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Abstract

The main objective of this paper is to present a generic meso-scale probability model for a large class of random
anisotropic elastic microstructures in order to perform a parametric analysis of the Representative Volume Element
(RVE) size. This new approach can be useful for a direct experimental identification of random anisotropic elastic
microstructures when the standard method cannot easily be applied to anisotropic elastic microstructures. Such a RVE
is used to construct the macroscopic properties in the context of stochastic homogenization. The probability analysis
is not performed as usual for a given particular random microstructure defined in terms of its constituents. Instead, it
is performed for a large class of random anisotropic elastic microstructures. For this class, the probability distribution
of the random effective stiffness tensor is explicitly constructed. This allows a full probability analysis of the RVE
size to be carried out and its convergence to be studied. The procedure of homogenization is based on a homogeneous
Dirichlet condition on the boundary of the RVE. The probability model used for the stiffness tensor-valued random
field of the random anisotropic elastic microstructure is an extension of the model recently introduced by the author for
elliptic stochastic partial differential operators. The stochastic boundary value problem is numerically solved by using
the stochastic finite element method. The probability analysis of the RVE size is performed by studying the probability
distribution of the random operator norm of the random effective stiffness tensor with respect to the spatial correlation
length of the random microstructure.
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1. Introduction

In linear elasticity, the objective of stochastic homogenization is to construct the macroscopic
elastic properties of random elastic microstructures. Such a stochastic homogenization is an
approximation based (1) on the calculation of the solution of the boundary value problem relative
to the Representative Volume Element (RVE) with a periodic, Dirichlet or Neumann boundary
condition and (2) on calculating the spatial averaging of this solution on the RVE. Stochastic
homogenization can be applied if the scale of the random microstructure is sufficiently small
with respect to macroscopic dimensions. This means that RVE size has to be small with respect
to macroscopic dimensions and sufficiently large with respect to the scale of fluctuations in the
microstructure. Such a definition is not really sufficient and must be mathematically defined in
the context of a probability model of the microstructure.

The homogenization of random heterogeneous materials with random microstructures and the
calculation of the macroscopic properties have received considerable attention in the past three
decades; see for instance (Kröner, 1971), (Nemat-Nasser and Hori, 1999), (Milton, 2002) and
(Torquato, 2002). The first mathematical results concerning stochastic homogenization are
attributed to (Sanchez-Palencia, 1980) and (Papanicolaou and Varadhan, 1981). Many papers
and books have been published in the field of stochastic homogenization, on calculating effective
properties and their bounds, constructing non-local effective constitutive equations, such as
(Kröner, 1977),(Sab, 1992), (Jikov et al, 1994), (Andrews and Wright, 1998), (Nemat-Nasser
and Hori, 1999).
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Often, the probabilistic model of a random microstructure (such as a composite constituted of
several constituents) can directly be constructed from the geometry and mechanical properties
of its constituents. This is the case for the class of random heterogeneous materials whose mi-
crostructures can be modelled as a distribution of inclusions or cavities of well-defined geometry
in a given matrix. This is also the case of random heterogeneous materials having a cellular stru-
ture for which the probabilistic model is directly constructed using cell statistics, random field
models, percolation and clustering, and for which the n-point probability distribution functions
can be deduced from the knowledge of the different phases constituting the microstructure; see
for instance (Torquato and Stell, 1985), (Andraud et al., 1997), (Torquato, 1997), (Nemat-Nasser
and Hori, 1999), (Quintanilla, 1999), (Ostoja-Starzewski, 1998), (Kachanov et al., 2001), (Mil-
ton, 2002), (Torquato, 2002). Generally, the statistics-based bounding techniques only use the
lower-order statistics (first- and second-order moments) and the probability distributions which
give the detailed probabilistic information are not taken into account.

The random microstructure can be homogenized if there is a RVE size which is "small" with
respect to macroscopic dimensions, i.e. if the random fluctuations of the random effective
stiffness tensor around the statistical mean value of the random effective stiffness tensor is
"negligible". Representative volume element size has received a particular attention; see for
instance (Nemat-Nasser and Hori, 1999), (Ren and Zheng, 2004). These works are developed
for elastic composite materials with firmly-bonded phases. In (Drugan and Willis, 1996), the
RVE size is related to the "convergence of the mean value of the effective tensor" and in (Sab
and Nedjar, 2005), the RVE size has to be such that the random fluctuations are "small enough".

The objectives of this paper are detailed below.

(A) The construction of the system of marginal probability distributions for any composite using
the geometry and the mechanical properties of its constituents requires the knowledge of all the
n-point probability functions which can be not so easy to deduce from theoretical considerations
and/or from experimental measurements in particular for anisotropic elastic microstructure. For
some random anisotropic elastic microstructures, it can be difficult (1) to deduce the probabilistic
model of the microstructure from the probabilistic model of its constituents and (2) to identify
and/or to validate the probabilistic model from experimental measurements performed on several
specimens and using mathematical statistics for estimating the probability models of random
fields under consideration. This is the reason why it can be interesting to propose an additional
approach for identifying the probabilistic model of a random anisotropic elastic microstructure
which cannot easily be deduced (and experimentally identified) from its constituents. Such a
new approach is proposed in this paper.

(B) The main idea of this paper is then to directly introduce a meso-scale probabilistic model of
the random anisotropic elastic microstructure,which is not deduced from the probabilistic models
of its constituents. Such a meso-scale probabilistic model must verify fundamental mathemati-
cal properties to obtain a physical model of any anisotropic elastic microstructure. The random
anisotropic elastic microstructure (for instance a mortar constituted of a cement paste with em-
bedded sand particles, some porous media such as plaster boards, some cortical bones, some
biological membranes and more generally, some living tissues, etc) is then modelled at the meso-
scale by an equivalent random continuous anisotropic elastic medium which is completely de-
fined by its local stiffness fourth-order tensor-valued random field x �→ �(x) = {�ijkh(x)}ijkh.
The random field � is then constituted of 21 mutually dependent real-valued random fields mod-
elling the anisotropic microstructure at the meso-scale level. The theory proposed allows strong
anisotropic random fluctuations to be taken into account. The great interest of such a direct con-
struction of a meso-scale probabilistic model of the random anisotropic elastic microstructure is
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the capability to identify the parameters of the random field x �→ �(x). Such an experimental
identification can be performed using displacement measurements of tested specimens on the
boundary of the meso-scale subdomain of the RVE by using field measurements deduced from
digital image processing and solving an inverse stochastic problem. It is then necessary to choose
a stochastic representation of x �→ �(x) in a class of random fields for which only a few parame-
ters are required to define its system of marginal probability distributions. Therefore, the inverse
problem related to such an experimental identification of x �→ �(x) is more feasible. In addition,
such a class of random fields x �→ �(x) must be constructed using only the available information
and not "hypothetical" information for which no statistics are available or for which the number
of experimental specimens is too small to obtain a good convergence of the statistical estimators.
For the tensor-valued random field x �→ �(x), the largest class can be constructed using as avail-
able information: the symmetry properties, the mean value x �→ �(x) which is assumed to be
known and a stochastic non-uniform ellipticity condition for the corresponding linear elasticity
stochastic differential operator. Clearly, any random anisotropic elastic microstructure belongs
to this class.
As explained above, the prime objective of this paper is not to analyse a particular random
isotropic or anisotropic microstructure described in terms of its constituents, but is to propose
(when the standard method cannot easily be applied to anisotropic elastic microstructures) a
new way which could be useful for a direct experimental identification of random anisotropic
elastic microstructures introducing a meso-scale probabilistic model. It should be noted that the
comparison of the proposed approach with the standard approach is not so easy to perform. The
previously published works are mainly devoted to define the RVE size for which a deterministic
effective stiffness tensor can be constructed and used, and are generally not attached to con-
struct the probability distribution of the random effective stiffness tensor for random anisotropic
elastic microstructures. In addition, many previous works deal with isotropic or orthotropic
microstructures and cannot be compared with the present anisotropic case developed in this
paper.

(C) The second objective of this paper is to perform a parametric probabilistic study of the
RVE size with respect to the spatial correlation lengths of the proposed meso-scale probabilistic
model. The parametric study of the RVE size is performed in function of the intensity of the
stochastic fluctuations of x �→ �(x) and in function of its correlation lengths. Such a study is also
useful to get information on the RVE size for which stochastic fluctuations are still significant
and consequently, can be measured. Then the results presented in this paper could allow the
meso-scale probabilistic model to be identified from meso- or macro-scale measurements solving
an inverse stochastic problem.

(C.1) The probability analysis of the RVE size which is proposed for constructing the effective (or
macroscopic) stiffness of random anisotropic elastic microstructures is performed as follows.
Let Z = ‖Aeff ‖/m‖ Aeff‖ be the real-valued random variable in which the random variable

‖Aeff ‖ is the operator norm of the random effective stiffness tensor Aeff and where m‖ Aeff ‖ =
E{‖Aeff ‖} is the mean value with E the mathematical expectation. The probability distribution
(the cumulative distribution function) of the random variable Z is explicitly constructed and
allows a full probability analysis of the RVE size to be performed. The use of the Chebychev
inequality for the random variable Z also allows the convergence of the random effective stiffness
tensor to be studied with the coefficient of variation ofZ. Nevertheless, if such an approach allows
convergence in probability to be analysed, it only gives an upper bound of the probability when
convergence is not completely reached (it should be noted that such a difficulty is circumvented
by using the full probability analysis proposed in this paper).
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(C.2) Another objective of this work is to quantify the RVE size in terms of probability level. This
means that the probability distribution of the random fluctuations of the random effective stiffness
tensor is effectively calculated. For such an analysis, there are two equivalent approaches: (1)
the three spatial correlation lengths of the tensor-valued random field x �→ �(x) are fixed, and
then the size of the RVE is taken as a variable parameter, or (2) the three spatial correlation
lengths are taken as variable parameters and then the size of the RVE is fixed. The present
analysis uses the second approach and the RVE has dimensions 1 × 1 × 1.

(D) The strategy of the developments presented in this work is the following:

(D.1) Since the proposed meso-scale probability model of the random anisotropic microstructure
is general and since we are interested in constructing the probability distribution of the random
effective stiffness tensor, the random solution of the stochastic boundary value problem cannot
be exactly constructed with an analytical method. It is therefore constructed using the stochastic
finite element method and an adapted stochastic solver.

(D.2) The approximation of the random effective stiffness tensor can be constructed by averaging
the random operator on the RVE using one of the three following boundary conditions: periodic,
Dirichlet or Neumann boundary conditions. For a periodic microstructure, the Hill-Mandel
condition which indicates that both the Dirichlet and Neumann problems are needed to establish
the RVE size can be used (see for instance (Nemat-Nasser and Hori, 1999)). Such a criterion
allows the RVE size to be defined in calculating the effective stiffness tensor for both the Dirichlet
and Neumann boundary conditions. The RVE size is then such that the two calculated effective
stiffness tensors must be "equal" for a given precision. However, for a random microstructure, this
criterion can be replaced by another criterion related to the random fluctuations of the random
effective stiffness tensor calculated either with the Dirichlet condition or with the Neumann
condition. The random fluctuations must then be "small" for a given precision either for the
Dirichlet problem or for the Neumann problem. This property has mathematically been analysed:
a recent work published by (Bourgeat and Piatnitski, 2004) shows that the three approximations
constructed with the three boundary conditions converge to the same effective stiffness tensor for
a sufficiently general probabilistic model. Since the limit is the same in the stochastic case, the
result is indifferent to the type of the chosen boundary conditions. Finally, since the mechanical
analysis at the macro-scale is often performed in terms of the displacement field, one then has
chosen the homogeneous Dirichlet condition on the boundary of the RVE in order to limit the
development of the present work.

(D.3) The RVE size is analysed in the context of the standard theory of local homogenization
for which the random effective stiffness tensor is constant in space (local theory). This is an
approximation of non-local theories (see for instance: (Kröner, 1971), (Beran and McCoy, 1970),
(Nemat-Nasser and Hori, 1999)). Nevertheless, the development of a full stochastic non-local
theory for the 3D-anisotropic cases which would be based on the use of the proposed meso-scale
probabilistic model for random anisotropic elastic microstructures is not the purpose of this
paper.

(E) The paper is organized as follows:

(E.1) Section 2 deals with the standard theory concerning the macroscopic properties of a random
anisotropic elastic microstructure. The usual procedure of homogenization with a given homo-
geneous Dirichlet condition on the boundary of the RVE is recalled (see for instance (Nemat-
Nasser and Hori, 1999), (Zaoui, 2002)) and the probabilistic model of the random anisotropic
microstructure is presented. This section is introduced to define the notation and the random
quantities for the stochastic case.
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(E.2) In Sections 3 and 4, the largest class of all the tensor-valued random fields x �→ �(x)
corresponding to the meso-scale probability model of random anisotropic elastic microstructures
is presented. This largest class is an extension of the subclass presented in (Soize, 2006). The
detailed construction of this largest class of random fields cannot be duplicated here and only
the final result and the main mathematical properties are summarized in order to simplify the
reading. Note that the extension of the mathematical proof concerning the stochastic non-uniform
ellipticity condition for this largest class is straightforward.

(E.3) Section 5 is devoted to the weak formulation of the stochastic boundary value problem
(BVP), to the use of the stochastic finite elements method to construct a finite approximation of
this stochastic BVP and finally, to the stochastic solver. Then, the probabilistic quantities for the
random effective stiffness tensor can be calculated. It should be noted that the usual proof of the
existence of a second-order random solution, based on the use of a uniform ellipticity condition
and a uniform boundness condition for the fourth-order tensor-valued random field x �→ �(x),
cannot be used. This is due to the introduction of a more general non uniform ellipticity condition
which is a more realistic probabilistic hypothesis. Consequently, the existence of a second-order
solution is studied.

(E.4) Finally, Section 6 deals with the probabilistic analysis of the RVE size which is performed
by numerical simulation and is limited to the subclass of the meso-scale probabilistic models for
random anisotropic elastic microstructures.

2. Macroscopic properties of a random anisotropic microstructure

Consider a random microstructure constituted of a random heterogeneous anisotropic elastic
linear medium. The random local (or microscopic) constitutive equation is written as

�(x) = �(x) : �(x) , (1)

which means�jk(x) = �jk�m(x) ��m(x) where x = (x1, x2, x3) is a point of the Representative
Volume Element (RVE) which is a 3D bounded open domain Ω in �3 and where x �→ �(x)
is the fourth-order tensor-valued random field allowing the elastic properties of the random
microstructure to be characterized. Let x �→ D(x) = (D1(x), D2(x), D3(x)) be the random
local displacement field. In Eq. (1), x �→ �(x) = ε(D(x)) is the random local strain tensor field
such that ε�m(D(x)) = 1

2 (∂D�(x)/∂xm + ∂Dm(x)/∂x�), and x �→ �jk(x) is the random local
stress tensor field. The random effective (or macroscopic) stress and strain tensors are usually
defined as the average in the RVE of the random local stress and strain tensor fields,

< � >=
1
|Ω|

∫
Ω

�(x) dx , < � >=
1
|Ω|

∫
Ω

�(x) dx . (2)

It should be noted that < � > and < � > are random tensors.

2.1. Localization

As explained in Section 1-(D.2), the homogeneous Dirichlet condition on the boundary of the
RVE is used. The localization is then done with a given random effective strain � on the
boundary ∂Ω of the RVE which is independent of x. One then has D(x) = � x on ∂Ω (i.e.
D�(x) = ��m xm) in which the given tensor � is independent of x and such that � =< � >.
Consequently, for a given random effective strain � on ∂Ω, the random local displacement field
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D in the microstructure Ω can be constructed by solving the following stochastic boundary value
problem (BVP) in Ω,

−div� = 0 in Ω , (3)
D(x) = � x on ∂Ω , (4)

in which {div�(x)}j = ∂�jk(x)/∂xk and where the random local constitutive equation is
defined by Eq. (1). Since the solution D of Eqs. (3) and (4) depends linearly on �, the random
local strain tensor can be written as

ε(D(x)) = �(x) : � , (5)

in which the fourth-order tensor-valued random field x �→ �(x) corresponds to the strain local-
ization associated with the stochastic BVP defined by Eqs. (3) and (4). Since ε(D(x)) and � are
symmetric tensors, from Eq. (5), it can be deduced that

�jk�m(x) = �kj�m(x) = �jkm�(x) . (6)

In order to construct the random field �, for all � and m in {1, 2, 3}, the second-order tensors
g�m are introduced such that

g�m
jk =

1
2
(δj�δkm + δjmδk�) , (7)

in which δj� is the Kronecker symbol. From Eq. (7), it can be verified that g�m
jk = gm�

jk = g�m
kj

and that

� = ��mg�m . (8)

For all � and m in {1, 2, 3}, let D�m be the random local displacement field which is the solution
of the following stochastic BVP in Ω,

−div��m = 0 in Ω , (9)
D�m(x) = g�mx on ∂Ω , (10)

in which (see Eq. (1)), ��m(x) = �(x) : ε(D�m(x)). From Eqs. (3)-(4) and (5), it can be
deduced that the solution D�m of Eqs. (9)-(10) is such that ε(D�m(x)) = �(x) : g�m which,
using Eqs. (7) and (8), yields

�jk�m(x) = εjk(D�m(x)) . (11)

From Eqs. (11) and (2), it can be deduced that < �jk�m >=< εjk(D�m(x)) >. Comparing
Eqs. (4) and (10) and using Eq. (2) yield < εjk(D�m(x)) >= g�m

jk . It can then be deduced that

< �jk�m > = g�m
jk . (12)
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2.2. Random effective stiffness tensor

The fourth-order random effective stiffness tensor �eff is defined by the following equation,

< � > = �
eff : < � > , (13)

which means that < �jk > = �eff
jk�m < ��m >. Substituting Eq. (5) in Eq. (1) yields

� = � : � : �, and consequently, < � >=< � : � >: � , which compared to Eq. (13) and
taking into account that � =< � > yield

�
eff = < � : � > , (14)

which means that�eff
jk�m = < �jkpq �pq�m >. Due to the symmetry of the fourth-order random

local stiffness tensor �, taking into account Eq. (6) and using (Nemat-Nasser and Hori, 1999),
the energetic characterization, it can be proven that the fourth-order random effective stiffness
tensor �eff is symmetric, that is to say,

�
eff
jk�m = �

eff
kj�m = �

eff
jkm� = �

eff
�mjk . (15)

Consequently, for a given probabilistic model of the fourth-order tensor-valued random field
x �→ �(x) allowing to define the elastic properties of the random microstructure, the fourth-order
random effective stiffness tensor �eff is calculated by using Eq. (14) in which the fourth-order
tensor-valued random field x �→ �(x) is given by Eq. (11). For all � and m in {1, 2, 3}, D�m

is the random local displacement field which is the solution of the stochastic BVP defined by
Eqs. (9)-(10).

2.3. Meso-scale probabilistic model for random anisotropic elastic microstructures

As explained in Section 1-(B), the fourth-order tensor-valued random field x �→ �(x) correspond-
ing to the meso-scale probabilistic model for the random anisotropic elastic microstructure is
introduced. This model will be used to construct the fourth-order random effective stiffness
tensor �eff. For all x fixed in Ω, the random fourth-order tensor �(x) has a given mean value,
must verify the symmetry property and a stochastic non-uniform ellipticity condition related to
positive-definiteness properties. As explained in Section 1, the random field � is constituted of
21 mutually dependent real-valued random fields and the system of marginal probability distri-
butions of � is required because the unknown random solution x �→ D�m(x) of the stochastic
BVP defined by Eqs. (9)-(10) is a non-linear mapping of the random field �.

The mean value of the random field � is a deterministic tensor-valued field x �→ {�ijkh(x)}ijkh

associated with the mean model of the meso-scale probabilistic model of the random anisotropic
elastic microstructure. The probability model has to be such that E{�ijkh(x)} = �ijkh(x) for
all x, where E is the mathematical expectation. The known symmetries, such as monoclinic
symmetry, orthotropic symmetry, transverse square symmetry, transversally isotropic symmetry,
and isotropic symmetry, can be taken into account with the mean model represented by the tensor
{�ijkh(x)}ijkh. Nevertheless, this paper deals with the case for which the random fluctuation
tensor {�ijkh(x) − �ijkh(x)}ijkh around the mean tensor is purely anisotropic, without any
symmetries.

One presents an extension of the probability model proposed in (Soize, 2004 and 2006) which
is based on a non-parametric construction of the random field x �→ �(x), which only uses
the available information. In addition, for all deterministic symmetric second-order real tensor
z, the uniform elliptic condition �jk�m(x)z�mzjk ≥ c0zjkzjk a.s. (almost surely), where
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c0 is a deterministic positive constant independent of x, is not introduced to construct this
probability model because, in general, such a uniform ellipticity condition does not correspond
to available information (objective data). For the proposed probabilistic model, a non uniform
ellipticity condition is introduced for the fourth-order tensor-valued random field x �→ �(x)
which corresponds to the available information and which, for all � and m fixed in {1, 2, 3},
allows the random weak formulation of the stochastic BVP defined by Eqs. (9)-(10) to have a
unique second-order random solution x �→ D�m(x).

In order to define the probability model of the tensor-valued random field �, the (6× 6) matrix
representation [A(x)] of the fourth-order tensor �(x) is introduced. Therefore, let I and J be
the new indices belonging to {1, . . . , 6} such that I = (j, k) and J = (�, m) with the following
correspondence: 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (1, 3) and 6 = (2, 3). Thus,
for all x in Ω, the random (6 × 6) real matrix [A(x)] is such that

[A(x)]IJ = �jk�m(x) . (15)

For all x fixed in Ω, due to the symmetry and positive-definiteness properties of the random
fourth-order tensor�(x), it can be deduced that [A(x)] is a random variable with values in the set
�

+
6 (�) of all the (6 × 6) real symmetric positive-definite matrices. The �+

6 (�)-valued random
field {[A(x)], x ∈ Ω}, indexed by Ω, defined on the probability space (Θ, T , P ), is constituted
of 6 × (6 + 1)/2 = 21 mutually dependent real-valued random fields defining the fourth-order
tensor-valued random field � indexed by Ω.

The mean function x �→ [a(x)] of the random field [A] is assumed to be a given function from Ω
into �+

6 (�) such that, for all x fixed in Ω,

E{[A(x)]} = [a(x)] . (16)

Since [a(x)] belongs to �+
6 (�), there is an upper triangular invertible matrix [L(x)] in �6(�)

(the set of all the (6 × 6) real matrices) such that

[a(x)] = [L(x)]T [L(x)] . (17)

It is assumed that x �→ [L(x)] is bounded on Ω and that x �→ [a(x)] satisfies the usual uniform
ellipticity condition on Ω.

For all x fixed in Ω, the random matrix [A(x)] can be written as

[A(x)] = [L(x)]T [G(x)] [L(x)] , (18)

in which x �→ [G(x)] is a random field defined on (Θ, T , P ), indexed by �3, with values in
�

+
6 (�), such that for all x in �3

E{[G(x)]} = [ I ] , (19)

in which [ I ] is the identity matrix. The random field [G] is completely defined in Section 3.
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3. Probability model of the random fields [G] and [A]

Let d ≥ 1 and n ≥ 1 be two given integers. The random field x = (x1, . . . , xd) �→ [G(x)] is
indexed by �d with values in �+

n (�). In Eq. (18), one has d = 3 and n = 6. As explained in
Section 1-(E.2), the extended probability model presented below is based on the construction
and the mathematical analysis of the random field [G] performed in (soize, 2006). The results
which allow the numerical calculation to be performed are summarized below. The random field
x �→ [G(x)] is constructed as a homogeneous and normalized non-Gaussian positive-definite
matrix-valued random field, defined on probability space (Θ, T , P ), indexed by �d, with values
in �+

n (�). This random field is constructed as a non-linear mapping of n(n +1)/2 independent
second-order centered homogeneous Gaussian random fields x �→ Ujj′(x), 1 ≤ j ≤ j′ ≤ n,
defined on the probability space (Θ, T , P ), indexed by �d, with values in �, and named the
stochastic germs of the non-Gaussian random field [G].

3.1. Random fields Ujj′ as the stochastic germs of the random field [G]

The stochastic germs are constituted of n(n + 1)/2 independent second-order centered homo-
geneous Gaussian random fields x �→ Ujj′(x), 1 ≤ j ≤ j′ ≤ n, defined on the probability space
(Θ, T , P ), indexed by �d, with values in � and such that

E{Ujj′(x)} = 0 , E{Ujj′(x)2} = 1 . (20)

Consequently, all these random fields are completely and uniquely defined by the n(n + 1)/2
autocorrelation functions RUjj′ (�) = E{Ujj′(x + �) Ujj′(x)} defined for all � = (η1, . . . , ηd)
in �d and such that RUjj′ (0) = 1.

In order to obtain a class having a reasonable number of parameters, these autocorrelation
functions are written as RUjj′ (�) = ρjj′

1 (η1) × . . . × ρjj′
d (ηd) in which, for all k = 1, . . . , d,

one has ρjj′
k (0) = 1 and for all ηk �= 0,

ρjj′
k (ηk) = 4(Ljj′

k )2/(π2η2
k) sin2

(
πηk/(2Ljj′

k )
)

, (21)

in which Ljj′
1 , . . . , Ljj′

d are positive real numbers. Each random field Ujj′ is then mean-square
continuous on �d and it power spectral measure has a compact support. Such a model has
d n(n + 1)/2 real parameters Ljj′

1 , . . . , Ljj′
d for 1 ≤ j ≤ j′ ≤ n which represent the spatial

correlation lengths of the stochastic germs Ujj′ .

3.2. Defining an adapted family of functions

The construction of the random field [G] requires the introduction of an adapted family of
functions {u �→ h(α, u)}α>0. Let α be a positive real number. The function u �→ h(α, u)
from � into ]0 , +∞[ is introduced such that Γα = h(α, U) is a gamma random variable with
parameter α while U is a normalized Gaussian random variable (E{U} = 0 and E{U 2} = 1).
Consequently, for all u in �, one has

h(α, u) = F−1
Γα

(FU (u)) . (22)

in which u �→ FU (u) =
∫ u

−∞
1√
2π

e−v dv is the cumulative distribution function of the normal-

ized Gaussian random variable U . The function p �→ F−1
Γα

(p) from ]0 , 1[ into ]0 , +∞[ is the
reciprocal function of the cumulative distribution function γ �→ FΓα

(γ) =
∫ γ

0
1

Γ(α) tα−1 e−t dt

of the gamma random variable Γα with parameter α in which Γ(α) is the gamma function defined
by Γ(α) =

∫ +∞
0

tα−1 e−t dt.
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3.3. Defining the random field [G]

The random field x �→ [G(x)], defined on the probability space (Θ, T , P ), indexed by �d, with
values in �+

n (�) is constructed as follows:

(i) Let {Ujj′(x), x ∈ �
d}1≤j≤j′≤n be the n(n + 1)/2 independent random fields introduced in

Section 3.1. Consequently, for all x in �d,

E{Ujj′(x)} = 0 , E{Ujj′(x)2} = 1 1 ≤ j ≤ j′ ≤ n . (23)

(ii) Let δ be the real number, independent of x and n, such that

0 < δ <
√

(n + 1)(n + 5)−1 < 1 . (24)

This parameter which is assumed to be known (resulting, for instance, from an experimental
identification solving an inverse problem) allows the dispersion of the random field [G] to be
controlled.

(iii) For all x in �d, the random matrix [G(x)] is written as

[G(x)] = [L(x)]T [L(x)] , (25)

in which [L(x)] is the upper (n × n) real triangular random matrix defined as follows:

(iii.1) For 1 ≤ j ≤ j′ ≤ n, the n(n + 1)/2 random fields x �→ [L(x)]jj′ are independent.

(iii.2) For j < j′, the real-valued random field x �→ [L(x)]jj′ , indexed by �d, is defined by
[L(x)]jj′ = σUjj′(x) in which σ is such that σ = δ (n + 1)−1/2.

(iii.3) For j = j′, the positive-valued random field x �→ [L(x)]jj , indexed by �d, is defined by
[L(x)]jj = σ

√
2 h(αj, Ujj(x)) in which αj = (n + 1)/(2δ2) + (1 − j)/2.

3.4. A few basic properties of the random field [G]

The random field x �→ [G(x)] defined in Section 3.3 is a homogeneous second-order mean-
square continuous random field indexed by �d with values in �+

n (�) and its trajectories are
almost surely continuous on �d. For all x ∈ �

d, one has

E{‖G(x)‖2
F} < +∞ , E{[G(x)]} = [ I ] , (26)

in which, for any real matrix [B], ‖B‖2
F = tr{[B ]T [B ]}. It can be proven that the newly

introduced parameter δ corresponds to the following definition

δ =
{

1
n

E{‖ [G(x)]− [ I ] ‖2
F }

}1/2

, (27)

which shows that
E{‖G(x) ‖2

F} = n (δ2 + 1) , (28)

in which δ is independent of x and n. For all x fixed in �d, the probability density function
with respect to the measure d̃G = 2n(n−1)/4 Π1≤j≤k≤n d[G]jk of the random matrix [G(x)] is
independent of x and is written as

p[G(x)]([G])= �
�

+
n (�)([G])×CG ×

(
det [G]

)(n+1)
(1−δ2)

2δ2 × exp
{
−(n + 1)

2δ2
tr [G]

}
, (29)
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in which �
�

+
n (�)([G]) is equal to 1 if [G] ∈ �

+
n (�) and is equal to zero if [G] /∈ �

+
n (�), where

tr is the trace of matrices and where positive constant CG is such that

CG =
(2π)−n(n−1)/4

(
n+1
2δ2

)n(n+1)(2δ2)−1{
Πn

j=1Γ
(

n+1
2δ2 + 1−j

2

)} .

For all x fixed in �d, Eq. (29) shows that the random variables {[G(x)]jk, 1 ≤ j ≤ k ≤ n}
are mutually dependent. In addition, the system of the marginal probability distributions of the
random field x �→ [G(x)] is completely defined and is not Gaussian.

Let [B] be a random matrix, defined on (Θ, T , P ), with values in the set�m(�) of all the (m×m)
real matrices. For θ ∈ Θ, let [B(θ)] ∈ �m(�) be a realization of [B]. The norm ‖B(θ)‖ of
[B(θ)] induced by the Euclidean norm ‖v‖ of v in �m is such that

‖B(θ)‖ = sup‖v‖≤1‖[B(θ)] v‖ , v ∈ �
m . (30)

The random variable θ �→ [B(θ)] is denoted as ‖B‖. There exists a positive constant c0 in-
dependent of n and independent of x, but depending on δ, such that for all n ≥ 2 and for all
x ∈ �d,

E{‖[G(x)]−1‖2} ≤ c0 < +∞ . (31)

It should be noted that since [G(x)] almost surely belongs to�+
n (�), then [G(x)]−1 almost surely

exists. However, since almost sure convergence does not yield mean-square convergence, the
previous result cannot simply be deduced. Finally, one has the following fundamental property
(non uniform ellipticity condition replacing the usual uniform ellipticity condition which is not
introduced): let Ω be any bounded open domain of �d and let Ω = Ω ∪ ∂Ω be its closure. One
then has

E
{
(supx∈Ω ‖ [G(x)]−1‖)2

}
= c2

G < +∞ , (32)

in which sup is the supremum and where 0 < cG < +∞ is a finite positive constant. Note that
the mathematical proof of Eq. (32) can easily be derived from (Soize, 2006) for the extended
class introduced in Section 3.1 and that Eq. (32) is preoved in (Soize, 2001).

4. A few properties of the random field [A]

The random field x �→ [A(x)] indexed by Ω with values in �+
6 (�), is defined by Eq. (18) in

which the random field x �→ [G(x)] indexed by �3 with values in �+
6 (�), is defined in Section

3 with d = 3 and n = 6.

4.1. Basic properties of the random field [A] and its parameters

The random field x �→ [A(x)] is a second-order random field on Ω,

E{‖A(x)‖2} ≤ E{‖A(x)‖2
F} < +∞ . (33)

The system of the marginal probability distributions of the random field x �→ [A(x)] is completely
defined, is not Gaussian and is deduced from the system of the marginal probability distributions
of the random field x �→ [G(x)] by using Eq. (18). In general, since [a(x)] depends on x, then
the random field {[A(x)] , x ∈ Ω} is non homogeneous. It can easily be proven that

E{‖[A(x)]− [a(x)]‖2
F } =

δ2

(n + 1)
{‖a(x)‖2

F + (tr [a(x)])2} . (34)
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The dispersion parameter δA(x) is such that

δA(x)2 =
E{‖[A(x)]− [a(x)]‖2

F}
‖a(x)‖2

F

(35)

and can be rewritten as

δA(x) =
δ√

n + 1

{
1 +

(tr [a(x)])2

tr{[a(x)]2}

}1/2

. (36)

The random field x �→ [G(x)] almost surely has continuous trajectories (see Section 3.4). If the
function x �→ [a(x)] is continuous on Ω, then the random field x �→ [A(x)] almost surely has
continuous trajectories on Ω. Nevertheless, if the function x �→ [a(x)] is not continuous on Ω,
then the random field x �→ [A(x)] almost surely does not have continuous trajectories on Ω.

Then the random field x �→ [G(x)] is completely and uniquely defined by the following param-
eters: the �+

6 (�)-valued mean function x �→ [a(x)], the positive real parameter δ and the 63
positive real parameters Ljj′

1 , Ljj′
2 , Ljj′

3 for 1 ≤ j ≤ j′ ≤ 6. The smallest number of param-

eters corresponds to the following case: x �→ [a(x)], δ and Ld = Ljj′
1 = Ljj′

2 = Ljj′
3 for all

1 ≤ j ≤ j′ ≤ 6.

4.2. Spatial correlation lengths of the random field [A] for the homogeneous case

If [a(x)] = [a ] is independent of x, then the random field {[A(x)] = [L ]T [G(x)] [L ] , x ∈ Ω}
can be viewed as the restriction to Ω of a homogeneous random field indexed by �3. Then
the dispersion parameter defined by Eq. (35) is independent of x and then δA(x) = δA. Let
� = (η1, η2, η3) �→ rA(�) be the function defined from �

3 into � by

rA(�) =
tr E{([A(x + �)] − [a ]) ([A(x)]− [a ])}

E{‖[A(x)]− [a ]‖2
F }

. (37)

It can be seen that rA(0) = 1 and rA(−�) = rA(�). For k = 1, 2, 3, the spatial correlation
length LA

k of x �→ [A(x)] and relative to the coordinate xk can then be defined by

LA
k =

∫ +∞

0

|rA(�k)|dηk , (38)

in which �1 = (η1, 0, 0), �2 = (0, η2, 0) and �3 = (0, 0, η3). It is also possible to define a
fourth-order tensor L

Aαβγκ

k of spatial correlation lengths relative to the coordinate xk such that

L
Aαβγκ

k =
∫ +∞

0

|rAαβγκ(�k)|dηk , k = 1, 2, 3 ,

in which

rAαβγκ(�) =
1

σαβσγκ
E{([A(x + �)]αβ − [a ]αβ) ([A(x)]γκ − [a ]γκ)} ,

and where σαβ =
√

E{([A(x)]αβ − [a ]αβ)2}.
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5. Discretizing with stochastic finite elements and solving the random equation

For all � and m in {1, 2, 3}, one must

(1) solve the stochastic BVP defined by Eqs. (9)-(10) with the random constitutive equation
��m(x) = �(x) : ε(D�m(x)) in order to construct the random local displacement field D�m.

(2) calculate the fourth-order tensor-valued random field� defined by Eq. (11) and corresponding
to the strain localization.

(3) estimate the probabilistic properties of the fourth-order random effective stiffness tensor �eff

defined by Eq. (14).

In order to solve this problem, the following computational stochastic method is used.

(1) The weak formulation of the stochastic BVP is constructed and the existence of a unique
second-order stochastic solution is proven.

(2) The stochastic finite element method is used for discretizing the weak formulation and
Eqs. (11) and (14). For such a numerical approximation, the random local stiffness tensor field
x �→ �jk�m(x) and the random local strain tensor field x �→ εjk(D�m(x)) are discretized at all
the Gauss-Legendre quadrature points of the finite elements.

(3) The probabilistic quantities are then estimated by using the Monte Carlo numerical simulation
method which is made up of 3 main steps: (a) developing a generator for constructing ns

independent realizations {x �→ �(x, θr) , r = 1, . . . ns} of the random field x �→ �(x) using the
probability model presented in Sections 3 and 4; (b) for each realization x �→ �(x, θr), calculating
the corresponding realization �eff(θr) of the effective tensor (and related quantities such as the
random eigenvalues of the random tensor�eff) by solving a deterministic matrix equation; (c) with
the ns independent realizations, estimating the probabilistic quantities (moments, probability
distributions) using the mathematical statistics and studying the convergence with respect to ns.

5.1. Weak formulation of the stochastic BVP

Below, � and m are fixed in {1, 2, 3}. Let x �→ d(x) = (d1(x), d2(x), d3(x)) be a function from
Ω into �3. Let V = (H1(Ω))3, V0 ⊂ V and V�m ⊂ V be the real Hilbert spaces such that

V = {dj ∈ L2(Ω) ,
∂dj

∂xk
∈ L2(Ω) , for j and k = 1, 2, 3} ,

V0 = {d ∈ V , d(x) = 0 for x ∈ ∂Ω} ,

V�m = {d ∈ V , d(x) = d�m(x) for x ∈ ∂Ω} ,

in which d�m is the function from ∂Ω into�3 such that d�m(x) = g�mx. The inner product in V is
denoted by <d,d′ >V and the associated norm is denoted by ‖d‖V . Let �, �0 ⊂ � and ��m ⊂ �

be the three real Hilbert spaces of all the second-order random variables θ �→ {x �→ D(x, θ)}
defined on probability space (Θ, T , P ), with values in V , V0 and V�m respectively,

� = L2(Θ, V ) , �0 = L2(Θ, V0) , ��m = L2(Θ, V�m) .

The inner product in � and the associated norm are such that


D,δD��= E{<D, δD>V } and ‖D‖� = (E{‖D‖2
V })1/2 .
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The new indices I = (j, k) and J = (�, m) introduced in Section 2.3 are used and the strain
vector

e(d) = (ε11(d), ε22(d), ε33(d), 2 ε12(d), 2 ε13(d), 2 ε23(d)) (39)

is introduced. The weak formulation of the stochastic BVP defined by Eqs. (9)-(10) can then be
written as follows. Find the random field D�m in ��m such that,

K(D�m, δD) = 0 a.s. , ∀ δD ∈ �0 , (40)

in which the random bilinear form (D, δD) �→ K(D, δD) on �× � is defined by

K(D, δD) =
∫

Ω

< [A(x)] e(D(x)) , e(δD(x))> dx . (41)

5.2. Existence and uniqueness of a second-order solution

The following problem: find D�m in ��m such that, K(D�m, δD) = 0 a.s. for all δD in �0, has
a unique solution.

To prove this result and in order to simplify the notation, the random field D�m is rewritten as D
(no confusion is possible).

(i) Due to the fundamental property defined by Eq. (32) (non uniform ellipticity condition
replacing the usual uniform ellipticity condition), it is proven (Soize, 2006) that, for all random
field D in � such that D is not a random rigid body displacement field, one has√

E{K(D, D)2} ≥ cK ‖D‖2
� , (42)

in which cK is a finite positive real constant.

(ii) The usual proof of the existence of a solution can be directly deduced from Eq. (40) if a
uniform ellipticity condition and a uniform boundness condition for the fourth-order tensor-
valued random field x �→ �(x) is used. This usual proof cannot be used here due to the
non introduction of these uniformness conditions which are substituted by the more realistic
probabilistic hypothesis which has been introduced and which corresponds to the introduction
of the non uniformness condition. Therefore, the weak formulation is reformulated using a
deterministic Lagrange multiplier field x �→ q(x) from ∂Ω in �3 belonging to the space Q∂Ω

which is defined as the continuous dual space of the space V∂Ω constituted of all the functions
x �→ d|∂Ω(x) from ∂Ω in �3 which are the traces on ∂Ω of the functions d belonging to V . Find
D in � and q in Q∂Ω such that, for all δD in � and for all δq in Q∂Ω, one has

K(D, δD)+ 
δq , D|∂Ω − d�m� + 
q , δD|∂Ω �= 0 a.s. , (43)

in which d�m is the function from ∂Ω into �3 defined in Section 5.1 and where 
q , v� is the
dual bracket between Q∂Ω and V∂Ω.

(iii) One now proves the existence of a solution D in ��m of Eq. (43).

(iii-1) If D is a random rigid body displacement field, then K(D, δD) = 0 and consequently,
Eq. (43) shows that, for all δD in � and for all δq in Q∂Ω, one has 
 δq , D|∂Ω − d�m� + 

q , δD|∂Ω �= 0 a.s.. This equation yields D|∂Ω = d�m which contracdicts with the fact that
d�m is not the trace on ∂Ω of a rigid body displacement field.
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(iii-2) It is now assumed that D belongs to � but is not a random rigid body displacement field.
In this condition, Eq. (42) holds. Taking δD = D and δq = q ∈ Q∂Ω in Eq. (43) yields

K(D, D)+ 
q , 2D|∂Ω − d�m�= 0 a.s. . (44)

Equations (42) and (44) yield

c2
K ‖D‖4

�
≤ E{
q , 2D|∂Ω − d�m�2} . (45)

It can easily be proven that

E{
q , 2D|∂Ω − d�m�2} ≤ c1 + c2‖D‖2
� , (46)

in which c1 = 2 ‖q‖2
Q∂Ω

‖d�m‖2
V∂Ω

< +∞ and c2 = 8 c2
γ ‖q‖2

Q∂Ω
< +∞ in which cγ is the

finite constant such that ‖d‖V∂Ω ≤ cγ ‖d‖V . From Eqs. (45) and (46), it can be deduced that
c2
K ‖D‖4

�
≤ c1 + c2‖D‖2

�
which yields ‖D‖� ≤ c < +∞. One then has proven the existence

of a solution in � but since any solution of Eq. (43) is such that D |∂Ω = d�m on ∂Ω, one has
proven the existence of a solution D in ��m.

(iv) The proof of the uniqueness is straightforward.

5.3. Finite element discretization

The stochastic finite element method is used to discretize the weak formulation defined by
Eq. (40).

(i) A finite element mesh of domain Ω is carried out using 3D solid finite elements. One then
has Ω = ∪e Ωe in which Ωe is the domain of the finite element number e. Any displacement
field x �→ d(x) in V and its associated strain vector field x �→ e(x) are then approximated by

d(x) � [B(x)]w , x ∈ Ω , e(x) � [S(x)]w , x ∈ Ω ,

in which w = (w1, . . . , wν) is the vector of the ν degrees of freedom corresponding to the values
of the components of the field d at the nodes of the mesh. The (3 × ν) real matrices [B(x)]
and [S(x)] are known matrices usually constructed by using the interpolation functions of the
finite elements. For any integrable function x �→ f(x) defined on Ω and continuous on Ωe, the
following usual numerical approximation can be written

∫
Ωe

f(x) dx �
Ne∑
k=1

ωαk
f(xαk) ,

in which {ωα1 , . . . , ωαNe
} and {xα1 , . . . , xαNe} are the sets of all the Ne weights and the Ne

Gauss-Legendre quadrature points for the finite element Ωe. Consequently, it can be written that

∫
Ω

f(x) dx =
∑

e

∫
Ωe

f(x) dx �
N∑

α=1

ωα f(xα) , (47)

in which {ω1, . . . , ωN} and {x1, . . . , xN} are the sets of all the N weights and the N Gauss-
Legendre quadrature points for Ω = ∪e Ωe with N =

∑
e Ne.
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For all x in Ω, the finite element approximation of all D and δD in � is then written as D(x) �
[B(x)]W and δD(x) � [B(x)] δW, in which W and δW are �ν-valued second-order random
vectors. Therefore, the corresponding finite element approximation of the random bilinear form
defined by Eq. (41) is such that

< [K ]W , δW>= K([B( . )]W , [B( . )]δW) ,

defining the (ν × ν) random stiffness matrix [K ] such that

[K ] =
∫

Ω

[S(x)]T [A(x)] [S(x)] . (48)

(ii) Using Eq. (47), the random stiffness matrix [K ] defined by Eq. (48) can be approximated by
the random matrix [KN ] such that

[KN ] =
N∑

α=1

ωα [S(xα)]T [A(xα)] [S(xα)] dx ,

in which the �+
6 (�)-valued random field x �→ [A(x)] is discretized in the N Gauss-Legendre

quadrature points x1, . . . , xN . In order to analyse the value of N which is required to obtain a
good approximation of [K ] by [KN ] and taking into account Section 5.2,it can be deduced that the
integral over Ω in Eq. (48) must be read as a mean-square integral. In the vector space of all the
second-order random matrices with values in �6(�), a necessary and sufficient condition (Krée
and Soize, 1986) for that the sequence of second-order random matrices {[KN ]}N converges to
the second-order random matrix [K ] when N goes to infinity is

lim
N,N ′→+∞

E{tr([KN ]T [KN ′ ])} = E{tr([K ]T [K ])} .

Since [K ] and [KN ] are symmetric matrices, it can be deduced that [KN ] will be a good approx-
imation of [K ] in the mean-square sense if E{tr([KN ]2)} � E{tr([K ]2)}. One has

E{tr([K ]2)} =
∫

Ω

∫
Ω

∑
k,�,k′,�′

Sk�k′�′(x, y) Rk�k′�′(x, y) dx dy ,

E{tr([KN ]2)} =
N∑

α,β=1

ωα ωβ

∑
k,�,k′,�′

Sk�k′�′(xα, xβ) Rk�k′�′(xα, xβ) ,

in which

Sk�k′�′(x, y) =
ν∑

i,j=1

[S(x)]ki[S(x)]�j[S(y)]k′i[S(y)]�′j ,

Rk�k′�′(x, y) = E{[A(x)]k�[A(y)]k′�′} .

Thus the convergence is clearly reached when N goes to infinity. For a given fixed N , the random
matrix [KN ] will be a good approximation of the random matrix [K ] in the mean-square sense
if the number N of the Gauss-Legendre quadrature points x1, . . . , xN is sufficiently large and
is adapted to the variations of the intercorrelation functions Rk�k′�′ of the real-valued random
fields [A]k� and [A]k′�′ .
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(iii) The finite element discretization of the random field D�m in��m which is solution of Eq. (40)
is then written as

D�m(x) � [B(x)]W�m , x ∈ Ω . (49)

The second-order random vector W�m with values in �ν can then be written as

W�m = (W�m
i , w�m

b ) , (50)

in which W�m
i is the �νi -valued second-order random vector of the νi degrees of freedom

for the nodes inside the domain Ω and where w�m
b is the �νb deterministic vector of the νb

degrees of freedom for the nodes belonging to the boundary ∂Ω. This last vector is such that
d�m(x) � [B(x)]w�m

b for all x in ∂Ω and the vector w�m
b is constituted of the values of the

components of the field d�m at the nodes belonging to boundary ∂Ω. The block writing of the
random stiffness matrix [K] related to Eq. (50) is introduced as follows,

[K] =
[

[Kii] [Kib]
[Kib]T [Kbb]

]
. (51)

The finite element approximation of Eq. (40) is then given by the following random matrix
equation allowing the unknown random vector W�m

i to be calculated,

[Kii] W�m
i = −[Kib] w�m

b . (52)

The random values �(x1), . . . ,�(xN ) of � at the N points x1, . . . , xN are calculated by using
Eq. (11). Let �(x1), . . . ,�(xN ) be the random values of � at the N points x1, . . . , xN . Then,
using Eq. (47), the finite element approximation of the fourth-order random effective stiffness
tensor �eff defined by Eq. (14) can be written as

�
eff � 1

|Ω|

N∑
α=1

ωα �(xα) : �(xα) . (53)

Let [ Aeff ] be the �+
6 (�)-valued random matrix of the fourth-order random effective stiffness

tensor �eff such that
[ Aeff ]IJ = �

eff
jk�m . (54)

In order to perform the probability analysis of the fourth-order random effective stiffness tensor,
one introduces the following order statistics

Λ̃1 ≥ Λ̃2 ≥ . . . ≥ Λ̃6 > 0 , (55)

of the random eigenvalues Λ̃ of the random matrix [ Aeff ] such that

[ Aeff ]� = Λ̃� . (56)

The random variable ‖Aeff ‖ defined by Eq. (30) is such that

‖Aeff ‖ = Λ̃1 . (57)
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5.4. Defining the probabilistic quantities for the random effective stiffness matrix

Taking into account the large quantity of probabilistic information which can be constructed, it
is necessary to limit the quantities which will be computed.

In this context, it is assumed that the mean model of the microstructure is homogeneous, that
is to say [a(x)] = [a ] is independent of x. Consequently (see Section 4.2), the random field
[ A ] describing the fourth-order tensor-valued random field � of the random anisotropic mi-
crostructure can be viewed as the restriction to Ω of a homogeneous random field indexed by
�3. The dispersion parameter δA defined by Eq. (36) is then independent of x and can easily be
deduced from the value of the dispersion parameter δ defined by Eq. (27). Finally, the spatial
correlation lengths LA

1 , LA
2 and LA

3 defined by Eq. (38) depend on the values of the parameters

Ljj′
1 , Ljj′

2 , Ljj′
3 for 1 ≤ j ≤ j′ ≤ 6 of the stochastic germs (see Section 3.1).

Therefore, every probabilistic analysis of the macroscopic properties of the random anisotropic
elastic microstructure is performed for a given value of the parameters [a ], δ and Ljj′

1 , Ljj′
2 , Ljj′

3

for 1 ≤ j ≤ j′ ≤ 6.

The following probabilistic quantities can be constructed.
(i) The mean value [mAeff ]

IJ
, the standard deviation [σAeff ]

IJ
and the coefficient of variation

[cvAeff ]
IJ

of the components [ Aeff ]IJ of the random effective stiffness matrix [ Aeff ] are such
that

[mAeff ]
IJ

= E{[ Aeff ]
IJ
} , (58)

[σAeff ]
IJ

=
√

E{([ Aeff ]
IJ

− [mAeff ]
IJ

)2} , (59)

[cvAeff ]
IJ

=
[σAeff ]

IJ

[mAeff ]IJ

. (60)

(ii) The mean value m‖ Aeff ‖ , the standard deviation σ‖ Aeff ‖ and the coefficient of variation cv‖ Aeff ‖
of the random variable ‖Aeff ‖ are given by

m‖ Aeff ‖ = E{‖Aeff ‖} , (61)

σ‖ Aeff ‖ =
√

E{(‖Aeff ‖ − m‖ Aeff ‖)2} , (62)

cv‖ Aeff ‖ =
σ‖Aeff ‖
m‖ Aeff ‖

. (63)

The Tchebychev inequality for the positive-valued random variable ‖Aeff ‖ can be written as

P

{ ∣∣∣∣∣ ‖Aeff ‖
m‖ Aeff ‖

− 1

∣∣∣∣∣ ≥
cv‖ Aeff ‖

k

}
≤ k2 . (64)

From this inequality, it can be deduced that ‖Aeff ‖ converges in probability to the mean value
m‖ Aeff ‖ when cv‖ Aeff ‖ goes to zero. Consequently, the study of cv‖ Aeff ‖ defined by Eq. (63), as a
function of the spatial correlation lengths (or equivalently, as a function of the RVE size), allows
the statistic fluctuations of the random matrix [ Aeff ] to be analysed. Such a quantification can
be improved in constructing the cumulative probability distribution defined in point (iii) below.

(iii) Let z �→ pZ(z) be the probability density function with respect to dz of the random variable
Z defined by

Z =
‖Aeff ‖
m‖ Aeff ‖

. (65)
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The support of pZ is �+. The cumulative distribution function z∗ �→ FZ(z∗) of the random
variable Z is then defined by

FZ(z∗) =
∫ z∗

0

pZ(z) dz = E{�Z≤z∗} , (66)

in which �Z≤z∗ = 1 if Z ≤ z∗ and = 0 if not.

5.5. Solving the random equation and computing the statistical estimations

The random equations (52) to (57) are solved by the Monte Carlo numerical simulation method
by using ns independent realizations θ1, . . . , θns

in Θ.

(i) The independent stochastic germs Ujj′ for 1 ≤ j ≤ j′ ≤ 6 are simulated in the N Gauss-
Legendre quadrature points x1, . . . , xN (see Section 5.3). Let U be any one of the random
fields Ujj′ for fixed j and j′. One then has to simulate realizations of the random vector
U = (U(x1), . . . , U(xN)). A first representation adapted to a large value of N is based on the
usual numerical simulation of homogeneous Gaussian vector-valued random field U constructed
with the stochastic integral representation of homogeneous stochastic fields (see for instance
(Shinozuka, 1971), (Poirion and Soize, 1995)). A second representation adapted to a small or
moderate value of N consists in writing U = [LU]T� in which � = (η1, . . . , ηN ) is an �N -
valued random variable whose components η1, . . . , ηN are N independent normalized Gaussian
random variables (E{ηj} = 0 and E{η2

j } = 1 for j = 1, . . . , N ) and where [LU] is the upper
real triangular matrix corresponding to the Cholesky factorization [CU] = [LU]T [LU] of the
covariance matrix [CU] in �+

N (�) such that [CU]ij = RU (xi − xj). A third representation also
adapted to a large value of N consists in projecting U in the dominant eigensubspace of [CU].
This dominant eigensubspace is constructed with the eigenvectors of [CU] associated with the
first largest eigenvalues. The eigenvalue problem is solved with an iterative method (such as
the Lanczos or the subspace iteration method) without effective assemblage of matrix [CU] (see
Soize, 2006).

(ii) The mathematical expectation of any random quantity R in Eqs. (58) to (63) is estimated by

E{R} =
1
ns

ns∑
r=1

R(θr) . (67)

The cumulative probability distribution FZ defined by Eq. (66) is estimated with the usual
estimator (Serfling, 1980).

Let ν be the number of degrees of freedom of the finite element model introduced in Section 5.3.
Let [Aeff

ν ] be the random effective stiffness matrix calculated with the finite element model having
ν degrees of freedom. For a given value of ν, the convergence of the Monte Carlo numerical
simulation with respect to the number ns of realizations can be controlled by studying the
function

ns �→ conv(ns, ν) = (
1
ns

ns∑
r=1

‖Aeff
ν (θr)‖2)1/2/‖Aeff

ν ‖ , (68)

in which ‖Aeff
ν (θr)‖ is the realization θr of the random variable ‖Aeff

ν ‖ defined by Eq. (30) in
which the random effective stiffness matrix [Aeff

ν ] is defined by Eq. (57) and where ‖Aeff
ν ‖ is the

norm defined by Eq. (30) of the effective stiffness matrix [Aeff
ν ] of the mean model. If the mean

model of the microstructure is homogeneous, then the local stiffness matrix [a] is independent of
x and then [Aeff

ν ] = [a]. The right-hand side of Eq. (68) corresponds to the statistical estimation
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of the norm |||Aeff
ν ||| = (E{‖Aeff

ν ‖2})1/2 of the random matrix [ Aeff
ν ]. For a given value of ns,

the convergence with respect to the number ν of degrees of freedom of the finite element model
is given by the function ν �→ conv(ns, ν).

6. Application to an anisotropic random microstructure

This section deals with the numerical application of the theory presented for a given mean model
of the microstructure.

6.1. Mean model and finite element discretization of the mean model of the microstructure

The open bounded domain Ω (the RVE) of �3 is such that Ω = (]0, 1[)3. The mean model of
the microstructure corresponds to a homogeneous anisotropic linear elastic medium whose local
stiffness matrix [a] belonging to �+

n (�) with n = 6 is then independent of x and such that

[ a ] = 1010×

⎡⎢⎢⎢⎢⎢⎣
3.3617 1.7027 1.3637 −0.1049 −0.2278 2.1013
1.7027 1.6092 0.7262 0.0437 −0.1197 0.8612
1.3637 0.7262 1.4653 −0.1174 −0.1506 1.0587
−0.1049 0.0437 −0.1174 0.1319 0.0093 −0.1574
−0.2278 −0.1197 −0.1506 0.0093 0.1530 −0.1303
2.1013 0.8612 1.0587 −0.1574 −0.1303 1.7446

⎤⎥⎥⎥⎥⎥⎦ . (69)

The finite element model is a regular mesh of 12×12×12 = 1728 nodes and 11×11×11 = 1331
finite elements which are 8-nodes solid elements with 2 × 2 × 2 Gauss-Legendre quadrature
points (see Fig. 1). Therefore there are 5184 degrees of freedom, N = 10648 Gauss-Legendre
quadrature points, νi = 3000 degrees of freedom for the nodes inside domain Ω and νb = 2184
degrees of freedom for the nodes belonging to boundary ∂Ω. In this case, the weights ωα

introduced in Section 5.3 are such that ωα = |Ω|/N and consequently, Eq. (53) can be rewritten
as

�
eff � 1

N

N∑
α=1

�(xα) : �(xα) .

6.2. Meso-scale probabilistic model, computational parameters and stochastic response

(i) Meso-scale probabilistic model. At the meso-scale, the probabilistic model of the elasticity
tensor of the random anisotropic microstructure is defined in Sections 2.3, 3 and 4. The random
field x �→ [A(x)], indexed by Ω, with values in �+

n (�), with n = 6, is such that (see Eq. (18)),
[A(x)] = [ L ]T [G(x)] [ L ] in which the matrix [ a ], defined by Eq. (69), is written (see Eq. (17))
as [ a ] = [ L ]T [ L ]. The stochastic field x �→ [G(x)], indexed by �3, with values in �+

n (�), is
defined in Section 3.

(ii) Dispersion parameter. The dispersion parameter δA defined by Eq. (35) is then independent
of x and can be calculated as a function of the parameter δ by using Eq. (36) and yields δA =
0.6192×δ. For δ = 0.1, 0.2, 0.3 and 0.4, one then has δA = 0.0619, 0.1238, 0.1858 and 0.2477
respectively. Below, all the results are given as function of δ instead of δA.

(iii) Parameters of the stochastic germs and spatial correlation lengths of the random field [A]. In

this numerical application, it is assumed that the parameters Ljj′
1 , Ljj′

2 , Ljj′
3 for 1 ≤ j ≤ j′ ≤ 6

of the stochastic germs (see Section 3.1) are such that Ljj′
1 = Ljj′

2 = Ljj′
3 = Ld for all j

and j′ in which Ld is the unique parameter relative to the length-scales of the stochastic germs.
For each given value of δ and for each given value of Ld, the independent realizations of the
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random matrices [A(x1)], . . . , [A(xN)] at the N = 10648 points x1, . . . , xN (see Section 5.3)

are constructed by using Sections 3.3(iii) and 5.5(i). Since Ljj′
1 = Ljj′

2 = Ljj′
3 = Ld for

all j and j′, it can easily be deduced that the correlation function defined by Eq. (37) is such
that rA(η, 0, 0) = rA(0, η, 0) = rA(0, 0, η). The following notation rA

d (η) = rA(η, 0, 0) =
rA(0, η, 0) = rA(0, 0, η) is then used below. It can be proven that the function rA

d is independent
of δ. From Eq. (38), it can then be seen that the spatial correlation lengths LA

1 , LA
2 and LA

3 of
the random field x �→ [A(x)] are then equal to a same value denoted by LA.

For Ld = 0.1 and Ld = 1, Fig. 2 and Fig. 3 display the graphs of the function η �→ rA
d (η)

calculated with Eq. (37) in which the mathematical expectation is estimated by using the Monte
Carlo simulation with 2000 independent realizations. For these values, the spatial correlation
length LA is calculated by Eq. (38) and is such that LA = 0.1113 for Ld = 0.1 and LA = 1.113
for Ld = 1. More generally, one has LA = 1.113 Ld. Due to this correspondence between LA

and Ld, it is equivalent to present the results in terms of the spatial correlation length LA or the
parameter Ld. Below, the results are presented in function of Ld.

Let Cd be the cube LA × LA × LA. For the smallest value of LA considered in the numerical
calculation (LA = 0.1113 corresponding to Ld = 0.1) there are about 14 Gauss-Legendre
quadrature points in Cd. For LA = 0.2226 corresponding to Ld = 0.2, there are about 112
points. This is sufficient to obtain a good approximation of the random matrix [K] by [KN ] in
the mean-square sense (see Section 5.3-(ii)) taking into account the very slow variations (over any
interval of length LA) of the correlation function displays in Fig. 2. In addition, Fig. 5 shows that
the convergence is reached with respect to N for this smallest value of LA and for the strongest
stochastic fluctuations considered (δ = 0.4). This is an additional important information to
conclude that the convergence is reached in the mean-square sense with a resonable accuracy.

(iv) Stochastic convergence analysis for the random effective stiffness matrix. For each given
value of the dispersion parameter δ, for each given value of the parameter Ld and for a given
finite element model having ν degrees of freedom, the probabilistic quantities (defined in Section
5.4) for the random effective stiffness matrix are estimated by using the Monte Carlo numerical
simulation presented in Section 5.5 and by using the equations given in Sections 5.3 and 5.4.

(iv-1) The mean-square convergence with respect to ns (number of realizations used in the
Monte Carlo numerical method) is then studied by constructing the function ns �→ conv(ns, ν)
defined by Eq. (68). Fig. 4 displays the graph of ns �→ conv(ns, ν) for δ = 0.4 (the largest
value considered for the dispersion parameter), for Ld = 0.1 (the smallest value considered
for this parameter) and for a finite element model having ν = 5184 degrees of freedom and
corresponding to 11 × 11 × 11 finite elements. It can be seen that convergence is reached for
ns ≥ 500.

(iv-2) The mean-square convergence with respect to the number ν of degrees of freedom of
the finite element model is studied by constructing the function ν �→ conv(ns, ν) defined by
Eq. (68). Fig. 5 displays the graph of ν �→ conv(ns, ν) for δ = 0.4, Ld = 0.1 and ns = 900.
Clearly, convergence is reached for 11 × 11 × 11 finite elements corresponding to ν = 5184.

(iv-3) All the results presented below have been computed with ns = 900 and 11 × 11 × 11
finite elements corresponding to ν = 5184. Convergence is reached for the values of Ld and δ
which are considered below.

(v) Normalized mean value of the norm of the random effective stiffness matrix. Let ‖ a ‖ be the
norm (defined by Eq. (30)) of the local stiffness matrix [a] which is such that ‖ a ‖ = λ1 where
λ1 is the largest eigenvalue of the matrix [ a ]. The normalized mean value μ‖ Aeff ‖ of the random
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variable ‖Aeff ‖ (see Eq. (30)) is then defined by

μ‖ Aeff ‖ =
m‖ Aeff ‖

‖ a ‖ , (70)

in which the mean value m‖ Aeff‖ is defined by Eq. (61). Fig. 6 shows μ‖ Aeff ‖ as a function of
the parameter Ld for several values of the dispersion parameter δ. Fig. 6 displays the graph of
the function Ld �→ μ‖ Aeff ‖(Ld) for Ld belonging to the interval [0.1 , 1.0] and for δ = 0.1 (circle
marker), δ = 0.2 (square marker), δ = 0.3 (cross marker) and δ = 0.4 (diamond marker).

(vi) Coefficient of variation of the random norm of the random effective stiffness matrix. This
coefficient of variation cv‖ Aeff ‖ is defined by Eq. (63). Fig. 7 shows the coefficient of variation
cv‖ Aeff ‖(Ld) of the random norm of the random effective stiffness matrix as a function of the
parameter Ld, for several values of the dispersion parameter δ. Fig. 7 displays the graph of the
function Ld �→ cv‖ Aeff ‖(Ld) for Ld belonging to the interval [0.1 , 1.0] and for δ = 0.1 (circle
marker), δ = 0.2 (square marker), δ = 0.3 (cross marker) and δ = 0.4 (diamond marker).

(vii) Cumulative distribution function of the random variable Z related to the random effective
stiffness matrix. Fig. 8 shows the cumulative distribution function FZ (defined by Eq. (66))
of the normalized random variable Z (defined by Eq. (65)) for several values of the spatial
correlation length Ld and for δ = 0.4. Fig. 8 displays the graph of z∗ �→ FZ(z∗) = P{Z ≤ z∗}
for Ld belonging to the interval [0.1 , 1.0] and for δ = 0.4. Fig. 9 displays the graph of
z∗ �→ 1 − FZ(z∗) = P{Z > z∗} for the same values of Ld and δ.

(viii) Mean value and coefficient of variation of the random effective stiffness matrix. For δ = 0.4
and for Ld = 0.1, the mean value [mAeff ] defined by Eq. (58) and the coefficient of variation
[cvAeff ] defined by Eq. (60) of the components [ Aeff ]IJ of the random effective stiffness matrix
[ Aeff ] are such that

[mAeff ] = 1010×

⎡⎢⎢⎢⎢⎢⎣
3.1917 1.6169 1.2936 −0.0991 −0.2165 1.9921
1.6169 1.5348 0.6899 0.0422 −0.1138 0.8159
1.2936 0.6899 1.3991 −0.1120 −0.1437 1.0053
−0.0991 0.0422 −0.1120 0.1266 0.0089 −0.1497
−0.2165 −0.1138 −0.1437 0.0089 0.1468 −0.1236
1.9921 0.8159 1.0053 −0.1497 −0.1236 1.6566

⎤⎥⎥⎥⎥⎥⎦ . (71)

[cvAeff ] =

⎡⎢⎢⎢⎢⎢⎣
0.0174 0.0204 0.0237 0.0742 0.0403 0.0186
0.0204 0.0166 0.0288 0.1267 0.0505 0.0264
0.0237 0.0288 0.0166 0.0440 0.0394 0.0223
0.0742 0.1267 0.0440 0.0165 0.1705 0.0361
0.0403 0.0505 0.0394 0.1705 0.0170 0.0494
0.0186 0.0264 0.0223 0.0361 0.0494 0.0170

⎤⎥⎥⎥⎥⎥⎦ . (72)

For δ = 0.4 and for Ld = 1, one has

[mAeff ] = 1010×

⎡⎢⎢⎢⎢⎢⎣
3.3187 1.6872 1.3438 −0.1065 −0.2265 2.0767
1.6872 1.6055 0.7220 0.0448 −0.1171 0.8488
1.3438 0.7220 1.4576 −0.1161 −0.1502 1.0413
−0.1065 0.0448 −0.1161 0.1314 0.0096 −0.1578
−0.2265 −0.1171 −0.1502 0.0096 0.1503 −0.1298
2.0767 0.8488 1.0413 −0.1578 −0.1298 1.7255

⎤⎥⎥⎥⎥⎥⎦ . (73)
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[cvAeff ] =

⎡⎢⎢⎢⎢⎢⎣
0.1793 0.2153 0.2385 0.7723 0.4223 0.1941
0.2153 0.1765 0.2946 1.2696 0.5328 0.2762
0.2385 0.2946 0.1820 0.4935 0.4202 0.2294
0.7723 1.2696 0.4935 0.1715 1.8137 0.4041
0.4223 0.5328 0.4202 1.8137 0.1828 0.5171
0.1941 0.2762 0.2294 0.4041 0.5171 0.1818

⎤⎥⎥⎥⎥⎥⎦ . (74)

6.3. Probabilistic analysis of the RVE size

The probability analysis of the RVE size can be deduced from Figs. 7, 8 and 9. Stochastic
homogenization can be performed if the random fluctuations of ‖Aeff ‖ around its mean value
m‖ Aeff ‖ is very small, that is to say if ‖Aeff ‖ has values around 1.

(i) In terms of the coefficient of variation cv‖ Aeff ‖ of the random variable ‖Aeff ‖, the REV size has
to be small with respect to the parameter Ld, i.e cv‖ Aeff ‖ 
 1. For instance, Fig. 7 shows that if
Ld ≤ 0.72 for δ = 0.1, Ld ≤ 0.35 for δ = 0.2, Ld ≤ 0.24 for δ = 0.3 or Ld ≤ 0.18 for δ = 0.4,
then cv

‖ Aeff ‖
≤ 0.04. For instance, for δ = 0.4 (i.e. δA = 0.2477), this means that if stochastic

homogenization is performed with a RVE whose size is about five times the spatial correlation
length (REV size = 1 and parameter Ld = 0.18), then the normalized standard deviation of the
random fluctuations of the effective stiffness tensor is less than 4%. Nevertheless, Eq. (74) shows
that the normalized standard deviation of the components [Aeff]IJ can be much more larger than
4%. For instance, one has 18% for (1, 1) and 77% for (1, 4).

(ii) The above second-order analysis can be improved in studying the probability distributions.
Let β be a positive real number. Let β �→ �(β) be the function defined by

�(β) = P{1 − β < Z ≤ 1 + β} = FZ(1 + β) − FZ(1 − β) . (75)

In terms of probability, this information is given by the function � defined by Eq. (75) and is
deduced from FZ . For δ = 0.4 and for Ld belonging to [0.1, 0.7], Fig. 10 displays the graph of the
function �. For instance, for Ld = 0.2 and for β = 0.02, 0.04 and 0.08, one has � = 0.36, 0.65
and 0.95, which means that P{0.98 < Z ≤ 1.02} = 0.36, P{0.96 < Z ≤ 1.04} = 0.65 and
P{0.92 < Z ≤ 1.08} = 0.95. For instance, for δ = 0.4 (i.e. δA = 0.2477), if stochastic
homogenization is performed with a RVE whose size is five times the spatial correlation length
(REV size = 1 and spatial correlation length LA = 0.2226), then the probability for which the
random fluctuations of the effective stiffness tensor is less than 2%, 4% or 8%, is 0.36, 0.65 or
0.95 respectively.

7. Summary of the proposed theory

The proposed theory is devoted to stochastic homogenization of a random anisotropic elastic
microstructure which cannot be described in terms of its constituents and then for which the
standard method cannot be applied (for instance some cortical bones, some biological membranes
and more generally, some living tissues, etc). The methodology consists in directly introducing
a meso-scale probabilistic model of the random anisotropic elastic microstructure (which is
not deduced from the probabilistic models of its constituents). For this meso-scale model, the
local stiffness fourth-order tensor-valued random field is {�ijkh(x)}ijkh and is represented by a
(6×6) real random matrix [A(x)]. Its mean value {�ijkh(x)}ijkh is represented by a (6×6) real
matrix [a(x)]. This meso-scale model allows a complete stochastic model of the fourth-order
random effective (macroscopic) stiffness tensor �eff related to a given Representative Volume
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Element (RVE) to be constructed. This random effective stiffness tensor �eff is represented by
a (6 × 6) real random matrix [Aeff]. Three types of analysis can be performed with the theory
proposed.

(1) The first type of analysis corresponds to a direct prediction of [Aeff]. For such a prediction,
data are (a) the size of the RVE; (b) the mean value [a(x)]) of the local stiffness fourth-order
tensor-valued random field associated with the mean model of the meso-scale probabilistic
model of the random anisotropic elastic microstructure; (c) the parameters describing the (6×6)
real random matrix [A(x)] which are the dispersion parameter δA and the correlation lengths
LA

1 , LA
2 , LA

3 . The methodology then consists (a) in constructing ns independent realizations
[A(x, θ1)], . . . , [A(x, θns

)] for θ1, . . . , θns
in Θ, using Eqs. (17) and (18) and Section 3.3; (b) in

solving random equations (52) to (57) by the Monte Carlo numerical simulation method by using
the ns independent realizations [A(x, θ1)], . . . , [A(x, θns

)]; (c) in constructing the probabilistic
quantities (for instance, the moments and the probability distribution) of the random matrix
[ Aeff ] representing the fourth-order random effective stiffness, using Eqs. (58) to (66).

(2) The second type is a probability analysis of the RVE size with respect to the spatial correlation
lengths of the proposed meso-scale probabilistic model. The parametric study of the RVE size can
be performed in function of the dispersion parameter δA and the correlation lengths LA

1 , LA
2 , LA

3

of the random field x �→ [A(x)]. Such a study is also useful to get information on the RVE
size for which stochastic fluctuations are still significant and consequently, can be measured.
Such an analysis is carried out using the direct prediction of the probabilistic quantities of the
fourth-order random effective stiffness tensor as explained in point (1) above.

(3) The third type of analysis is related to the experimental identification of the meso-scale
probabilistic model of the random anisotropic elastic microstructure carried out in identifying
the parameters of the random field x �→ [A(x)]. Such an experimental identification can be
performed using field measurements deduced from digital image processing and solving an
inverse stochastic problem.

8. Conclusions

We have proposed a new approach useful for a direct experimental identification of random
anisotropic elastic microstructures introducing a meso-scale probabilistic model. Such an ap-
proach can be used when the standard method cannot easily be applied to anisotropic elastic
microstructures. A parametric probabilistic study of the RVE size has been performed with re-
spect to the intensity δA of the stochastic fluctuations of the local stiffness tensor-valued random
field describing the meso-scale probabilistic model and in function of its correlation lengths LA

k .
Such a study is also useful to get information on the RVE size for which stochastic fluctuations
are still significant and consequently, can be measured. Then the results presented in this pa-
per could allow the meso-scale probabilistic model to be identified from meso- or macro-scale
measurements solving an inverse stochastic problem. For fixed spatial correlation lengths, the
RVE size has to increase with δA. For a fixed value of δA, the RVE size has to increase with the
spatial correlation lengths. For fixed spatial correlation lengths and dispersion parameter δA,
the effective RVE size can effectively be calculated in a probability sense using the cumulative
distribution function of the random variable measuring the random fluctuations of the effective
stiffness tensor. A large numerical simulation has been carried out and the numerical results
obtained allow a probability analysis of the representative volume element size to be performed.
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Fig. 1. Finite element model of the Representative Volume Element
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Fig. 2. Graph of the correlation function η �→ rA
d (η) for Ld = 0.1. Horizontal axis η. Vertical

axis rA
d (η)
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Fig. 3. Graph of the correlation function η �→ rA
d (η) for Ld = 1.0. Horizontal axis η. Vertical

axis rA
d (η)
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Fig. 4. Mean-square convergence of the random effective stiffness matrix with respect to
the number ns of realizations of the Monte Carlo numerical simulation method for δ = 0.4,
Ld = 0.1 and ν = 5184. Graph of function ns �→ conv(ns, ν). Horizontal axis ns. Vertical
axis conv(ns, ν).
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Fig. 5. Mean-square convergence of the random effective stiffness matrix with respect to the
number ν of degrees of freedom of the finite element model for δ = 0.4, Ld = 0.1 and for
ns = 900. Graph of function ν �→ conv(ns, ν). Horizontal axis ν. Vertical axis conv(ns, ν).
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Fig. 6. Normalized mean value μ‖ � ‖(Ld) (vertical axis) of the random norm ‖� ‖ of the random
effective stiffness matrix [� ] as a function of the spatial correlation length Ld (horizontal axis).
Graph of function Ld �→ μ‖ � ‖(Ld) for δ = 0.1 (circle marker), δ = 0.2 (square marker),
δ = 0.3 (cross marker) and δ = 0.4 (diamond marker).
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Fig. 7. Coefficient of variation cv‖ � ‖(Ld) (vertical axis) of the random norm ‖� ‖ of the random
effective stiffness matrix [� ] as a function of the spatial correlation length Ld (horizontal axis).
Graph of function Ld �→ cv‖ � ‖(Ld) for δ = 0.1 (circle marker), δ = 0.2 (square marker),
δ = 0.3 (cross marker) and δ = 0.4 (diamond marker).
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Fig. 8. Graph of the cumulative distribution function z∗ �→ FZ(z∗) = P{Z ≤ z∗} of the
normalized random variable Z = ‖� ‖/m‖� ‖ for δ = 0.4 and for several values of the spatial
correlation length Ld = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 0.5 (triangle-
up), 0.6 (no marker), 0.7 (triangle-down), 0.8 (no marker), 0.9 (no marker), 1.0 (diamond).
Horizontal axis z∗. Vertical axis FZ(z∗) in log10 scale.
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Fig. 9. Graph of z∗ �→ 1 − FZ(z∗) = P{Z > z∗} relative to the normalized random variable
Z = ‖� ‖/m‖� ‖ for δ = 0.4 and for several values of the spatial correlation length Ld = 0.1
(circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 0.5 (triangle-up), 0.6 (no marker), 0.7
(triangle-down), 0.8 (no marker), 0.9 (no marker), 1.0 (diamond). Horizontal axis z∗. Vertical
axis FZ(z∗) in log10 scale.
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Fig. 10. Graph of β �→ �(β) = P{1 − β < Z ≤ 1 + β} for δ = 0.4 and for several values of
the spatial correlation length Ld = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker),
0.5 (triangle-up), 0.6 (no marker), 0.7 (triangle-down). Horizontal axis β. Vertical axis �(β).
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