] − [Aexp
n ]‖2

F P[An](d̃An) <

∫

Apar,n

‖[An] − [ Aexp
n ]‖2

F P[Apar,n](d̃An) , (50)

which means that

E{‖[An] − [Aexp
n ]‖2

F } < E{‖[Apar,n] − [ Aexp
n ]‖2

F } . (51)

5. Random matrix ensembles for the non-parametric modelling of random uncertainties

As explained in Section 4.4 (C), one has to construct probability distribution P[An](d̃An) on +
n (!) verifying Eqs. (46) to (48). This is the objective of this Section. One limits the

presentation in giving a summary of the results concerning the two random matrix ensembles

that one needs for treating the simple example introduced in Section 3 and developed in

Section 4.4: the set SG+ and the set SE+ (another ensembles of random matrices useful for

the non-parametric probabilistic approach of random uncertainties can be found in Ref. [25]).

5.1. Normalized positive-definite ensemble SG+ of random matrices

The first ensemble SG+ of random matrices, called the the normalized positive-definite ensem-

ble, has been constructed (see Refs. [14,15]) in the context of the development of an approach

for modelling random uncertainties in dynamical systems with a non-parametric probabilistic

approach. This ensemble constitutes the main ensemble used for constructing the second

ensemble SE+. Ensemble SG+ differs from the Gaussian Orthogonal Ensemble (GOE) and

from the other known ensembles of the random matrix theory (for a synthesis of these known

ensembles of the random matrix theory, see Ref. [31]).
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(A) Definition of ensemble SG+: This ensemble is defined as the set of all the random matrices

[Gn], defined on a probability space (B, T , P ), with values in  +
n (!), whose probability

distribution is constructed by using the entropy optimization principle [32,33] for which the

constraints (define as the available information) are the following (which have to be compared

to the constraints defined by Eqs. (46) to (48)):

(1) Matrix [Gn] is a symmetric positive-definite real random matrix, that is to say,

[Gn] ∈  +
n (!) almost surely . (52)

(2) The mean value [Gn] of random matrix [Gn] is the (n × n) identity matrix [In],

E{[Gn]} = [Gn] = [In] ∈  +
n (!) . (53)

(3) Random matrix [Gn] is such that

E{ln(det[Gn])} = v with |v| < +∞ . (54)

(B) Dispersion parameter of a random matrix in ensemble SG+: Let δ > 0 be the real

parameter defined by

δ =

{
E{‖ [Gn] − [Gn] ‖2

F}
‖ [Gn] ‖2

F

}1/2

=

{
1

n
E{‖ [Gn] − [In] ‖2

F }
}1/2

, (55)

that allows the dispersion of the probability model of random matrix [Gn] to be fixed. The

constraint defined by Eq. (54) introduces a free parameter v in the model. Since this parameter

v has no simple meaning, this free parameter v is rewritten in terms of the dispersion parameter

δ which is the new free parameter of the model. In Ref. [15], it is proved that the dispersion

parameter of the probability model has to be independent of n and has to be such that

0 < δ <
√

(n + 1)(n + 5)−1 . (56)

(C) Probability distribution of a random matrix in ensemble SG+: The probability distribution

P[Gn] of random matrix [Gn] is defined by a probability density function [Gn] 7→ p[Gn]([Gn])

from  +
n (!) into !+ = [0 , +∞[, with respect to the measure d̃Gn on set  S

n(!) such that

(see Eq. (24)), d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij . We then have P[Gn] = p[Gn]([Gn]) d̃Gn

with the normalization condition
∫ +

n (!)
p[Gn]([Gn]) d̃Gn = 1. Probability density function

p[Gn]([Gn]) is then written as

p[Gn]([Gn]) = " +
n (!)([Gn]) × CGn

×
(
det [Gn]

)(n+1)
(1−δ2)

2δ2 × exp

{
−(n + 1)

2δ2
tr [Gn]

}
,

(57)
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in which   +
n (!)([Gn]) is equal to 1 if [Gn] ∈ !+

n (") and is equal to zero if [Gn] /∈ !+
n (")

and where the positive constant CGn
is such that

CGn
=

(2π)−n(n−1)/4
(

n+1
2δ2

)n(n+1)(2δ2)−1

{
Πn

j=1Γ
(

n+1
2δ2 + 1−j

2

)} , (58)

whith Γ(z) the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. Equation

(57) shows that {[Gn]jk, 1 ≤ j ≤ k ≤ n} are dependent random variables. If (n + 1)/δ2 is

an integer, then Eqs. (57)-(58) show that the probability distribution is a Wishart distribution

[34,35]. In general, (n + 1)/δ2 is not an integer and consequently, the probability distribution

is not a Wishart distribution.

(D) Second-order moments of a random matrix in ensemble SG+: It can be proved that [Gn] is

a second-order random matrix. Since [Gn] = [In], the covariance CGn

jk,j′k′ of random variables

[Gn]jk and [Gn]j′k′ , defined by CGn

jk,j′k′ = E
{
([Gn]jk − [In]jk)([GAn

]j′k′ − [In]j′k′)
}

is

written as CGn

jk,j′k′ = δ2

n+1

{
[In]j′k [In]jk′ + [In]jj′ [In]kk′

}
. In particular, the variance of

random variable [Gn]jk is such that

V Gn

jk =
δ2

n+1
(1 + [In]jk) . (59)

(E) Algebraic representation of a random matrix in ensemble SG+: The following algebraic

representation of random matrix [Gn] allows a procedure for the Monte Carlo numerical

simulation of random matrix [Gn] to be defined. With this procedure, the numerical cost

induced by the simulation is a constant that depends on dimension n but that is independent of

the values of parameter δ. Random matrix [Gn] can be written as

[Gn] = [Ln]T [Ln] , (60)

in which [Ln] is an upper triangular random matrix with values in !n(") such that:

(1) the random variables {[Ln]jj′ , j ≤ j′} are independent;

(2) for j < j′, the real-valued random variable [Ln]jj′ can be written as [Ln]jj′ = σnUjj′ in

which σn = δ(n+1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero

mean and variance equal to 1;

(3) for j = j′, the positive-valued random variable [Ln]jj can be written as [Ln]jj = σn

√
2Vj

in which σn is defined above and where Vj is a positive-valued gamma random variable whose

probability density function pVj
(v) with respect to dv is written as

pVj
(v) =  !+(v)

1

Γ
(

n+1
2δ2 + 1−j

2

) v
n+1

2δ2 − 1+j
2 e−v . (61)
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(F)Convergence property of a randommatrix in ensemble SG+ when dimension goes to infinity:

It is mathematically proved that E{‖ [Gn]−1‖2
F } < +∞ and therefore that E{‖ [Gn]−1‖2} <

+∞. In addition, the following fundamental property is proved [15],

∀n ≥ 2 , E{‖[Gn]−1‖2} ≤ Cδ < +∞ , (62)

in which Cδ is a positive finite constant that is independent of n but that depends on δ.

Equation (62) means that n 7→ E{‖[Gn]−1‖2} is a bounded function from {n ≥ 2} into +. This fundamental property is strongly used to prove that the sequence of random fields

{x 7→ V n(x, ω)}n defined by Eqs. (44) and (45) has a second-order limit when dimension n

of the reduced model goes to infinity (see Ref. [15]). It should be noted that Eq. (52) shows

that random matrix [Gn] is invertible almost surely, but since the almos-sure convergence does

not yield the mean-square convergence, then an additional condition has to be introduced to

obtain the property defined by Eq. (62). This is the role played by Eq. (54).

5.2. Positive-definite ensemble SE+ of random matrices

The second ensemble SE+ of random matrices, called the the positive-definite ensemble, has

been constructed in [14,15], simultaneously with SG+. This ensemble is used for constructing

the probability model of the generalized mass, damping and stiffness matrices of the reduced

model for dynamical systems without rigid body displacements. This is this random matrix

ensemble which is required for constructing probability distribution P[An](d̃An) on !+
n ( )

verifying Eqs. (46) to (48).

(A) Definition of ensemble SE+: The ensemble SE+ is defined as the set of all the random

matrices [An], defined on probability space (B, T , P ), with values in !+
n ( ), having similar

properties that the properties defined by Eqs. (52) to (54), but for which

E{[An]} = [An] ∈ !+
n ( ) , (63)

in which the mean value of [An] is a given matrix [An] in!+
n ( ). Since matrix [An] is positive

definite, there is an upper triangular matrix [LAn
] in !n( ) such that

[An] = [LAn
]T [LAn

] , (64)

which corresponds to the Cholesky factorization of matrix [An]. Consequently, ensemble SE+

is defined as the set of all the matrices [An] which are written as

[An] = [LAn
]T [Gn] [LAn

] , (65)

in which matrix [Gn] is the random matrix in ensemble SG+.
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(B) Properties of a random matrix in ensemble SE+: Taking into account Eqs. (52), (53), (59)

and (62), it can be deduced that a random matrix [An] belonging to SE+ has the following

properties:

(1) Matrix [An] is a symmetric positive-definite real random matrix:

[An] ∈  +
n (!) almost surely . (66)

(2) Matrix [An] is a second-order random variable,

E{‖[An]‖2
F } < +∞ . (67)

(3) The mean value of random matrix [An] is such that

E{[An]} = [An] ∈  +
n (!) . (68)

(4) Random matrix [An] is such that

E
{
‖[An]−1‖2

}
≤ E

{
‖[An]−1‖2

F

}
< +∞ . (69)

Consequently, a random matrix [An] belonging to ensemble SE+ satisfies the constraints

defined by Eqs. (46) to (48). One then has constructed the probability distribution P[An](d̃An)

on  +
n (!) verifying Eqs. (47) and (48). This probability is directly deduced from Eqs. (57)

and (65) and can be found in Refs. [14,15].

(C) Dispersion parameter of a random matrix in ensemble SE+: The dispersion of random

matrix [An] is controlled by parameter δ defined by Eq. (55), verifying Eq. (56), and which is

rewritten as δA > 0, and which is such that

δA =

{
1

n
E{‖ [Gn] − [In] ‖2

F}
}1/2

. (70)

Parameter δA, which has to be independent of n and which has to be chosen such that

0 < δA <
√

(n + 1)(n + 5)−1 , (71)

allows the dispersion of the probability model of random matrix [An] to be fixed. Finally, the

algebraic representation of random matrix [An] is given by Eq. (65) with Eqs. (60) and (61),

and allows realizations of random matrix [An] to be numerically constructed.
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(D) Probability model of a set of random matrices in ensemble SE+: Let us consider ν

random matrices [A1
n], . . . , [Aν

n] belonging to ensemble SE+. This means that the mean

values of the random matrices are known but that no information is available concerning

correlation tensor between two any random matrices such as [Aν
j ] and [Aν

k]. Then, applying

the entropy optimization principle, it can be proved that the probability density function

([A1
n], . . . , [Aν

n]) 7→ p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n]) from  +
n (!) × . . . ×  +

n (!) into !+ with

respect to the measure (volume element) d̃A1
n × . . .× d̃Aν

n on S
n(!)× . . .× S

n(!) is written

as

p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n]) = p[A1
n]([A

1
n]) × . . .× p[Aν

n]([A
ν
n]) , (72)

which means that [A1
n], . . . , [Aν

n] are independent random matrices.

6. Experimental estimation of the dispersion parameters of the non-parametric proba-

bilistic model

Let δM , δD and δK be the dispersion parameters of the random generalized mass, damping and

stiffness matrices . Since the dispersion parameters have to be independent of n (see Section 5.2

(C)), the dispersion parameters can be estimated by using the experimental matrices [ M exp
ν ],

[ Dexp
ν ] and [ Kexp

ν ] for a dimension ν < n. Here, a very simple procedure is proposed for

estimating δM , δD and δK (this procedure corresponds to the first step of the procedure

based on the maximum likelihood principle and developed in Ref. [25]. The first step of this

procedure consists in associating with the ν first computed elastic modes of the mean model,

the corresponding ν experimental elastic modes obtained by performing the experimental

modal analysis [29,30] of the real system. Let 0 < ω
exp
j1

≤ . . . ≤ ω
exp
jν

be the set of the ν

experimental eigenfrequencies corresponding to the set of the ν first computed eigenfrequencies

0 < ω1 ≤ . . . ≤ ων of the mean model. In order to simplify the development, the same

set of degrees of freedom for the mean model and for the real system is considered, but

this assumption can easily be released. Thus, for a given set of m degrees of freedom,

let [Ψexp
ν ] be the (m × ν) real matrix whose columns are the ν experimental elastic modes

associated with eigenfrequencies 0 < ω
exp
j1

≤ . . . ≤ ω
exp
jν

and let [Φν ] be the (m × ν) real

matrix whose columns are the ν first computed elastic modes associated with eigenfrequencies

0 < ω1 ≤ . . . ≤ ων . Let [ M̃ exp
ν ], [ D̃exp

ν ] and [ K̃exp
ν ] be the corresponding experimental

generalized mass, damping and stiffness matrices of the real system directly deduced from the

experimental modal analysis of the real system and such that [ M̃ exp
ν ]αβ = µexp

jα
δαβ , [ D̃exp

ν ]αβ =

2ξexp
jα

µexp
jα

ωexp
jα

δαβ and [ K̃exp
ν ]αβ = µexp

jα
(ωexp

jα
)2δαβ . Let [Mν ], [Dν ] and [Kν ] be the random

matrices associated with the mean reduced model of dimension ν and defined in Section 4.4.
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Since the experimental elastic modes differ from the elastic modes constructed with the mean

model (due to uncertainties), matrices [ M̃ exp
ν ], [ D̃exp

ν ] and [ K̃exp
ν ] are not represented in the

same vector subspace than [Mν ], [Dν ] and [Kν ] (or equivalently than [ Mν ], [ Dν ] and [ Kν ]).

However, it can be written that

[Ψexp
ν ] q̃exp = [Φν ] qexp , (73)

in which q̃exp is the  m-vector of the experimental generalized co-ordinates and where qexp

is the corresponding  m-vector of the generalized co-ordinates in the mean-model basis. By

construction, the matrix [Ψexp
ν ]T [Ψexp

ν ] ∈ !ν(") is invertible. Introducing the left pseudo-

inverse
(
[Ψ

exp
ν )]T [Ψ

exp
ν ]

)−1
[Ψ

exp
ν ]T ∈ !ν,m(") of [Ψ

exp
ν ] ∈ !m,ν("), Eq. (73) yields

q̃exp = [Sexp
ν )] qexp , (74)

in which the matrix [Sexp
ν ] ∈ !ν(") is written as

[Sexp
ν ] =

(
[Ψexp

ν ]T [Ψexp
ν ]

)−1
[Ψexp

ν ]T [Φν ] . (75)

The matrix transformation defined by Eqs. (74)-(75) allows the experimental matrices [M̃
exp
ν ],

[D̃exp
ν ] and [K̃exp

ν ] to be transformed into the matrices [M exp
ν ], [Dexp

ν ] and [Kexp
ν ], which are

defined by

[M exp
ν ] = [Sexp

ν ]T [M̃ exp
ν ] [Sexp

ν ] ∈ !+
ν (")

[Dexp
ν ] = [Sexp

ν ]T [D̃exp
ν ] [Sexp

ν ] ∈ !+
ν (")

[Kexp
ν ] = [Sexp

ν ]T [K̃exp
ν ] [Sexp

ν ] ∈ !+
ν (") . (76)

Noting A as M , D or K, one can then introduce the matrix [Gexp
ν ] ∈ !+

n (") such that

[A
exp
ν ] = [LAν

]T [G
exp
ν ] [LAν

] in which the invertible upper triangular matrix [LAν
] ∈ !ν(")

is such that [Aν ] = [LAν
]T [LAν

] ∈ !+
n ("). Therefore, matrix [Gexp

ν ] is given by the equation,

[Gexp
ν ] = [LAν

]−T [Aexp
ν ] [LAν

]−1 ∈ !+
ν (") . (77)

Consequently, one realization [G
exp
ν ] of random matrix [Gν] defined by Eq. (65) has effectively

been constructed. Since, only one realization [Aexp
ν ] of random matrix [Aν ] is assumed to be

available and is given by Eq. (76) for A equal to M , D or K, the dispersion parameter δA

of random matrix [Aν ] which is defined by Eq. (70) can then be estimated by the following

equation

δA ≃
{

1

n
‖ [Gexp

ν ] − [In] ‖2
F

}1/2

. (78)

Equation (78) gives an estimation for the dispersion parameters δM , δD and δK of random

matrices [Mn], [Dn] and [Kn] for any value of n, knowing one realization [M̃ exp
ν ], [D̃exp

ν ] and

[K̃
exp
ν ] of the real system resulting from the experimental modal analysis.
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7. Solving the stochastic equation of the dynamical system with the non-parametric

probabilistic model of random uncertainties

This section deals with (1) the method for solving the stochastic equation of the dynamical sys-

tem with the non-parametric probabilistic model of random uncertainties, (2) the convergence

aspects and (3) the construction of the confidence region of the random frequency response

functions.

7.1. Solving the stochastic equation

For all ω fixed in frequency band B, the stochastic equation (45) has to be solved with the

probabilistic model of random matrices [Mn], [Dn] and [Kn] defined by Eq. (72) with Eq. (65)

and Eqs. (57)-(58) which define the probability density function of each random matrix whose

dispersion parameter is defined by Eq. (70). It is assumed that the dispersion parameters δM ,

δD and δK of random matrices [Mn], [Dn] and [Kn] are given and are, for instance, estimated

by using the results presented in Section 6 if experimental data are available.

Due to the properties defined by Eqs. (46) to (48) for each random matrix, it is proved (see

Ref. [15] or [23]) that the family {Qn(ω) , ω ∈ B} of random variables verifying Eq. (45)

is a second-order stochastic process. The system of the marginal probability distributions of

this stochastic process can explicitely be written but required the calculation of a very large

number of high-dimension integrals on  γ with γ = 3 × n × (n + 1)/2. Consequently, such

an approach is not constructive and is then substituted by the use of the Monte Carlo numerical

simulation method [36] which is very efficient due to the use of a reduced model having a

small dimension. Each independent realizations [Mn(θk)], [Dn(θk)] and [Kn(θk)] of random

matrices [Mn], [Dn] and [Kn] are simply constructed by using Eq. (65) and the algebraic

representation defined in Section 5.1 (E), that is to say by using Eq. (60). Consequently, for all

ω fixed in B, the realization Qn(ω; θk) is computed by solving the linear matrix equation,

(−ω2[Mn(θk)] + iω[Dn(θk)] + [Kn(θk)])Qn(ω; θk) = fn(ω) , ω ∈ B . (79)

For each x fixed in ]0 , h1[, the corresponding realization V n(x, ω; θk) of the second-order

random variable V n(x, ω) defined by Eq. (44) is given by

V n(x, ω; θk) =
n∑

α=1

Qα(ω; θk) vα(x) , (80)

in which Qn(ω; θk) = (Q1(ω; θk), . . . , Qn(ω; θk)).
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7.2. Convergence of the stochastic solution

Let be I =]0 , h1[. The convergence of the stochastic solution V n(x, ω) has to be analysed with

respect to the different parameters related to the approximation constructed. The first parameter

is the reduced model dimension n. The convergence of stochastic field {V n(x, ω), x ∈ I, ω ∈
B} towards a second-order stochastic field {V (x, ω), x ∈ I, ω ∈ B} when dimension n goes

to infinity can be analysed in introducing the following norm induced by Eq. (13),

|||V − V n||| =

{∫

ω∈B

∫ h
1

0

E{|V (x, ω)− V n(x, ω)|2} dx dω

}1/2

. (81)

Due to the fundamental mathematical property defined by Eq. (62), it can be proved (see

Ref. [15]) that the sequence of second-order stochastic fields {V n(x, ω), x ∈ I, ω ∈ B}n≥1

converges to a second-order stochastic field {V (x, ω), x ∈ I, ω ∈ B} when dimension n

goes to infinity for the norm defined by Eq. (81). The second parameter is the number ns

of realizations used for constructing the statistics by the Monte Carlo numerical simulation

method. From Section 3.5 and Eq. (44), it can easily be deduced that

|||V n||| =

{∫

ω∈B

n∑

α=1

E{|Qn
α(ω)|2} dω

}1/2

. (82)

Convergence with respect to dimension n of the reduced model and to number ns of realizations

used in the Monte Carlo numerical method, can then be studied by constructing the following

function,

(ns, n) 7→ Conv(ns, n) =

{
1

ns

ns∑

k=1

∫

ω∈B

‖Qn(ω; θk)‖2 dω

}1/2

. (83)

7.3. Confidence region of the random frequency response functions

It is interesting to construct the confidence region associated with a probability level Pc (by

example, Pc = 0.98) for the modulus {|V n(x, ω)|, ω ∈ B} of the random frequency response

function at a given point x fixed in ]0 , h1[. The confidence region is construted by using the

quantiles. For n, x and ω fixed, let W (ω) be the positive-valued random variable such that

W (ω) = |V n(x, ω)|. Let FW (ω) be the distribution function (continuous from the right) of

random variable W (ω) which is such that FW (ω)(w) = P (W (ω) ≤ w) . For 0 < p < 1, the

pth quantile or fractile of FW (ω) is defined as

ζ(p) = inf{w : FW (ω)(w) ≥ p} . (84)
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Then, the upper envelope w+(ω) and the lower envelope w−(ω) of the confidence region are

defined by

w+(ω) = ζ(1 − Pc) , w−(ω) = ζ(Pc) . (85)

The estimation of w+(ω) and w−(ω) is performed by using the sample quantiles [26]. Let

w1(ω) = W (ω; θ1), . . . , wns
(ω) = W (ω; θns

) be the ns independent realizations of random

variable W (ω) associated with the independent realizations V n(x, ω; θ1), . . . , V
n(x, ω; θns

)

computed in Section 7.1. Let w̃1(ω) < . . . < w̃ns
(ω) be the order statistics associated with

w1(ω), . . . , wns
(ω). Therefore, one has the following estimation

w+(ω) ≃ w̃j+(ω) , j+ = fix(ns(1 − Pc)) , (86)

w−(ω) ≃ w̃j−(ω) , j− = fix(nsPc) , (87)

in which fix(z) is the integer part of the real number z.

8. Numerical simulation and validation for the simple example in linear elastodynamics

In this section, a numerical simulation of the simple example introduced in Sections 3 and 4 is

presented in order to validate the non-parametric probabilistic approach of model uncertainties.

An "experimental" response of the real system is constructed by numerical simulation by using

a 3D elastodynamic model of the real system and the finite element method with a sufficiently

large number of degrees of freedom.

8.1. Data for the numerical simulation

(A) Designed system: The data relative to the geometry defined in Section 3.1 are: h1 = 10 m,

h2 = 1 m and h3 = 1.5 m. The designed structure is simply supported as shown in Fig.2.

(B) Real system: The frequency band B is the band ]0 , 1000] Hz which means that ωmax =

2000×π rad/s. The real system (see Fig. 3) is excited by the external load defined in Section

3.2 with x0 = 4.25 m, ε = 0.06 m and pexp(ω) = (4ε2)−1  B(ω) in which  B(ω) = 1 if

ω ∈ B and  B(ω) = 0 if ω 6∈ B. Concerning the boundary conditions, the displacement field

is zero on the part of the boundary defined by {(x, y, z) : x = 0 , y ∈] − 0.5 ,−0.375[ , z ∈
] − 0.75 , 0.75[} and by {(x, y, z) : x = 10 , y ∈] − 0.5 ,−0.375[ , z ∈] − 0.75 , 0.75[}.

(C) Mean model: The mean model input defined in Section 3.3 is the point force located

at x = 4.25 m with an intensity g(ω) = − B(ω). The composite material of the designed

system is modelled by a homogeneous isotropic elastic material whose nominal parameters are
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y = 1010 N/m2, ρ = 1700 Kg/m3 and ξ = 0.01. The eigenfrequencies of the mean system

are given by Eq. (10) and are such that ν1 =11, ν2 =44, ν3 =99, ν4 =176, ν5 =275, ν6 =

396, ν7 =539, ν8 =704, ν9 =891, ν10 =1100, . . . , ν80 =70385 Hz.

8.2. Generating an ”experimental” response of the real system by numerical simulation

An ”experimental” response of the real system is obtained (1) in constructing a 3D elastic

model of the real system defined in Section 8.1 (B), (2) in discretizing the real system by the

finite element method and (3) in solving the equation with the modal analysis. The material is

taken as homogeneous and isotropic with a Young modulus 1010 N/m2, a Poisson coefficient

0.15, a mass density 1700 Kg/m3. The modal damping rates are the realizations of a uniform

random variable on [0.009 , 0.011] whose mean value is 0.01. The finite element mesh is shown

in Fig. 6 and is constituted of 80 × 8 × 12 = 7680 three-dimensional 8-nodes solid elements.

There are 9477 nodes and a total of 28275 degrees of freedom (due to the boundary conditions,

the displacement is zero for 2 × 26 nodes). A point force (0,− B(ω), 0) is applied to the

node of co-ordinates (4.25, 0.5, 0.75). The finite element approximation of the displacement

field (uexp, vexp, wexp) is computed on frequency band B by using the modal analysis with the

first 150 elastic modes. There are 101 eigenfrequencies in band B and 49 eigenfrequencies in

frequency band [1000, 1197] Hz. The fundamental eigenfrequency is ν
exp
1 = 16 Hz. There are

14 eigenfrequencies in frequency band [0, 230] Hz. The eigenfrequencies of the first 5 flexural

modes corresponding to the first 5 elastic modes of the mean model (Euler beam) and having

respectively 2 to 6 nodes (zero Oy-displacement) on the neutral fiber are ν
exp
j1

= 16, ν
exp
j2

=

40, νexp
j3

=91, νexp
j4

=153, νexp
j5

=220, Hz with j1 = 1, j2 = 3, j3 = 7, j4 = 10, j5 = 14.

8.3. Comparison of the mean model prediction with the ”experimental” response of the real

system

For k = 1, . . . , 5, the difference between eigenfrequency νexp
jk

of the real system and the

corresponding eigenfrequency νk of the mean system are due to the boundary conditions and

to the model error (three-dimensional slender elastic body modelled by an Euler beam). In the

present case, there is no real interest in updating the mean model by using ”experimental”data

related to the real system. Six observation points P1, P2, P3, P4, P5 and P6 belonging to the

line (x, 0, 0), x ∈]0, h1[ (neutral fiber) and located at x1 = 1.875, x2 = 3.125, x3 = 4.250,

x4 = 5.000, x5 = 6.375 and x6 = 9.250 m respectively, are considered. Observation

point P3 corresponds to the driven point (excitation point). The frequency response functions

are computed on the frequency band ]0 , 1000] Hz in 1000 frequency points corresponding
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to a frequency step 1 Hz. For each observation point Pk, k = 1, . . . , 6, the frequency

response function ω 7→ vn(xk, ω) is computed by using Eqs. (7) to (12) with n = 80, and

the ”experimental” response ω 7→ vexp(xk, 0, 0; ω) is obtained as explained in Section 8.2.

Each figure 8 is related to a given observation point Pk, k = 1, . . . , 6 and displays the mean

model prediction ω 7→ log10{|vn(xk, ω)|} compared with the ”experimental” response of the

real system ω 7→ log10{|vexp(xk, 0, 0; ω)|}. Figures 8 show that the mean model predictions

are reasonably good for frequencies lower than 120 Hz and can locally be very different for

frequencies greater than 120 Hz.

8.4. Estimation of the dispersion parameters using the ”experimental” response of the real

system

An estimation of the dispersion parameters δM , δD and δK of the random generalized mass,

damping and stiffness matrices is performed by using the method presented in Section 6.

The experimental matrices [ M̃ exp
ν ], [ D̃exp

ν ] and [ K̃exp
ν ] are constructed by using the 5 ”ex-

perimental” elastic modes of the real system computed in Section 8.2 whose ”experimental”

eigenfrequencies are {ωexp
jk

= 2πνexp
jk

, k = 1, . . . , ν} with ν = 5 < n. These ”experimental”

eigenfrequencies and the associated ”experimental” elastic modes correspond to the eigenfre-

quencies {ωk = 2πνk, k = 1, . . . , ν} of the first 5 flexural modes of the mean model (Euler

beam). The (m × ν) real matrix [Φν ] is constructed by using Eq. (11) for m = 79 nodes

located at {xℓ = 10 ℓ/80 , ℓ = 1, . . . , m}. The (m × ν) real matrix [Ψexp
ν ] is constructed by

using the ”experimental” elastic modes computed in Section 8.2 with the m degrees of freedom

corresponding to the free Oy-displacements at the finite element nodes located on the neutral

fiber at {xℓ = 10 ℓ/80 , ℓ = 1, . . . , m}. Such an estimation yields δM = 0.29, δD = 0.30 and

δK = 0.68.

8.5. Prediction with the non-parametric probabilistic model of random uncertainties and

comparisons with the mean model prediction and with the ”experimental” response of the real

system

(A) Data related to the non-parametric approach: The calculations are carried out by using the

method presented in Section 7.1 with the dispersion-parameter values δM = 0.29, δD = 0.30

and δK = 0.68 estimated in Section 8.4.

(B) Convergence of the stochastic solution: Convergence with respect to dimension n of the

reduced model and to number ns of realizations used in the Monte Carlo numerical method, is
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studied as explained in Section 7.2. Figure 7 displays the graph of function ns 7→ Conv(ns, n)

defined by Eq. (83) for different values of n. This figure shows that a reasonable convergence

is reached for n ≥ 80 and ns ≥ 1500.

(C) Confidence region of the random frequency response functions: The confidence region of

the modulus of the frequency response function at each observation point P1, P2, P3, P4, P5

or P6 defined in Section 8.3, is calculated by using the method presented in Section 7.3. The

upper and lower envelopes (defined by Eq. (85)) delimiting the confidence region for frequency

response at observation point Pk are denoted by w+
k (ω) and w−

k (ω). The calculations are

carried out with a probability level Pc = 0.98 and for n = 80 and ns = 3000. Figures 9

display the comparisons between the mean model response predictions, the ”experimental”

responses of the real system and the confidence region predictions of the stochastic system

resulting from the use of the non-parametric probabilistic approach of random uncertainties.

Each figure 9 is related to a given observation point Pk, k = 1, . . . , 6 and displays (1) the

graph of function ω 7→ log10{|vn(xk, ω)|} of the mean model, (2) the graph of function

ω 7→ log10{|vexp(xk, 0, 0; ω)|} of the ”experimental” response of the real system and (3) the

confidence region (grey region) delimited by the upper envelope ω 7→ log10{w+
k (ω)} and the

lower envelope ω 7→ log10{w−
k (ω)} of the stochastic system.

9. Conclusions

This paper gives a comprehensive overview of a non-parametric probabilistic approach recently

introduced for taking into account model uncertainties in structural dynamics. The foundations

of this approach are given in simple terms and all the concepts and the tools introduced in the

general theory are illustrated in using a simple example. In addition, this paper gives a new

validation point of the non-parametric theory of random uncertainties in structural dynamics

and vibration analysis.
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CAPTIONS ACCOMPANYING EACH FIGURE

Fig. 1. Designed system, real system and mean model as the predictive model of the real

system.

Fig. 2. Simple example of a designed system: linear elastodynamics of a slender three-

dimensional elastic medium.

Fig. 3. Simple example of a real system: manufactured system from the designed system

defined in Fig. 2.

Fig. 4. Simple example of a mean model: predictive model of the real system resulting from

the designed system defined in Fig. 2.

Fig. 5. The set Apar,n is a subset of  +
n (!), the matrix [ A

exp
n ] belongs to  +

n (!) but, due to

model uncertainties, [ Aexp
n ] does not belong to Apar,n.

Fig. 6. Finite element mesh of the real system defined in Fig. 3.

Fig. 7. Convergence: graphs of functions ns 7→ log10{Conv(ns, n)} for n = 20, n = 30 and

60 (three lower thin solid lines, for n = 80, n = 120 and n = 160 (three upper lines: n = 80

(thin solid line), n = 120 (mid solid line) and n = 160 (thick solid line).

Fig. 8. Mean model responses (thin solid lines) compare to the ”experimental” responses

of the real system (thick solid lines). For each observation point Pk, k = 1, . . . , 6, graph of

function ν 7→ log10{|vn(xk, ν)|} (thin solid line) compare with the graph of function ν 7→
log10{|vexp(xk, 0, 0; ν)|} (thick solid line). Horizontal frequency axis ν in Hz. Observation

points: P1 (up left figure), P2 (up right figure), P3 (medium left figure), P4 (medium right

figure), P5 (down left figure), P6 (down right figure).

Fig. 9. Confidence region predictions of the stochastic system (grey regions) compare with

the mean model responses (thin solid lines) and with the ”experimental” responses of the

real system (thick solid lines). For each observation point Pk, k = 1, . . . , 6, (1) graphs of

functions ν 7→ log10{w+
k (ν)} and ν 7→ log10{w−

k (ν)} delimiting the confidence region (grey

region) of the stochastic system, (2) graph of function ν 7→ log10{|vn(xk, ν)|} (thin solid line)

of the mean model response and (3) graph of function ν 7→ log10{|vexp(xk, 0, 0; ν)|} (thick

solid line) of the ”experimental” response of the real system. Horizontal frequency axis ν in

Hz. Observation points: P1 (up left figure), P2 (up right figure), P3 (medium left figure), P4

(medium right figure), P5 (down left figure), P6 (down right figure).
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Figures. 8: top left and right, medium left and right, bottom left and right
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Figures. 9: top left and right, medium left and right, bottom left and right
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