J. D. Achenbach, Wave Propagation in Elastic Solids, Journal of Applied Mechanics, vol.41, issue.2, 1987.
DOI : 10.1115/1.3423344

A. Akyurtlu and D. H. Werner, BI-FDTD: A Novel Finite-Difference Time-Domain Formulation for Modeling Wave Propagation in Bi-Isotropic Media, IEEE Transactions on Antennas and Propagation, vol.52, issue.2, pp.416-425, 2004.
DOI : 10.1109/TAP.2004.823956

K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, 1976.

P. Bonnet, Numerical Modeling of Scattering Problems Using a Time Domain Finite Volume Method, Journal of Electromagnetic Waves and Applications, vol.30, issue.3, pp.1165-1189, 1997.
DOI : 10.1163/156939397X01070

E. Bossy, Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.51, issue.1, pp.71-80, 2004.
DOI : 10.1109/TUFFC.2004.1268469

D. Clouteau, M. Arnst, T. M. Al-hussainia, and G. Degrande, Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium, Journal of Sound and Vibration, vol.283, issue.1-2, pp.173-199, 2005.
DOI : 10.1016/j.jsv.2004.04.010

URL : https://hal.archives-ouvertes.fr/hal-00018946

N. X. Dong and E. X. Guo, The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity, Journal of Biomechanics, vol.37, issue.8, pp.1281-1287, 2004.
DOI : 10.1016/j.jbiomech.2003.12.011

A. T. De-hoop, A modification of cagniard???s method for solving seismic pulse problems, Applied Scientific Research, Section B, vol.34, issue.1, pp.349-356, 1960.
DOI : 10.1007/BF02920068

A. T. De-hoop, Acoustic radiation from an impulsive point source in a continuously layered fluid???An analysis based on the Cagniard method, The Journal of the Acoustical Society of America, vol.88, issue.5, pp.2376-2388, 1990.
DOI : 10.1121/1.400080

B. Faverjon and C. Soize, Equivalent acoustic impedance model. Part 2: analytical approximation, Journal of Sound and Vibration, vol.276, issue.3-5, pp.593-613, 2004.
DOI : 10.1016/j.jsv.2003.08.054

URL : https://hal.archives-ouvertes.fr/hal-00686198

M. W. Feise, J. B. Schneider, and P. J. Bevelacqua, Finite-Difference and Pseudospectral Time-Domain Methods Applied to Backward-Wave Metamaterials, IEEE Transactions on Antennas and Propagation, vol.52, issue.11, pp.2955-2962, 2004.
DOI : 10.1109/TAP.2004.835274

P. Fellinger, R. Marklein, and K. J. Langenberg, Numerical modeling of elastic wave propagation and scattering with EFIT ??? elastodynamic finite integration technique, Wave Motion, vol.21, issue.1, pp.47-66, 1995.
DOI : 10.1016/0165-2125(94)00040-C

O. P. Gandhi, B. Gao, and J. Chen, A frequency-dependent finite-difference time-domain formulation for general dispersive media, IEEE Transactions on Microwave Theory and Techniques, vol.41, issue.4, pp.658-664, 1993.
DOI : 10.1109/22.231661

D. Givoli and J. B. Keller, A finite element method for large domains, Computer Methods in Applied Mechanics and Engineering, vol.76, issue.1, pp.41-66, 1989.
DOI : 10.1016/0045-7825(89)90140-0

D. Givoli, Non-reflecting boundary conditions, Journal of Computational Physics, vol.94, issue.1, pp.1-29, 1991.
DOI : 10.1016/0021-9991(91)90135-8

D. Givoli, Numerical methods for mechanics problems in infinite domains, Studies in Applied Mechanics, 1992.

D. Givoli, Recent advances in the DtN FE Method, Archives of Computational Methods in Engineering, vol.119, issue.2, pp.71-116, 1999.
DOI : 10.1007/BF02736182

D. Givoli, B. Neta, and I. Patlashenko, Finite element analysis of time-dependent semi-infinite wave-guides with high-order boundary treatment, International Journal for Numerical Methods in Engineering, vol.2, issue.13, pp.1955-1983, 2003.
DOI : 10.1002/nme.842

P. Joly, Variational methods for time-dependant wave propagation problems " , Computational wave propagation, direct and inverse problems, LNCSE, pp.201-264, 2003.

H. M. Jurgens and D. W. Zingg, Numerical Solution of the Time-Domain Maxwell Equations Using High-Accuracy Finite-Difference Methods, SIAM Journal on Scientific Computing, vol.22, issue.5, pp.1675-1696, 2001.
DOI : 10.1137/S1064827598334666

J. H. Van-der-hijden, Propagation of transient elastic waves in stratified anisotropic media, 1987.

B. L. Kennett, Seismic wave propagation in stratified media, 1983.

J. Kim and A. Papageorgiou, Discrete Wave???Number Boundary???Element Method for 3???D Scattering Problems, Journal of Engineering Mechanics, vol.119, issue.3, pp.603-625, 1993.
DOI : 10.1061/(ASCE)0733-9399(1993)119:3(603)

S. C. Kong, S. J. Lee, J. H. Lee, and Y. W. Choi, Numerical analysis of traveling-wave photodetectors' bandwidth using the finite-difference time-domain method, IEEE Transactions on Microwave Theory and Techniques, vol.50, issue.11, pp.2589-2597, 2002.
DOI : 10.1109/TMTT.2002.804508

S. W. Liu, S. K. Datta, and T. H. Ju, Transient scattering of Rayleigh-Lamb waves by a surface-breaking crack: Comparison of numerical simulation and experiment, Journal of Nondestructive Evaluation, vol.1, issue.3, pp.111-126, 1991.
DOI : 10.1007/BF00567442

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Transactions on Electromagnetic Compatibility, vol.32, issue.3, pp.222-227, 1990.
DOI : 10.1109/15.57116

K. Macocco, Q. Grimal, S. Naili, and C. Soize, Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction: Application to cortical bone evaluation, The Journal of the Acoustical Society of America, vol.119, issue.2, pp.729-740, 2006.
DOI : 10.1121/1.2146110

URL : https://hal.archives-ouvertes.fr/hal-00686156

N. K. Madsen and R. W. Ziolkowski, Numerical solution of Maxwell's equations in the time domain using irregular nonorthogonal grids, Wave Motion, vol.10, issue.6, pp.583-596, 1988.
DOI : 10.1016/0165-2125(88)90013-3

A. Mourad and M. Deschamps, Lamb???s problem for an anisotropic half???space studied by the Cagniard de Hoop method, The Journal of the Acoustical Society of America, vol.97, issue.5, pp.3194-3197, 1995.
DOI : 10.1121/1.411823

C. C. Ma, S. W. Liu, and C. M. Chang, Inverse calculation of material parameters for a thin-layer system using transient elastic waves, The Journal of the Acoustical Society of America, vol.112, issue.3, pp.811-821, 2002.
DOI : 10.1121/1.1496763

R. Ohayon and C. Soize, Structural Acoustics and Vibration, The Journal of the Acoustical Society of America, vol.109, issue.6, 1998.
DOI : 10.1121/1.1352086

URL : https://hal.archives-ouvertes.fr/hal-00689039

S. Palaniswamy, W. F. Hall, and V. Shankar, Numerical solution to Maxwell's equations in the time domain on nonuniform grids, Radio Science, vol.14, issue.4, pp.905-912, 1996.
DOI : 10.1029/96RS00783

A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, Acoust. Soc. Am. Publications on Acoustics, 1981.

E. Savin and D. Clouteau, Elastic wave propagation in a 3-D unbounded random heterogeneous medium coupled with a bounded medium. Application to seismic soil-structure interaction (SSSI), International Journal for Numerical Methods in Engineering, vol.125, issue.4, pp.607-630, 2002.
DOI : 10.1002/nme.442

URL : https://hal.archives-ouvertes.fr/hal-00273477

X. Sheng, C. J. Jones, and D. J. Thompson, Prediction of ground vibration from trains using the wavenumber finite and boundary element methods, Journal of Sound and Vibration, vol.293, issue.3-5, pp.3-5, 2006.
DOI : 10.1016/j.jsv.2005.08.040

D. M. Sullivan, Frequency-dependent FDTD methods using Z transforms, IEEE Transactions on Antennas and Propagation, vol.40, issue.10, pp.1223-1230, 1992.
DOI : 10.1109/8.182455

A. Taflove, Review of the formulation and applications of the finitedifference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Wave Motion, vol.1, issue.6, pp.547-582, 1988.

A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, 1995.

P. Thoma and T. Weiland, Numerical stability of finite difference time domain methods, IEEE Transactions on Magnetics, vol.34, issue.5, pp.2740-2743, 1998.
DOI : 10.1109/20.717636

M. D. Verweij, Modeling space???time domain acoustic wave fields in media with attenuation: The symbolic manipulation approach, The Journal of the Acoustical Society of America, vol.97, issue.2, pp.831-843, 1995.
DOI : 10.1121/1.412128

J. Virieux, wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.51, issue.4, pp.889-901, 1986.
DOI : 10.1190/1.1442147

C. Zhou, N. N. Hsu, J. S. Popovics, and J. D. Achenbach, Response of two layers overlaying a half-space to a suddenly applied point force, Wave Motion, vol.31, issue.3, pp.255-272, 2000.
DOI : 10.1016/S0165-2125(99)00020-7

O. C. Zienkiewicz and R. L. , Taylor The finite element method, 1991.