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bUniversité Paris 6, Laboratoire d’Imagerie Paramétrique, France
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Abstract

This paper introduces a new numerical hybrid method to simulate transient wave

propagation in a multilayer semi-infinite medium, which can be fluid or solid, sub-

jected to given transient loads. The medium is constituted of a finite number of

unbounded layers with finite thicknesses. The method has a low numerical cost and

is relatively straightforward to implement, as opposed to most available numerical

techniques devoted to similar problems. The proposed method is based on a time-

domain formulation associated with a 2D-space Fourier transform for the variables

associated with the two infinite dimensions and uses a finite element approximation

in the direction perpendicular to the layers. An illustration of the method is given

for an elasto-acoustic wave propagation problem: a three-layer medium constituted

of an elastic layer sandwiched between two acoustic fluid layers and excited by an

acoustic line source located in one fluid layer.

Key words: Elastic and acoustic waves, finite element, multilayers, time-domain,

low numerical cost

1 Introduction

The analysis of wave phenomena in layered elastic and acoustic media plays a

fundamental role in the fields of non-destructive testing, geophysics and seis-

mology. The textbooks devoted to the subject [1; 2; 7; 8; 22; 26] have reviewed
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various formulations which take advantage of the problem symmetry to formu-

late algebraic problems for which analytical or semi-analytical solutions can be

derived. The boundary value problem is usually solved either in the frequency-

domain or in the time domain. Concerning the frequency-domain (Fourier

transform with respect to time) two main strategies are generally used. The

first one consists in a 3D-spectral (or 3D-wave-number) domain formulation

(Fourier transform with respect to the space domain) [9; 27; 29; 38; 46] and the

second one is a 2D-spectral (or 2D-wave-number) domain formulation (Fourier

Transform with respect to the two infinite dimensions of the space domain)

for which the boundary value problem is solved in a 1D-space domain (cor-

responding to the third finite dimension )[13; 39]. Such methods can induce

numerical difficulties which can be avoided by using an adapted algebraic

formulation which can be tricky to implement (see for instance [13]).

Concerning time-domain methods, two strategies are generally used. The first

one consists in using numerical methods such as the finite volume time-domain

method [5], the finite difference time-domain method [3; 14–16; 24; 28; 30; 32;

36; 40–43; 45] and the finite element method [4; 17–21; 47]. The second strat-

egy consists in using analytical methods such as generalized-ray/Cagniard-de

Hoop technique which is, as far as we know, the only available time-domain

exact analytical method [8; 11; 12]. Although the theoretical time-domain for-

mulations exist for complex situations (see for instance [12; 25; 31; 33; 34; 44])

such as 3D problem, anisotropic layers, property gradients, or attenuating me-

dia, analytical methods are hardly useful in practice, when several layers are

involved, due tricky and configuration-specific implementations.

The purpose of this paper is to present a fast, hybrid numerical method to sim-

ulate the transient elastic wave propagation in multilayer semi-infinite media

subjected to given transient loads. The proposed method is based on a time-

domain formulation associated with a 2D-space Fourier transform for the two

infinite layer dimensions and uses a finite element approximation in the di-

rection perpendicular to the layers. This is an extension of semi-analytical

methods [47] for which the symmetry of the problem is taken into account by
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applying a spatial discrete Fourier transform for the directions for which the

system is periodic. In this paper, the system is not periodic in any directions.

Nevertheless, the mechanical and geometrical properties of the systems under

consideration are assumed to be homogeneous for the two directions parallel

to the layers. A spatial Fourier transform along these directions is then applied

to the equations of boundary value problem. Generally, people also use a fre-

quency formulation by applying a Fourier transform in time. Because the pro-

posed method uses a time-domain formulation, the computational cost of the

transient response of the system is expected to be low at relatively short times

compared to the techniques based on Fourier transform in time. Note that the

use of a Fourier transform to go in the frequency domain would require the

calculation over a broad frequency band, thus increasing the numerical cost.

Furthermore, the method is relatively straightforward to implement. The pro-

posed method is an alternative to analytical techniques in complex situations

but is limited to simple geometrical configuration (unbounded plane layers);

for more complex geometries, finite elements or finite difference methods must

be used.

The method can be used for 3D problems and arbitrary number of layers.

However, in the present paper, for the purpose of illustration, the principle of

the method is detailed for a particular 2D configuration in a layered medium

consisting of a one elastic anisotropic layer sandwiched between two acoustic

layers. An acoustic line source located in one of the two acoustic fluid layers

generated the wave motion in the layered medium.

First, the 3D boundary value problem is written in 1D-space and 2D-spectral

domains with a time-domain formulation (sections 2). Then, the equations are

specified for the particular 2D problem used for illustration (sections 3). In

section 3, the derivation of the space-spectral problem is given. In section 5,

the weak formulation of the 1D-space, time-domain, boundary problem is in-

troduced and the finite element approximation for the 1D-space is constructed

(section 6). The implicit time integration scheme used for solving the differen-

tial equation in time is explained in section 7. The 2D-space solution in time is
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then obtained by an inverse 1D-space Fourier transform. Section 8 is devoted

to a numerical example which demonstrates the applicability of the method

to investigate elasto-acoustics wave phenomena.

2 Three dimensional boundary value problem in the 3D-space with

a time-domain formulation

We consider a three-dimensional multilayer medium composed of one elastic

solid layer sandwiched between two acoustic fluid layers (see Figure 1). Let

R(O, e1, e2, e3) be the reference Cartesian frame where O is the origin of the

space and (e1, e2, e3) is an orthonormal basis for this space. The coordinate

of the generic point x in
 

is specified by (x1, x2, x3). The thicknesses of the

layers are denoted by h1, h and h2. The first acoustic fluid layer occupies the

open unbounded domain Ω1 , the second acoustic fluid layer occupies the open

unbounded domain Ω2 and the elastic solid layer occupies the open unbounded

domain Ω. Let ∂Ω1 = Γ1 ∪ Γ0, ∂Ω = Γ0 ∪ Γ and ∂Ω2 = Γ ∪ Γ2 (see Figure 1)

be respectively the boundaries of Ω1, Ω and Ω2 in which Γ1, Γ0, Γ and Γ2 are

the planes defined by

Γ1 = {x1 ∈
 

, x2 ∈
 

, x3 = z1}
Γ0 = {x1 ∈

 
, x2 ∈

 
, x3 = 0}

Γ = {x1 ∈
 

, x2 ∈
 

, x3 = z}
Γ2 = {x1 ∈

 
, x2 ∈

 
, x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore, the domains Ω1,

Ω and Ω2 are unbounded along the transversal directions e1 and e2 whereas

they are bounded along the vertical direction e3.

The boundary conditions at the interfaces between solid and fluids are re-

spectively defined by Eqs. (3) , (6) and (11) corresponding to the usual

boundary conditions for acoustic fluids and linear elasticity for the solid (for

instance, we refer the reader to [35; 37]).

The displacement field of a particle located in point x of Ω and at time t > 0 is
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denoted by u(x, t) = (u1(x, t), u2(x, t), u3(x, t)). For all x belonging to Ω1 and

for all time t > 0, the disturbance of the pressure of the acoustic fluid layer

occupying the domain Ω1 is denoted by p1(x, t). The boundary value problem

for this acoustic fluid layer is written as

1

K1

∂2p1

∂t2
− 1

ρ1
∆p1 =

1

ρ1

∂Q

∂t
, x ∈ Ω1 (1)

p1 = 0 , x ∈ Γ1 (2)

∂p1

∂x3
= −ρ1

∂2u3

∂t2
, x ∈ Γ0 (3)

in which K1 = ρ1 c2
1 where c1 and ρ1 are, respectively,the wave velocity in

the fluid and the mass density of the fluid at equilibrium; ∆ is the Lapla-

cian operator with respect to x and Q(x, t) is the acoustic source density at

point x = (x1, x2, x3) and at time t > 0. This acoustic fluid is assumed to be

subjected to an impulse line source located at positions (xS
1 , xS

2 , xS
3 ) where xS

1

and xS
3 are given parameters fixed in

 
and where xS

2 runs in
 
. The acoustic

source density is assumed to be such that

∂Q

∂t
(x, t) = ρ1 F (t)δ0(x1 − xS

1 )δ0(x3 − xS
3 ) , (4)

where t 7→ F (t) is a given function and δ0 is the Dirac function in
 

at the

origin.

The displacement field u of the solid elastic medium occupying the domain Ω

verifies the following boundary value problem,

ρ
∂2u

∂t2
− div  = 0 , x ∈ Ω (5)

 n = −p1 n , x ∈ Γ0 (6)

 n = −p2 n , x ∈ Γ (7)

in which ρ is the mass density and  (x, t) is the Cauchy stress tensor of the

solid elastic medium at point x and at time t > 0, n is the outward unit

normal to domain Ω and div is the divergence operator with respect to x. The

constitutive equation of the solid elastic medium is written as

 (x, t) =
3∑

i,j,k,h=1

cijkhεkh(x, t) ei ⊗ ej (8)
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in which
∑3

i,j,k,h=1 cijkhei ⊗ ej ⊗ ek ⊗ eh is the elasticity tensor of the medium

and εkh = 1
2
(∂uk

∂xh

+ ∂uh

∂xk

) is the linearized strain tensor.

For all x belonging to Ω2 and for all time t > 0, the disturbance p2(x, t) of the

pressure of the acoustic fluid occupying the domain Ω2 is such that

1

K2

∂2p2

∂t2
− 1

ρ2
∆p2 = 0 , x ∈ Ω2 (9)

p2 = 0 , x ∈ Γ2 (10)

∂p2

∂x3
= −ρ2

∂2u3

∂t2
, x ∈ Γ (11)

in which K2 = ρ2 c2
2 where c2 and ρ2 are, respectively, the wave velocity in the

fluid and the mass density of the fluid at equilibrium.

Furthermore, the system is at rest at time t = 0. Consequently, we have

p1(x, 0) = 0 , x ∈ Ω1 ∪ ∂Ω1 (12)

u(x, 0) = 0 , x ∈ Ω ∪ ∂Ω (13)

p2(x, 0) = 0 , x ∈ Ω2 ∪ ∂Ω2 (14)

3 Two dimensional boundary value problems in the 2D-space with

a time-domain formulation

At t = 0, a line source parallel to (O; x2), placed in the fluid Ω1 at a given

distance from the interface Γ0 generates a cylindrical wave. Due to the nature

of the source and to the geometrical configuration, the transverse waves polar-

ized in the (e1, e2) plane are not excited. The present study is conducted in the

plane (O; e1, e3). The total elasto-acoustic wave motion will be independent

of x2, hence all derivatives with respect to x2 vanish in the partial differential

equations that govern the wave motion. Consequently, coordinate x2 is implicit

in the mathematical expressions to follow. In the following, in order to sim-

plify the notation, u is rewritten as u(x1, x3, t) = (u1(x1, x3, t), u3(x1, x3, t)).

Taking into account this symmetry, the 3D-boundary value problem yields

the following 2D-boundary value problem in the 2D-space domain which is
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written as

1

K1

∂2p1

∂t2
− 1

ρ1

∂2p1

∂x2
1

− 1

ρ1

∂2p1

∂x2
3

=
1

ρ1

∂Q

∂t
, x ∈ Ω1 (15)

p1 = 0 , x ∈ Γ1 (16)

∂p1

∂x3
= −ρ1

∂2u3

∂t2
, x ∈ Γ0 (17)

ρ
∂2u1

∂t2
− ∂σ11

∂x1
− ∂σ13

∂x3
= 0 , ρ

∂2u3

∂t2
− ∂σ13

∂x1
− ∂σ33

∂x3
= 0 , x ∈ Ω (18)

σ13 = 0 , σ33 = −p1 , x ∈ Γ0 (19)

σ13 = 0 , σ33 = −p2 , x ∈ Γ (20)

1

K2

∂2p2

∂t2
− 1

ρ2

∂2p2

∂x2
1

− 1

ρ2

∂2p2

∂x2
3

= 0 , x ∈ Ω2 (21)

p2 = 0 , x ∈ Γ2 (22)

∂p2

∂x3
= −ρ2

∂2u3

∂t2
, x ∈ Γ (23)

where

σ11 = c̃11
∂u1

∂x1
+ c̃12

∂u3

∂x3
+

√
2

2
c̃13

(
∂u3

∂x1
+

∂u1

∂x3

)
(24)

σ13 =

√
2

2
c̃31

∂u1

∂x1
+

√
2

2
c̃32

∂u3

∂x3
+

1

2
c̃33

(
∂u3

∂x1
+

∂u1

∂x3

)
(25)

σ33 = c̃21
∂u1

∂x1
+ c̃22

∂u3

∂x3
+

√
2

2
c̃23

(
∂u3

∂x1
+

∂u1

∂x3

)
(26)

in which, for {i, j} ⊂ {1, 2, 3}, c̃ij are the components of the matrix [C̃] defined

as

[C̃] =




c1111 c1133

√
2c1131

c3311 c3333

√
2c3331√

2c3111

√
2c3133 2c3131




4 One dimensional boundary value problem in the 1D-spectral do-

main with a time-domain formulation

For all x3 fixed in ]z2, z1[, the 1D-Fourier transform of an integrable function

x1 7→ f(x1, x3, t) on
 

is defined by

f̂(k1, x3, t) =
∫

 

f(x1, x3, t) ei k1 x1dx1 .
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Applying the 1D-Fourier transform to Eqs. (1) to (13) yields the 1D boundary

value problem of the system in the 1D space domain with a 1D-spectral and

time domains formulation. Such a boundary value problem is written with

respect to the functions p̂1, û and p̂2 which are respectively the 1D-Fourier

transforms of functions p1, u and p2. We then have

1

K1

∂2p̂1

∂t2
+

k2
1

ρ1

p̂1 −
1

ρ1

∂2p̂1

∂x2
3

= F (t) eik1xS
1 δ0(x3 − xS

3 ) for x3 ∈]0, z1[

p̂1 = 0 for x3 = z1

∂p̂1

∂x3
= −ρ1

∂2û3

∂t2
for x3 = 0

ρ
∂2û1

∂t2
+ ik1σ̂11 −

∂σ̂13

∂x3

= 0 , ρ
∂2û3

∂t2
+ ik1σ̂13 −

∂σ̂33

∂x1

= 0 for x3 ∈]z, 0[

σ̂13 = 0 and σ̂33 = −p̂1 for x3 = 0

σ̂13 = 0 and σ̂33 = −p̂2 for x3 = z
1

K2

∂2p̂2

∂t2
+

k2
1

ρ2

p̂2 −
1

ρ2

∂2p̂2

∂x2
3

= 0 for x3 ∈]z2, z[

p̂2 = 0 for x3 = z2

∂p̂2

∂x3

= −ρ2
∂2û3

∂t2
for x3 = z

in which

σ̂11 = −ik1c̃11û1 + c̃12
∂û3

∂x3
− ik1

√
2

2
c̃13û3 +

√
2

2
c̃13

∂û1

∂x3

σ̂13 = −ik1

√
2

2
c̃31û1 +

√
2

2
c̃32

∂û3

∂x3

− ik1
c̃33

2
û3 +

c̃33

2

∂û1

∂x3

σ̂33 = −ik1c̃21û1 + c̃22
∂û3

∂x3
− ik1

√
2

2
c̃23û3 +

√
2

2
c̃23

∂û1

∂x3

5 Weak formulation in the 1D-spectral domain with a time-domain

formulation

Let C 1 and C 2 be the function spaces constituted of all the sufficiently dif-

ferentiable complex-valued functions x3 7→ δp1(x3) and x3 7→ δp2(x3) respec-

tively, defined on ]0, z1[ and ]z2, z[. We introduce the admissible function spaces

C 1,0 ⊂ C 1 and C 2,0 ⊂ C 2 such that

C 1,0 = {δp1 ∈ C 1; δp1(z1) = 0}
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C 2,0 = {δp2 ∈ C 2; δp2(z2) = 0}

Let C be the admissible function space constituted of all the sufficiently dif-

ferentiable functions x3 7→ δu(x3) from ]z, 0[ into
 

2 where
 

is the set of all

the complex numbers.

The weak formulation of the 1D boundary value problem is written as : for

all k1 fixed in
 

and for all fixed t, find p̂1(k1, ·, t) ∈ C 1,0, û(k1, ·, t) ∈ C and

p̂2(k1, ·, t) ∈ C 2,0 such that, for all δp1 ∈ C 1,0, δu ∈ C and δp2 ∈ C 2,0,

a1

(
∂2p̂1

∂t2
, δp1

)
+ k2

1 c2
1 a1(p̂1, δp1) + b1(p̂1, δp1) + r1

(
∂2û

∂t2
, δp1

)
= f(δp1; t) ,

m

(
∂2û

∂t2
, δu

)
+s1(û, δu)+k2

1 s2(û, δu)−ik1 s3(û, δu)+r2(δu, p̂2)−r1(δu, p̂1) = 0 ,

a2

(
∂2p̂2

∂t2
, δp2

)
+ k2

1 c2
2 a2(p̂2, δp2) + b2(p̂2, δp2) − r2

(
∂2û

∂t2
, δp2

)
= 0 ,

in which the sesquilinear forms and linear forms are given in Appendix A.

In the above equations, the over-line denotes the complex conjugate, a1 and

b1 are, respectively, positive-definite and positive sesquilinear forms on C 1 ×
C 1, the sesquilinear form r1 is defined on C × C 1, the antilinear form f

is defined on C 1, the sesquilinear forms a2 and b2 are, respectively, positive-

definite and positive on C 2×C 2, the sesquilinear form r2 is defined on C ×C 2,

the sesquilinear forms m and s2 are, respectively, positive-definite on C × C ,

the sesquilinear form s1 is positive on C ×C and finally, the sesquilinear form

s3 is skew-symmetric on C × C .

6 Finite element approximation

We introduce a finite element mesh of domain [z2, z] ∪ [z, 0] ∪ [0, z1] which is

constituted of νtot nodes. The finite elements used are Lagrangian 1D-finite

element with 3 nodes. Let p̂1(k1, t), v̂(k1, t) and p̂2(k1, t) be the complex vec-

tors of the nodal values of the functions x3 7→ p̂1(k1, x3, t), x3 7→ û(k1, x3, t)

and x3 7→ p̂2(k1, x3, t). Let f̂(k1, t) be the complex vector in
 

ν1 where ν1 is

the number of degree of freedom related to the mesh of domain [0, z1], corre-
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sponding to the finite element approximation of the antilinear form f(δp1; t).

For all k1 fixed in
 

and for all fixed t, the finite element approximation of

the weak formulation of the 1D boundary value problem yields the following

linear system of equations

[A1] ¨̂p1 + (k2
1 c2

1[A1] + [B1])p̂1(k1, t) + [R1] ¨̂v(k1, t) = f̂(k1, t) (27)

[M ] ¨̂v(k1, t) + ([S1] − ik1 [S3] + k2
1 [S2])v̂(k1, t)

+[R2]
T p̂2(k1, t) − [R1]

T p̂1(k1, t) = 0 (28)

[A2] ¨̂p2(k1, t) + (k2
1 c2

2[A2] + [B2])p̂2(k1, t) − [R2] ¨̂v(k1, t) = 0 (29)

in which the double dots means the second partial derivative with respect to

t. Each of Eqs. (27) , (28) and (29) form linear systems whose the square

matrices are respectively of dimensions ν1 × ν1, ν × ν and ν2 × ν2. The integer

numbers ν and ν2 are respectively the number of degree of freedom related

to the meshes of domains [z, 0] and [z2, z]. Moreover, the components of these

matrices are complex numbers. These three equations can be rewritten as

[  ] ¨̂✁ (k1, t) + ([ ✂ 1] − ik1[ ✂ 2] + k2
1[ ✂ 3]) ✁̂ (k1, t) = ✄̂ (k1, t) (30)

in which the vectors ✁̂ (k1, t) = (p̂1(k1, t), v̂(k1, t), p̂2(k1, t)) and ✄̂ (k1, t) =

(f̂(k1, t), 0, 0) belong to
 

ν1+ν+ν2 and where

[  ] =




[A1] [R1] 0
0 [M ] 0
0 −[R2] [A2]


 , [ ✂ 1] =




[B1] 0 0
−[R1]

T [S1] [R2]
T

0 0 [B2]




[ ✂ 2] =




0 0 0
0 [S3] 0
0 0 0


 , [ ✂ 3] =




c2
1 [A1] 0 0

0 [S2] 0
0 0 c2

2 [A2]




where ·T designates the transpose operator.

7 Numerical solver

7.1 Time and space sampling

The solution t 7→ ✁̂ (k1, t) of Eq. (30) is constructed for all k1 belong-

ing to a broad spectral band of analysis [−k1,max, k1,max] and for t belong-
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ing to a time domain of analysis [0, Tmax]. Let ∆k1 and let ∆t be spectral

(wave number) and time sampling steps such that k1,max = M∆k1/2 and

Tmax = N∆t where M is an odd integer and N is any integer. Shannon’s

theorem yields ∆x1 = 2π/(2k1,max) = 2π/(M∆k1) and ∆t = 1/(2 fmax) where

[−fmax, fmax] is the frequency band of analysis. Consequently, x1 belongs to

the space domain [−x1,max, x1,max] with x1,max = M∆x1/2 = π/∆k1. Let

✁̂ n,m = (p̂n,m
1 , v̂n,m, p̂n,m

2 ) be the solution of Eq. (30) at time tn and for wave-

number k1,m which are such that, for all n = 0, . . . , N and m = 0, . . . , M − 1

tn = n∆t and k1,m = m ∆k1 − k1,max ,

For all n = 0, . . . , N and m = 0, . . . , M − 1, we introduce the vectors ˙̂✁ n,m
=

( ˙̂p
n,m

1 , ˙̂v
n,m

, ˙̂p
n,m

2 ) and ¨̂✁ n,m
= (¨̂p

n,m

1 , ¨̂v
n,m

, ¨̂p
n,m

2 ) respectively defined as the first

and the second partial derivatives of t 7→ ✁ (k1,m, t) at time tn. We then have

✁̂ n,m = ✁̂ (k1,m, tn) . (31)

˙̂✁ n,m
= ˙̂✁ (k1,m, tn) , (32)

¨̂✁ n,m
= ¨̂✁ (k1,m, tn) . (33)

For t = tn+1 and k1 = k1,m, Eq. (30) is rewritten as

[ ! ] ¨̂✁ n+1,m
+ ([ ✂ 1] − ik1,m([ ✂ 2] + k2

1,m[ ✂ 3]) ✁̂ n+1,m = ✄̂ n+1,m , (34)

in which ✄̂ n+1,m = ✄̂ (k1,m, tn+1).

7.2 Time domain solver for fixed wave-number

An implicit unconditionally stable Newmark scheme (see [4; 47]) is used to

solve Eq. (30) in time. Consequently, for all n = 0, . . . , N − 1 and m =

0, . . . , M − 1, we have

˙̂✁ n+1,m
= ˙̂✁ n,m

+
[
(1 − δ)¨̂✁ n,m

+ δ ¨̂✁ n+1,m
]
∆t , (35)

✁̂ n+1,m = ✁̂ n,m + ˙̂✁ n,m
∆t +

[
(0.5 − α) ¨̂✁ n,m

+ α ¨̂✁ n+1,m
]
∆t2 , (36)
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where δ ≥ 0.5 and α ≥ 0.25(0.5 + δ)2. Using Eqs. (34) to (36) yields

(
[ ✂ 1] − ik1,m([ ✂ 2] + k2

1,m[ ✂ 3] + a0 [ ! ]
)

✁̂ n+1,m = ˜ n+1,m , (37)

in which

˜ n+1,m = ✄̂ n+1,m + [ ! ]
(
a0 ✁̂ n,m + a1

˙̂✁ n,m
+ a2

¨̂✁ n,m
)

,

and where a0 = 1/(α∆t2), a1 = 1/(α∆t) and a2 = (0.5/α)−1. The dynamical

system being at rest at time t = 0, then, for all m, ✁̂ 0,m, ˙̂✁ 0,m
and ˙̂✁ 0,m

are

equal to zero. Then, solving Eq. (37) , vectors ✁̂ 1,m, . . . , ✁̂ N,m are calculated

for all m = 0, . . . , M − 1

7.3 Space solver for fixed time

Let ✁ (x1, t) = (p1(x1, t), v(x1, t), p2(x1, t)) be the vector of the nodal values of

x3 7→ p1(x1, x3, t), x3 7→ u(x1, x3, t) and x3 7→ p2(x1, x3, t) related to the finite

element mesh of the domain ]z2, z1[. We then have

✁ (x1, t) =
1

2π

∫

 

✁̂ (k1, t)e
−i k1 x1dk1 . (38)

For n = 0, . . . , N and ℓ = 0, . . . , M −1, let ✁ n,ℓ = (pn,ℓ
1 , vn,ℓ, pn,ℓ

2 ) be the vector

equal to ✁ (x1, t) with t = tn , x1 = x1,ℓ where x1,ℓ = ℓ∆x1 − x1,max. We then

have

✁ n,ℓ = ✁ (x1,ℓ, tn) . (39)

For all n = 0, . . . , N and for all ℓ = 0, . . . , M − 1, it can be shown that

✁ n,ℓ =
∆k1

2π
eiπ(ℓ−M

2
) ✁ n,ℓ , (40)

where

✁ n,ℓ =
M−1∑

m=0

̂✁ n,m e−
2iπm ℓ

M , (41)

in which ̂✁ n,m = ✁̂ n,m ei m π. The summation in Eq. (41) is performed using

Fast Fourier Transform.
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8 NUMERICAL EXAMPLES

8.1 Multilayer system with a solid transverse isotropic medium example

The configuration used for the numerical example presented here is an ideal-

ized model of the ’axial transmission’ technique used to evaluate the mechan-

ical properties of cortical bone [6; 31]. In this context, the solid and the fluid

represent bone and soft tissues (skin, muscle, marrow), respectively.

The acoustic fluid layer Ω1 is excited by a line source located at x1 = xS
1

and x3 = xS
3 (see Table 1) with a time-history defined with the function F in

Eq. (4) such that

F (t) = F1 sin(2πfct)e
−4(t fc−1)2 ,

where fc is the center frequency and F1 is a given parameter. Figure 2 shows

the power spectrum of F (left) and the graph of function t 7→ F (t) (right).

h1 10−2m h 4 × 10−3m h2 10−2m

ρ1 1000 kg.m−3 ρ 1722 kg.m−3 ρ2 1000 kg.m−3

c1 1500 m.s−1 EL 16.6 GPa c2 1500 m.s−1

fc 1 MHz ET 9.5 GPa

xS
1 0 νL 0.38

xS
3 2 × 10−3m νT 0.44

F1 100 m.s−2 GL 4.7 GPa

GT 3.3 GPa

Table 1. Values of the parameters. Material parameters stand for compact bone [31]

The elastic layer which occupies domain Ω is constituted of a transverse

isotropic medium for which the plane (x1, x2) is the plane of isotropy. Such

a material is completely defined with five independent elastic constants. We

will use the longitudinal and transversal Young moduli denoted by EL and

ET , respectively; the longitudinal and transversal shear moduli denoted by

GL and GT , respectively; the longitudinal and transversal Poisson coefficients
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denoted by νL and νT , respectively, where the relation

GT =
ET

2(1 + νT )
.

holds between the coefficients. The numerical values of these mechanical pa-

rameters are given in Table 1. The coefficients c̃ij of the matrix [C̃] are defined

according to c̃23 = c̃32 = c̃31 = c̃13 = 0, c̃33 = 2 GL, and

c̃11 =
E2

L(1 − νT )

(EL − ELνT − 2ET ν2
L)

, c̃22 =
ET (EL − ET ν2

L)

(1 + νT )(EL − ELνT − 2ET ν2
L)

,

c̃12 = c̃21 =
ET ELνL

(EL − ELνT − 2ET ν2
L)

.

The parameters used for the numerical method (time-domain approximation,

spectral and finite element approximation) are given in Table 2.

Tmax N ν1 ν ν2 M x1,max δ α

2.5 × 10−5 850 101 82 101 1024 0.2 0.5 0.25

Table 2. Parameters for the numerical method

8.1.1 Convergence analysis

In order to perform a convergence analysis of the proposed method with re-

spect to the parameters N and M , we introduce the function (N, M) 7→
conv(N, M ; x1, x3) defined by

conv(N, M ; x1, x3) =

(
N−1∑

n=0

|pn,ℓ
1,ν(N, M)|2 ∆t

) 1

2

,

where pn,ℓ
1,ν(N, M) is the νth components of vector pn,ℓ

1 which is the vector of the

nodal values of x3 7→ p1(ℓ ∆x1−x1,max, x3, n∆t) and which depends on param-

eters N and M . Figure 3 shows the graphs of function N 7→ conv(N, M ; x1, x3)

with M = 8192 and x3 = 2 × 10−3 m and for x1 = 8 × 10−3 m (thick

solid line), x1 = 12 × 10−3 m (thin solid line), x1 = 20 × 10−3 m (thick

dashed line) and x1 = 28 × 10−3 m. Figure 4 shows the graphs of func-

tion M 7→ conv(N, M ; x1, x3) with N = 5000 and x3 = 2 × 10−3 m and

for x1 = 8 × 10−3 m (thick solid line), x1 = 12 × 10−3 m (thin solid line),
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x1 = 20×10−3 m (thick dashed line) and x1 = 28×10−3 m (thin dashed line).

From these graphs, it can be deduced that, for this numerical example and

for the observations point located at x1 = 8 × 10−3 m , x1 = 12 × 10−3 m ,

x1 = 20×10−3 m and x1 = 28×10−3 m with x3 = 2×10−3 m, that convergence

is reached for N = 850 and M = 1024.

8.1.2 Results

Let vm(x, t) be the von Mises stress at point x ∈ Ω and at time t. Figures

5(A) to (H) show the graphs of functions (x1, x3) 7→ p1(x1, x3, t), (x1, x3) 7→
vm(x1, x3, t) and (x1, x3) 7→ p2(x1, x3, t) at t = 1.56 µs (Fig. 5(A)), t = 2.06 µs

(Fig. 5(B)), t = 2.94 µs (Fig. 5(C)), t = 5.89 µs (Fig. 5(D)), t = 9.72 µs (Fig.

5(E)), t = 13.55 µs (Fig. 5(F)), t = 15.31 µs (Fig. 5(G)), t = 119.88 µs (Fig.

5(H)). It has to be noted that all the elastic waves propagation phenomena

(close-field effects, refracted surface waves, reflection and transmission, etc) are

simulated using this method since no kinematic simplifications are introduced.

In particular, the material configuration considered is such that a lateral wave

(or head wave) [7] propagates from the fluid-solid interface (plane wave front

which links the reflected P-wave front and the interface); the lateral wave is a

typical time-domain phenomena and is very well described by the method.

Finally, figure 6 shows the graphs of function t 7→ p1(x1, x3, t) with x3 =

2 × 10−3 m and for x1 = 8 × 10−3 m (fig. 6(A)), x1 = 12 × 10−3 m (fig.

6(B)), x1 = 20 × 10−3 m (fig. 6(C)) and x1 = 28 × 10−3 m (fig. 6(D)). The

first perturbation arriving at the receivers is the contribution of the lateral

wave; the largest amplitude contribution is the direct wave and the other

contributions are the waves reflected in the multilayer system. From this point

of view, these signals are consistent with the results presented in [31] obtained

with an exact analytical method but in which a two layers fluid-solid system

with infinite thicknesses was considered.

For this simulation, the total CPU time is 309 s and using a 3.8 MHz Xeon pro-

cessor. The total amount of read access memory (RAM) used is 20 Mo. Such a

CPU time and such a read access memory represent a very low computational
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cost with respect to a method which would be based on a full finite element

computation and for which more than 16 Go of RAM and more than 25000 s

of CPU time is needed without reaching the same quality of approximation.

8.2 Multilayer system with a solid anisotropic medium example

For this example, we consider the same problem as in the previous section but

the medium is assumed to be made of an anisotropic material for which the

elasticity matrix is such that

[C̃] = 1010 ×




0.7513 −0.1054 −0.2684
−0.1054 0.5857 0.3941
−0.2684 0.3941 1.3762


 .

8.2.1 Results

Figures 7(A) to (H) show the graphs of functions (x1, x3) 7→ p1(x1, x3, t),

(x1, x3) 7→ vm(x1, x3, t) and (x1, x3) 7→ p2(x1, x3, t) at t = 1.56 µs (Fig. 7(A)),

t = 2.06 µs (Fig. 7(B)), t = 2.94 µs (Fig. 7(C)), t = 5.89 µs (Fig. 7(D)),

t = 9.72 µs (Fig. 7(E)), t = 13.55 µs (Fig. 7(F)), t = 15.31 µs (Fig. 7(G)),

t = 119.88 µs (Fig. 7(H)). It has to be noted that, due to the anisotropy of the

solid medium, the elastic waves propagation is not symmetric in the solid and

the second fluid layers whereas the wave propagation in the first fluid layer is

still symmetric. This can easily be explain by considering that the coupling

between the first fluid layer and the solid layer is written as partial derivative

equation on pressure p1 and normal displacement u3 on Γ0 (see Eq. (3) ).

Consequently, the normal displacement field u3 should be an odd function of

x1. Figures 8 show the graphs of x1 7→ u3(x1, x3, t) with x3 = 0 at t = 1.56 µs

(Fig. 8(A)), t = 2.06 µs (Fig. 8(B)), t = 2.94 µs (Fig. 8(C)), t = 5.89 µs

(Fig. 8(D)), t = 9.72 µs (Fig. 8(E)), t = 13.55 µs (Fig. 8(F)), t = 15.31 µs

(Fig. 8(G)), t = 119.88 µs (Fig. 8(H)). For this particular example and for

x3 = 0, it should be noted that x1 7→ u3(x1, x3, t) is an odd function which is

coherent with the results presented in Figures 8 . Figures 9 show the graphs

of x1 7→ u1(x1, x3, t) with x3 = 0 at t = 1.56 µs (Fig. 9(A)), t = 2.06 µs (Fig.
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9(B)), t = 2.94 µs (Fig. 9(C)), t = 5.89 µs (Fig. 9(D)), t = 9.72 µs (Fig. 9(E)),

t = 13.55 µs (Fig. 9(F)), t = 15.31 µs (Fig. 9(G)), t = 119.88 µs (Fig. 9(H)).

For this particular example, it should be noted that tangential displacement

field u1 has no symmetry property on Γ0.

9 CONCLUSION

We have presented a method dedicated to the simulation of the transient

elastic wave propagation in multilayer unbounded media. The method is es-

pecially efficient to investigate the propagation of broadband pulses thanks to

a time-domain formulation. To take advantage of the symmetry of the mul-

tilayer configuration, we have used a spectral formulation in the unbounded

direction of the layers. The boundary problem is reduced to a 1D-space, time-

domain, problem and solved with the finite element method using the implicit

unconditionally stable Newmark scheme to solve the problem in time. The

weak formulation associated to the 1D boundary value problem and the corre-

sponding finite element approximation have been constructed for the purposes

of this work. The efficiency of the method is illustrated in numerical example

presented for a coupled elastodynamics and acoustic problem in a three-layer

configuration.

Although the method is presented in a 2D-configuration, the formulation of its

3D counterpart based on the equations given in this paper is straightforward.

The method is intrinsically restricted to academic geometrical configurations:

systems of plane unbounded layers. Nevertheless it can be used to simulate

complex situation such has propagation in arbitrarily anisotropic media; ar-

bitrary heterogeneity in depth: arbitrary profile of the evolution of properties

(elasticity or density) with depth in each layer; interaction with very fine lay-

ers, etc. Furthermore, the method can easily be extended to study transient

wave propagation in viscoelastic media.
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A Sesquilinear forms and antilinear form for the weak formulation

The weak formulation presented in section 5 introduces, respectively, the

positive-definite and definite sesquilinear forms a1 and b1 defined on C 1 ×C 1,

the sesquilinear form r1 defined on C × C 1, the antilinear form f1 defined

on C 1, the sesquilinear forms positive-definite and positive a2 and b2 defined

on C 2 × C 2, the sesquilinear form r2 defined on C ×C 2, the positive-definite

sesquilinear form a defined on C ×C and finally, the sesquilinear form b defined

on C × C which are such that

a1(p̂1, δp1) =
1

K1

z1∫

0

p̂1 δp1 dx3 (42)
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b1(p̂1, δp1) =
1

ρ1

z1∫

0

∂p̂1

∂x3

∂δp1

∂x3
dx3 (43)

r1(û, δp1) = û3(0)δp1(0) (44)

f(δp1; t) = F (t) eik1xS
1 δp1(x

S
3 ) (45)

m(û, δu) =

0∫

z

ρ〈û, δu〉dx3 (46)

s1(û, δu) =

0∫

z

〈[D1]
∂û

∂x3
,
∂δu

∂x3
〉dx3 (47)

s2(û, δu) =

0∫

z

〈[D2] û, δu〉dx3 (48)

s3(û, δu) =

0∫

z

(
〈[D3] û,

∂δu

∂x3
〉 − 〈[D3] δu,

∂û

∂x3
〉
)

dx3 (49)

a2(p̂2, δp2) =
1

K2

z∫

z2

p̂2 δp2 dx3 (50)

b2(p̂2, δp2) =
1

ρ2

z∫

z2

∂p̂2

∂x3

∂δp2

∂x3

dx3 (51)

r2(û, δp2) = û3(z)δp2(z) (52)

in which 〈·, ·〉 means the usual euclidean inner product on
 2 and where

[D1] =
[

c̃33/2 c̃32/
√

2
c̃23/

√
2 c̃22

]
, [D2] =

[
c̃11 c̃13/

√
2

c̃31/
√

2 c̃33/2

]
, [D3] =

[
c̃31/

√
2 c̃33/2

c̃21 c̃23/
√

2

]
.

It is assumed that [D2] is an invertible matrix.

21



Ω1

Ω

Ω2

1

h

h

h

1

2

e3

1
e

O

z

0

z

z2

Γ

Γ

Γ

1

0

2Γ

Fig 1. Geometric configuration

22



0 1 2 3 4 5

x 10
6

0.5

1

1.5

2

2.5
x 10

−5

0 1 2 3 4 5

x 10
−6

−100

−50

0

50

100

Fig 2. Definition of the function F . Graphs of the power spectrum of F (left)

and function t 7→ F (t) (right). Vertical axis: power spectrum (left) and F(t)

(right). Horizontal axis: frequency in Hz (left) and t in s (right).
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Fig 3. Convergence analysis with respect to N. Graphs of the function N 7→
conv(N, M ; x1, x3) with M = 8192 and x3 = 2 × 10−3 m and for x1 = 8 ×
10−3 m (thick solid line), x1 = 12×10−3 m (thin solid line), x1 = 20×10−3 m

(thick dashed line) and x1 = 28 × 10−3 m (thin dashed line). Vertical axis:

conv(N, M ; x1, x3). Horizontal axis: N
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Fig 4. Convergence analysis with respect to M. Graphs of the function M 7→
conv(N, M ; x1, x3) with N = 5000 and x3 = 2×10−3 m and for x1 = 8×10−3 m

(thick solid line), x1 = 12 × 10−3 m (thin solid line), x1 = 20 × 10−3 m

(thick dashed line) and x1 = 28 × 10−3 m (thin dashed line). Vertical axis:

conv(N, M ; x1, x3). Horizontal axis: M
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Fig 5. Wave propagation in the three layers (pressure field in the fluid layers

and von Mises stress field in the elastic layer) at t = 1.56 µs (Fig. A), t =

2.06 µs (Fig. B), t = 2.94 µs (Fig. C), t = 5.89 µs (Fig. D), t = 9.72 µs (Fig.

E), t = 13.55 µs (Fig. F), t = 15.31 µs (Fig. G), t = 119.88 µs (Fig. H).
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Fig 6. Evolution of the pressure disturbance in the fluid occupying Ω1. Graphs

of function t 7→ p1(x1, x3, t) with x3 = 2×10−3 m and for x1 = 8×10−3 m (fig.

A), x1 = 12×10−3 m (fig. B), x1 = 20×10−3 m (fig. C) and x1 = 28×10−3 m

(fig. D). Vertical axis: conv(N, M ; x1, x3). Horizontal axis: t. Vertical axis :

p1(x1, x3, t)
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Fig 7. Wave propagation in the three layers (pressure field in the fluid layers

and von Mises stress field in the elastic layer) at t = 1.56 µs (Fig. A), t =

2.06 µs (Fig. B), t = 2.94 µs (Fig. C), t = 5.89 µs (Fig. D), t = 9.72 µs (Fig.

E), t = 13.55 µs (Fig. F), t = 15.31 µs (Fig. G), t = 119.88 µs (Fig. H).
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Fig 8. Normal displacement field of the solid layer on the interface Γ0 at

t = 1.56 µs (Fig. A), t = 2.06 µs (Fig. B), t = 2.94 µs (Fig. C), t = 5.89 µs

(Fig. D), t = 9.72 µs (Fig. E), t = 13.55 µs (Fig. F), t = 15.31 µs (Fig. G),

t = 119.88 µs (Fig. H). Horizontal axis : x1 (m). Vertical axis : u3(x1, x3) with

x3 = 0.
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Fig 9. Tangential displacement field of the solid layer on the interface Γ0 at

t = 1.56 µs (Fig. A), t = 2.06 µs (Fig. B), t = 2.94 µs (Fig. C), t = 5.89 µs

(Fig. D), t = 9.72 µs (Fig. E), t = 13.55 µs (Fig. F), t = 15.31 µs (Fig. G),

t = 119.88 µs (Fig. H). Horizontal axis : x1 (m). Vertical axis : u1(x1, x3) with

x3 = 0.
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