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Abstract

The main objective of this paper is to present a generic meso-scale probability model for a large class of random
anisotropic elastic microstructures in order to perform a parametric analysis of the Representative VVolume Element
(RVE) size. This new approach can be useful for a direct experimental identification of random anisotropic eastic
microstructures when the standard method cannot easily be applied to anisotropic elastic microstructures. Such aRVE
is used to construct the macroscopic properties in the context of stochastic homogenization. The probability analysis
is not performed as usual for a given particular random microstructure defined in terms of its constituents. Instead, it
is performed for a large class of random anisotropic elastic microstructures. For this class, the probability distribution
of the random effective stiffness tensor is explicitly constructed. This allows a full probability analysis of the RVE
size to be carried out and its convergence to be studied. The procedure of homogenization is based on a homogeneous
Dirichlet condition on the boundary of the RVE. The probability model used for the stiffness tensor-valued random
field of the random anisotropic elastic microstructure is an extension of the model recently introduced by the author for
elliptic stochastic partial differential operators. The stochastic boundary value problem is numerically solved by using
the stochastic finite element method. The probability analysis of the RVE size is performed by studying the probability
distribution of the random operator norm of the random effective stiffness tensor with respect to the spatial correlation
length of the random microstructure.
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1. Introduction

In linear elasticity, the objective of stochastic homogenization is to construct the macroscopic
elastic properties of random elastic microstructures. Such a stochastic homogenization is an
approximation based (1) on the cal culation of the solution of the boundary value problemrelative
to the Representative Volume Element (RVE) with a periodic, Dirichlet or Neumann boundary
condition and (2) on calculating the spatial averaging of this solution on the RVE. Stochastic
homogenization can be applied if the scale of the random microstructure is sufficiently small
with respect to macroscopic dimensions. This meansthat RVE size hasto be small with respect
to macroscopic dimensions and sufficiently large with respect to the scale of fluctuationsin the
microstructure. Such a definition is not really sufficient and must be mathematically defined in
the context of a probability model of the microstructure.

The homogenization of random heterogeneous materials with random microstructures and the
calculation of the macroscopic properties have received considerable attention in the past three
decades; see for instance (Kroner, 1971), (Nemat-Nasser and Hori, 1999), (Milton, 2002) and
(Torgquato, 2002). The first mathematical results concerning stochastic homogenization are
attributed to (Sanchez-Palencia, 1980) and (Papanicolaou and Varadhan, 1981). Many papers
and books have been published in thefield of stochastic homogenization, on calculating effective
properties and their bounds, constructing non-local effective constitutive equations, such as
(Kroner, 1977),(Sab, 1992), (Jikov et al, 1994), (Andrews and Wright, 1998), (Nemat-Nasser
and Hori, 1999).
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Often, the probabilistic model of a random microstructure (such as a composite constituted of
severa constituents) can directly be constructed from the geometry and mechanical properties
of its constituents. Thisisthe case for the class of random heterogeneous materials whose mi-
crostructures can be modelled asadistribution of inclusionsor cavitiesof well-defined geometry
inagivenmatrix. Thisisalso the case of random heterogeneous materials having acellular stru-
ture for which the probabilistic model is directly constructed using cell statistics, random field
models, percolation and clustering, and for which the n-point probability distribution functions
can be deduced from the knowledge of the different phases constituting the microstructure; see
for instance (Torquato and Stell, 1985), (Andraud et al., 1997), (Torquato, 1997), (Nemat-Nasser
and Hori, 1999), (Quintanilla, 1999), (Ostoja-Starzewski, 1998), (Kachanov et al., 2001), (Mil-
ton, 2002), (Torquato, 2002). Generally, the statistics-based bounding techniques only use the
lower-order statistics (first- and second-order moments) and the probability distributions which
give the detailed probabilistic information are not taken into account.

The random microstructure can be homogenized if there is a RVE size which is "small" with
respect to macroscopic dimensions, i.e. if the random fluctuations of the random effective
stiffness tensor around the statistical mean value of the random effective stiffness tensor is
"negligible”. Representative volume element size has received a particular attention; see for
instance (Nemat-Nasser and Hori, 1999), (Ren and Zheng, 2004). These works are developed
for elastic composite materials with firmly-bonded phases. In (Drugan and Willis, 1996), the
RVE sizeisrelated to the "convergence of the mean value of the effective tensor” and in (Sab
and Nedjar, 2005), the RVE size hasto be such that the random fluctuations are "small enough”.

The objectives of this paper are detailed below.

(A) The construction of the system of marginal probability distributionsfor any composite using
the geometry and the mechanical properties of its constituents requires the knowledge of al the
n~-point probability functionswhich can be not so easy to deduce from theoretical considerations
and/or from experimental measurementsin particular for anisotropic elastic microstructure. For
some random ani sotropic el astic microstructures, it can bedifficult (1) to deducethe probabilistic
model of the microstructure from the probabilistic model of its constituents and (2) to identify
and/or to validate the probabilistic model from experimental measurements performed on several
specimens and using mathematical statistics for estimating the probability models of random
fields under consideration. Thisisthe reason why it can be interesting to propose an additional
approach for identifying the probabilistic model of a random anisotropic elastic microstructure
which cannot easily be deduced (and experimentally identified) from its constituents. Such a
new approach is proposed in this paper.

(B) The main ideaof this paper isthen to directly introduce a meso-scale probabilistic model of
the random ani sotropi ¢ el astic microstructure, whichisnot deduced from the probabilistic models
of its congtituents. Such a meso-scale probabilistic model must verify fundamental mathemati-
cal propertiesto obtain a physical model of any anisotropic elastic microstructure. The random
anisotropic elastic microstructure (for instance a mortar constituted of a cement paste with em-
bedded sand particles, some porous media such as plaster boards, some cortical bones, some
biological membranesand more generally, someliving tissues, etc) isthen modelled at the meso-
scale by an equivalent random continuous anisotropic elastic medium which is completely de-
fined by itslocal stiffness fourth-order tensor-valued random field x — C(X) = {C;xn (X) }ijkn-
Therandomfield C isthen constituted of 21 mutually dependent real-valued random fields mod-
elling the anisotropic microstructure at the meso-scale level. The theory proposed allows strong
anisotropic random fluctuationsto be taken into account. The great interest of such adirect con-
struction of ameso-scal e probabilistic model of the random anisotropic elastic microstructureis
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the capability to identify the parameters of the random field x — C(x). Such an experimental
identification can be performed using displacement measurements of tested specimens on the
boundary of the meso-scale subdomain of the RVE by using field measurements deduced from
digital image processing and solving an inverse stochastic problem. It isthen necessary to choose
astochastic representation of x — C(x) inaclassof random fieldsfor which only afew parame-
tersarerequired to defineits system of marginal probability distributions. Therefore, theinverse
problem related to such an experimental identification of x — C(X) ismorefeasible. Inaddition,
such aclassof randomfieldsx — C(x) must be constructed using only the availableinformation
and not "hypothetical" information for which no statistics are available or for which the number
of experimental specimensistoo small to obtain agood convergence of the statistical estimators.
For the tensor-valued random field x — C(x), thelargest class can be constructed using as avail-
able information: the symmetry properties, the mean value x — C(x) which is assumed to be
known and a stochastic non-uniform ellipticity condition for the corresponding linear elasticity
stochastic differential operator. Clearly, any random anisotropic elastic microstructure belongs
to this class.

As explained above, the prime objective of this paper is not to analyse a particular random
isotropic or anisotropic microstructure described in terms of its constituents, but is to propose
(when the standard method cannot easily be applied to anisotropic elastic microstructures) a
new way which could be useful for a direct experimental identification of random anisotropic
el astic microstructures introducing a meso-scal e probabilistic model. It should be noted that the
comparison of the proposed approach with the standard approach isnot so easy to perform. The
previously published works are mainly devoted to define the RVE size for which adeterministic
effective stiffness tensor can be constructed and used, and are generally not attached to con-
struct the probability distribution of the random effective stiffness tensor for random anisotropic
elastic microstructures. In addition, many previous works deal with isotropic or orthotropic
microstructures and cannot be compared with the present anisotropic case developed in this

paper.

(C) The second objective of this paper is to perform a parametric probabilistic study of the
RV E size with respect to the spatial correlation lengths of the proposed meso-scale probabilistic
model. The parametric study of the RVE size is performed in function of the intensity of the
stochastic fluctuationsof x — C(x) andinfunction of itscorrelation lengths. Such astudy isalso
useful to get information on the RVE size for which stochastic fluctuations are still significant
and consequently, can be measured. Then the results presented in this paper could allow the
meso-scal e probabilistic model to beidentified from meso- or macro-scale measurementssolving
an inverse stochastic problem.

(C.1) Theprobability analysisof the RV E sizewhichisproposed for constructing the effective (or
macroscopic) stiffness of random anisotropic elastic microstructures is performed as follows.
Let Z = |A%"||/m . be the real-valued random varigble in which the random variable

| A% | is the operator norm of the random effective stiffness tensor A¥" and where m ., =

E{|| A¥"||} isthe mean valuewith £ the mathematical expectation. The probability distribution
(the cumulative distribution function) of the random variable 7 is explicitly constructed and
allows a full probability analysis of the RVE size to be performed. The use of the Chebychev
inequality for therandom variable Z a so allowsthe convergence of therandom effective stiffness
tensor to be studied with the coefficient of variation of Z. Nevertheless, if such anapproach allows
convergence in probability to be analysed, it only gives an upper bound of the probability when
convergence is not completely reached (it should be noted that such a difficulty is circumvented
by using the full probability analysis proposed in this paper).
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(C.2) Another objectiveof thiswork isto quantify theRVE sizeintermsof probability level. This
meansthat the probability distribution of the random fluctuations of the random effective stiffness
tensor is effectively calculated. For such an analysis, there are two equivalent approaches. (1)
the three spatial correlation lengths of the tensor-valued random field x — C(x) are fixed, and
then the size of the RVE is taken as a variable parameter, or (2) the three spatial correlation
lengths are taken as variable parameters and then the size of the RVE is fixed. The present
analysis uses the second approach and the RVE hasdimensions1 x 1 x 1.

(D) The strategy of the developments presented in thiswork is the following:

(D.1) Sincethe proposed meso-scal e probability model of the random anisotropic microstructure
isgeneral and since we are interested in constructing the probability distribution of the random
effective stiffness tensor, the random solution of the stochastic boundary value problem cannot
be exactly constructed with an analytical method. It istherefore constructed using the stochastic
finite element method and an adapted stochastic solver.

(D.2) The approximation of the random effective stiffnesstensor can be constructed by averaging
the random operator on the RV E using one of the three following boundary conditions: periodic,
Dirichlet or Neumann boundary conditions. For a periodic microstructure, the Hill-Mandel
condition which indicates that both the Dirichlet and Neumann problems are needed to establish
the RVE size can be used (see for instance (Nemat-Nasser and Hori, 1999)). Such a criterion
allowsthe RV E sizeto be defined in cal cul ating the effective stiffnesstensor for both the Dirichlet
and Neumann boundary conditions. The RVE size isthen such that the two calculated effective
stiffnesstensorsmust be"equal” for agiven precision. However, for arandom microstructure, this
criterion can be replaced by another criterion related to the random fluctuations of the random
effective stiffness tensor calculated either with the Dirichlet condition or with the Neumann
condition. The random fluctuations must then be "small" for a given precision either for the
Dirichlet problem or for the Neumann problem. Thisproperty hasmathematically been analysed:
arecent work published by (Bourgeat and Piatnitski, 2004) shows that the three approximations
constructed with the three boundary conditions converge to the same effective stiffnesstensor for
asufficiently general probabilistic model. Since the limit is the same in the stochastic case, the
result isindifferent to the type of the chosen boundary conditions. Finally, since the mechanical
analysis at the macro-scale is often performed in terms of the displacement field, one then has
chosen the homogeneous Dirichlet condition on the boundary of the RVE in order to limit the
development of the present work.

(D.3) The RVE sizeis analysed in the context of the standard theory of local homogenization
for which the random effective stiffness tensor is constant in space (local theory). Thisis an
approximation of non-local theories(seefor instance: (Kroner, 1971), (Beran and McCoy, 1970),
(Nemat-Nasser and Hori, 1999)). Nevertheless, the development of a full stochastic non-local
theory for the 3D-ani sotropic cases which would be based on the use of the proposed meso-scale
probabilistic model for random anisotropic elastic microstructures is not the purpose of this

paper.

(E) The paper is organized as follows:

(E.1) Section 2 deal swith the standard theory concerning the macroscopic propertiesof arandom
anisotropic elastic microstructure. The usual procedure of homogenization with a given homo-
geneous Dirichlet condition on the boundary of the RVE is recalled (see for instance (Nemat-
Nasser and Hori, 1999), (Zaoui, 2002)) and the probabilistic model of the random anisotropic
microstructure is presented. This section is introduced to define the notation and the random
quantities for the stochastic case.
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(E.2) In Sections 3 and 4, the largest class of all the tensor-valued random fields x +— C(x)
corresponding to the meso-scal e probability model of random ani sotropic el astic microstructures
is presented. Thislargest classis an extension of the subclass presented in (Soize, 2006). The
detailed construction of this largest class of random fields cannot be duplicated here and only
the final result and the main mathematical properties are summarized in order to simplify the
reading. Notethat the extension of themathematical proof concerning the stochastic non-uniform
elipticity condition for thislargest classis straightforward.

(E.3) Section 5 is devoted to the weak formulation of the stochastic boundary value problem
(BVP), to the use of the stochastic finite elements method to construct a finite approximation of
thisstochastic BV P and finally, to the stochastic solver. Then, the probabilistic quantitiesfor the
random effective stiffness tensor can be calculated. It should be noted that the usual proof of the
existence of a second-order random solution, based on the use of auniform ellipticity condition
and a uniform boundness condition for the fourth-order tensor-valued random field x — C(x),
cannot beused. Thisisdueto theintroduction of amoregeneral non uniformellipticity condition
whichisamorerealistic probabilistic hypothesis. Consequently, the existence of a second-order
solution is studied.

(E.4) Finally, Section 6 dealswith the probabilistic analysis of the RVE sizewhich is performed
by numerical simulation and islimited to the subclass of the meso-scal e probabilistic model sfor
random anisotropic elastic microstructures.

2. Macroscopic properties of arandom anisotropic microstructure

Consider a random microstructure constituted of a random heterogeneous anisotropic elastic
linear medium. The random local (or microscopic) constitutive equation iswritten as

o(x) = C(x) :e(x) , (1)

whichmeans o (X) = C,xem (X) €0m (X) Wherex = (z1, x2, x3) isapoint of the Representative
Volume Element (RVE) which is a 3D bounded open domain © in R® and where x — C(x)
is the fourth-order tensor-valued random field allowing the elastic properties of the random
microstructure to be characterized. Let x — D(X) = (D1(X), D2(x), D3(X)) be the random
local displacement field. In Eq. (1), X — &(X) = ¢(D(x)) isthe random local strain tensor field
suchthat ¢, (D(X)) = 5(0D¢(X) /0y, + 0Dy, (X)/dz¢), ad X — o, () isthe random local
stress tensor field. The random effective (or macroscopic) stress and strain tensors are usually
defined as the average in the RVE of the random local stress and strain tensor fields,

ol ol
<o>=-— [ o(X)dx , <e>=— [ g(X)dx . 2
|Q|Q<) |Q|Q() (2)
It should be noted that < o > and < £ > are random tensors.

2.1. Localization

As explained in Section 1-(D.2), the homogeneous Dirichlet condition on the boundary of the
RVE is used. The locadization is then done with a given random effective strain € on the
boundary 02 of the RVE which is independent of x. One then has D(x) = gx on 092 (i.e.
Dy(X) = &y, Tm) in Which the given tensor € is independent of x and such that e =< € >.
Consequently, for a given random effective strain £ on 052, the random local displacement field
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D inthe microstructure €2 can be constructed by solving the following stochastic boundary value
problem (BVP) in €2,

—dive=0 in Q , (3)
D(x) =egx on 09 , (4)

in which {dive(x)}; = 0do;i(X)/0x, and where the random loca constitutive equation is
defined by Eq. (1). Since the solution D of Egs. (3) and (4) depends linearly on g, the random
local strain tensor can be written as

e(D(x)) =H(X) : e , ()

in which the fourth-order tensor-valued random field x — H(x) corresponds to the strain local-
ization associated with the stochastic BV P defined by Egs. (3) and (4). Sinces(D(x)) and e are
symmetric tensors, from Eqg. (5), it can be deduced that

Hjkem (X) = Hijem (X) = Hjgme(X) (6)

In order to construct the random field H, for al ¢ and m in {1, 2, 3}, the second-order tensors
g"™ are introduced such that

1

inwhich 4, is the Kronecker symbol. From Eq. (7), it can be verified that g7" = g7 = g
and that

E=¢g,,0"" . (8)

Foral ¢andm in{1,2,3}, let D be the random local displacement field which isthe solution
of the following stochastic BVP in (2,

—dive™ =0 in Q , (9)
D" (x) = ¢*"x on 9Q (10)

in which (see Eq. (1)), 6™ (x) = C(x) : e(D*"(x)). From Egs. (3)-(4) and (5), it can be
deduced that the solution D™ of Egs. (9)-(10) is such that (D™ (x)) = H(x) : g“™ which,
using Egs. (7) and (8), yields

Hjkem (X) = 56 (D™(x)) - (11)
From Egs. (11) and (2), it can be deduced that < H,xe, >=< £;1(D"(x)) >. Comparing
Egs. (4) and (10) and using Eq. (2) yield < ¢ (D™ (x)) >= g£;". It can then be deduced that

< Hjpem > = gi7" (12)
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2.2. Random effective stiffness tensor

The fourth-order random effective stiffness tensor C* is defined by the following equation,
<o>=C:.<e> | (13)

which means that < o, > = C%,, < e, >. Substituting Eq. (5) in Eq. (1) yields
o =C: H: g and consequently, < o >=< C: H >: £, which compared to Eq. (13) and

taking into account that e =< € > yield
C =<C:H> , (14)

which meansthat C?‘}igm = < Cjrpq Hpgem >. Duetothesymmetry of thefourth-order random
local stiffnesstensor C, taking into account Eg. (6) and using (Nemat-Nasser and Hori, 1999),
the energetic characterization, it can be proven that the fourth-order random effective stiffness
tensor C* is symmetric, that isto say,

€S = o = O = O (15)
Consequently, for a given probabilistic model of the fourth-order tensor-valued random field
x — C(x) allowingto definethe el astic properties of therandom microstructure, thefourth-order
random effective stiffness tensor C*" is calculated by using Eq. (14) in which the fourth-order
tensor-valued random field x — H(x) is given by Eq. (11). For al ¢ and m in {1,2, 3}, D™
is the random local displacement field which is the solution of the stochastic BVP defined by
Egs. (9)-(10).

2.3. Meso-scale probabilistic model for random anisotropic elastic microstructures

Asexplainedin Section 1-(B), thefourth-order tensor-val ued randomfield x — C(x) correspond-
ing to the meso-scale probabilistic model for the random anisotropic elastic microstructure is
introduced. This model will be used to construct the fourth-order random effective stiffness
tensor C*'. For all x fixed in (2, the random fourth-order tensor C(x) has a given mean value,
must verify the symmetry property and a stochastic non-uniform ellipticity condition related to
positive-definiteness properties. As explained in Section 1, the random field C is constituted of
21 mutually dependent real-valued random fields and the system of marginal probability distri-
butions of C is required because the unknown random solution x — D*™(x) of the stochastic
BVP defined by Egs. (9)-(10) is anon-linear mapping of the random field C.

The mean value of therandom field C isadeterministic tensor-valued field X +— {C, 1, (X) }ijkn
associated with the mean model of the meso-scale probabilistic model of the random anisotropic
elastic microstructure. The probability model has to be such that E{C.;xn(X)} = C,j(X) for
al x, where E is the mathematical expectation. The known symmetries, such as monoclinic
symmetry, orthotropic symmetry, transverse square symmetry, transversally i sotropic symmetry,
and isotropic symmetry, can be taken into account with the mean model represented by the tensor
1€k (X) Fijrn. Nevertheless, this paper deals with the case for which the random fluctuation
tensor {C;;xn(X) — Qijkh(x)}ijkh around the mean tensor is purely anisotropic, without any
symmetries.

One presents an extension of the probability model proposed in (Soize, 2004 and 2006) which
is based on a non-parametric construction of the random field x — C(x), which only uses
the available information. In addition, for al deterministic symmetric second-order real tensor
z, the uniform eliptic condition C;rem (X)2emzj > cozjkzk a.s. (@most surely), where
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co 1S a deterministic positive constant independent of X, is not introduced to construct this
probability model because, in general, such a uniform ellipticity condition does not correspond
to available information (objective data). For the proposed probabilistic model, a non uniform
ellipticity condition is introduced for the fourth-order tensor-valued random field x — C(X)
which corresponds to the available information and which, for all ¢ and m fixed in {1, 2, 3},
allows the random weak formulation of the stochastic BV P defined by Egs. (9)-(10) to have a
unique second-order random solution X — D™ (x).

In order to define the probability model of the tensor-valued random field C, the (6 x 6) matrix
representation [A(x)] of the fourth-order tensor C(x) is introduced. Therefore, let I and J be
the new indicesbelongingto {1, ...,6} suchthat I = (5, k) and J = (¢, m) with the following
correspondence: 1 = (1,1),2=(2,2),3=(3,3),4=(1,2),5=(1,3) and 6 = (2, 3). Thus,
for al x in 2, therandom (6 x 6) real matrix [A(X)] is such that

A 1s = Cjrem(X) - (15)

For al x fixed in €2, due to the symmetry and positive-definiteness properties of the random
fourth-order tensor C(x), it can be deduced that [A (X)] isarandom variable with valuesin the set
Md (R) of al the (6 x 6) real symmetric positive-definite matrices. The M (R)-valued random
field {[A(X)],x € 2}, indexed by (2, defined on the probability space (©, 7, P), is constituted
of 6 x (6 + 1)/2 = 21 mutually dependent real-valued random fields defining the fourth-order
tensor-valued random field C indexed by €.

The mean function x — [a(x)] of therandom field [A] is assumed to be a given function from
into M7 (R) such that, for all x fixed in €2,

E{[AX)]} = la(¥)] (16)

Since [a(x)] belongs to IM{ (R), there is an upper triangular invertible matrix [L(x)] in Mg(R)
(the set of all the (6 x 6) real matrices) such that

[a(x)] = [LO)]" [L(X)] - (17)

It is assumed that x — [L(x)] is bounded on 2 and that X — [a(X)] satisfies the usual uniform
elipticity condition on €.

For al x fixed in €, the random matrix [A(X)] can be written as
AX)] = LT [GR] LX) (18)

in which x — [G(x)] is arandom field defined on (©, 7, P), indexed by R3, with valuesin
Mg (R), such that for all x in R3

E{[GHI}=11] , (19)

inwhich [ I'] istheidentity matrix. The random field [G] is completely defined in Section 3.
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3. Probability model of therandom fields [G] and [A]

Letd > 1 andn > 1 betwo given integers. The random field X = (z1,...,z4) — [G(X)] is
indexed by R¢ with valuesin M.} (R). In Eq. (18), onehasd = 3 and n = 6. Asexplained in
Section 1-(E.2), the extended probability model presented below is based on the construction
and the mathematical analysis of the random field [G] performed in (soize, 2006). The results
which allow the numerical calculation to be performed are summarized below. Therandom field
X +— [G(x)] is constructed as a homogeneous and normalized non-Gaussian positive-definite
matrix-valued random field, defined on probability space (6, 7, P), indexed by R¢, with values
in M (R). Thisrandom field is constructed as a non-linear mapping of n(n + 1) /2 independent
second-order centered homogeneous Gaussian random fields x +— U, (X), 1 < j < j' < n,
defined on the probability space (6, T, P), indexed by R¢, with values in R, and named the
stochastic germs of the non-Gaussian random field [G|.

3.1. Random fields U ;- as the stochastic germs of the random field [G]
The stochastic germs are constituted of n(n + 1)/2 independent second-order centered homo-
geneous Gaussian randomfieldsx — Uj;/(X), 1 < j < j’ < n, defined on the probability space
(6,7, P), indexed by R?, with valuesin R and such that

E{Ujp(0} =0, B{U;()*} =1 . (20)
Consequently, all these random fields are completely and uniquely defined by the n(n + 1)/2
autocorrelation functions Ry, , () = E{Uj;/(x +n) U;;(x)} defined for al n = (1, ..., 74)
inR? and such that Ry, (0) = 1.
In order to obtain a class having a reasonable number of parameters, these autocorrelation
functions are written as Ry, , () = py’ (m) x ... x pj (na) inwhich, foral &£ = 1,...,d,
one has p?? (0) = 1 and for all ny, # 0,

o () = 4L/ (xnp) sin®(mm L)) 21)

inwhich {7, ... L9 are positive real numbers. Each random field U, isthen mean-square
continuous on R? and it power spectral measure has a compact support. Such a model has
dn(n +1)/2 real parameters L3’ ,... L# for 1 < j < j' < n which represent the spatial
correlation lengths of the stochastic germs U ;..

3.2. Defining an adapted family of functions

The construction of the random field [G] requires the introduction of an adapted family of
functions {u +— h(a,u)}a>0. Let o be apositive real number. The function v — h(a,u)
from R into |0, 00| isintroduced such that I', = h(«, U) is a gamma random variable with
parameter o while U is anormalized Gaussian random variable (E{U} = 0 and E{U?} = 1).
Consequently, for al « in R, one has

ho,u) = Fr ! (Fu(u) (22)

inwhichu — Fyy(u) = [*_ —=e™" dv isthe cumulative distribution function of the normal-
ized Gaussian random variable U. The function p — Fr_al (p) from]0,1[into |0, +oo[ isthe
reciprocal function of the cumulative distribution function v — Fr_(v) = fo7 F(la) to et dt
of thegammarandomvariableI", with parameter o inwhichT'(«) isthe gammafunction defined

by I'(a) = 0+O° to—le=t dt,
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3.3. Defining the random field [G]

The random field x — [G(x)], defined on the probability space (©, 7, P), indexed by R?, with
valuesin M (R) is constructed as follows:

(i) Let {U;;:(x),x € R'}1<j<jr<n bethen(n + 1)/2 independent random fields introduced in
Section 3.1. Consequently, for al x in R¢,

E{Uj(x)}=0 , E{Ujp(x)°*}=11<j<j <n . (23)

(i) Let o be the real number, independent of x and n, such that

0<d</(n+1)(n+5-"1 <1 . (24)

This parameter which is assumed to be known (resulting, for instance, from an experimental
identification solving an inverse problem) allows the dispersion of the random field [G] to be
controlled.

(iii) For al x in R, the random matrix [G(x)] is written as

[G()] =L LK) (25)
inwhich [L (X)] isthe upper (n x n) real triangular random matrix defined as follows:
(iii.1) For1 < j < j' < n,then(n+ 1)/2 random fieldsx — [L (X)];,~ are independent.
(iii.2) For j < j, the real-valued random field x +— [L(X)];;/, indexed by R?, is defined by
[L(X)];;s = oU,;j(X) inwhich o issuchthat o = & (n + 1) ~1/2.
(iii.3) For j = 4/, the positive-valued random field x — [L (X)];;, indexed by R?, is defined by
[L(X)];; = oy/2h(c;,U;5(x)) inwhich a; = (n+1)/(26%) + (1 — j)/2.

3.4. A few basic properties of the random field [G]

The random field x — [G(x)] defined in Section 3.3 is a homogeneous second-order mean-
square continuous random field indexed by R¢ with values in M (R) and its trajectories are
almost surely continuous on R%. For all x € R?, one has

E{IGMX)IIE} < +oo , E{[GX)]}=[I] , (26)

in which, for any real matrix [B], || B||% = tr{[B]T[B]}. It can be proven that the newly
introduced parameter ¢ corresponds to the following definition

1/2
o= pte-tn ) (27)

which shows that
E{|GX)|F} =n(*+1) , (28)

in which ¢ is independent of x and n. For al x fixed in R¢, the probability density function
with respect to the measure dG' = 2"~/ 11, < p<,, d[G] j Of the random matrix [G(x)] is
independent of x and iswritten as

ool (1G) = 1 16D % Ca x (@R[ "5 xexp {- Lt wicr] . (29

C. Soize, Final version - 15 Oct 2007 - Journal of Probabilistic Engineering Mechanics 10



inwhich 1.+ g ([G]) isequal to 1if [G] € M} (R) and isequal to zeroif [G] ¢ M (R), where
tr isthe trace of matrices and where positive constant Cg is such that

(27)~n(n=1)/4 (=4 1\n(n+1)(26%) 7"
{H M(5 +3)}

For all x fixed in R?, Eq. (29) shows that the random variables {[G(X)]x,1 < j < k < n}
are mutually dependent. In addition, the system of the marginal probability distributions of the
random field x — [G(X)] is completely defined and is not Gaussian.

et [B] bearandom matrix, definedon (©, 7, P), withvaluesintheset I, (R) of al the (m xm)

real matrices. For 6 € O, let [B(0)] € M,,(R) be arealization of [B]. The norm ||B(#)| of
[B(6)] induced by the Euclidean norm ||v|| of v in R™ is such that

Ce =

IB(O) || = supyy <. [I[BO)] V]| , veR™ . (30)

The random variable # — [B(#)] is denoted as ||B||. There exists a positive constant ¢, in-
dependent of n and independent of x, but depending on 4, such that for al » > 2 and for all
x € R,

B{IGH)] M} < co < 400 . (31)

It should be noted that since [G(x)] amost surely belongsto 1.7 (R), then [G(x)] ! almost surely
exists. However, since almost sure convergence does not yield mean-square convergence, the
previous result cannot simply be deduced. Finally, one has the following fundamental property
(non uniform ellipticity condition replacing the usual uniform ellipticity condition which is not
introduced): let Q be any bounded open domain of R? and let Q = Q U 99 beits closure. One
then has

E{(sup, e [ [G)] M)} =& < +o0 (32)

in which sup isthe supremum and where 0 < ¢ < +oc isafinite positive constant. Note that
the mathematical proof of Eq. (32) can easily be derived from (Soize, 2006) for the extended
classintroduced in Section 3.1 and that Eq. (32) is preoved in (Soize, 2001).

4. A few properties of therandom field [A]

The random field x — [A(X)] indexed by Q with valuesin M (R), is defined by Eq. (18) in
which the random field x — [G(x)] indexed by R? with valuesin M (R), is defined in Section
3withd =3 andn = 6.

4.1. Basic properties of the random field [A] and its parameters

Therandom field x — [A(X)] is a second-order random field on €2,
E{IAX)?} < B{IAM)[IE} < +oo . (33)

Thesystem of themarginal probability distributionsof therandomfieldx — [A(x)] iscompletely
defined, isnot Gaussian and is deduced from the system of the marginal probability distributions
of the random field x — [G(x)] by using Eq. (18). In general, since [a(x)] depends on X, then
the random field {[A(X)] , x € €2} isnon homogeneous. It can easily be proven that

E{[[[AX)] = la)lF} = ——{llaM) |7 + (trla()])?} (34)

( )
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The dispersion parameter ¢ 4 (X) is such that

54002 = ZUIAC] — [a(]llE}

[T (35)
and can be rewritten as
R (tr [a(x))2 ) */*
5409 = AL i 30

Therandom field x — [G(x)] almost surely has continuous trajectories (see Section 3.4). If the
function x — [a(X)] is continuous on ), then the random field x +— [A(x)] almost surely has
continuous trajectories on 2. Nevertheless, if the function x — [a(x)] is not continuous on ,
then the random field x — [A(x)] almost surely does not have continuous trajectories on .

Then the random field X — [G(x)] is completely and uniquely defined by the following param-
eters: the M7 (R)-valued mean function x +— [a(X)], the positive real parameter § and the 63

positive real parameters L3/, L3 137 for 1 < j < j/ < 6. The smallest number of param-

eters corresponds to the following case: X — [a(x)], § and Ly = L3 = L3 = L#" for all
1<j<j <6.

4.2. Spatial correlation lengths of the random field [A] for the homogeneous case

If [a(X)] = [a] isindependent of X, then the random field {[A(X)] = [L]T [G(X)] [L],x € Q}
can be viewed as the restriction to €2 of a homogeneous random field indexed by R3. Then
the dispersion parameter defined by Eq. (35) is independent of x and then 6 4(X) = §4. Let
n = (n1,m2,7n3) — r**(n) be the function defined from R3 into R by

n) = tr E{((Ax+m)] — [a]) (AX)] — [a])}
EXNAC] — [a]llE}

A( (37)

It can be seen that 74(0) = 1 and 74(—m) = r4(n). For k = 1,2, 3, the spatial correlation
length L of x — [A(x)] and relative to the coordinate x;, can then be defined by

—+ o0
L= / A () de (38)

inwhichn! = (11,0,0), n? = (0,72,0) and n*> = (0,0, 73). Itisaso possible to define a
fourth-order tensor L‘,f‘“‘”“ of spatial correlation lengths relative to the coordinate x ;. such that

A e
Lkaﬁvﬁ:/o |7‘A°‘B'V”“('Y]k)‘d77k s k:17273 ’

inwhich
1

Aaﬁ'yr; —
r n) =
( ) OapO0~k

E{([AX+n)]ap — [a]ap) (A)]ys = lalye)}

and where oo5 = /E{([A(X)]ap — [a]ap)?}-

C. Soize, Final version - 15 Oct 2007 - Journal of Probabilistic Engineering Mechanics 12



5. Discretizing with stochastic finite elements and solving the random equation

For al ¢ and m in {1, 2,3}, one must

(1) solve the stochastic BVP defined by Egs. (9)-(10) with the random constitutive equation
o' (x) = C(x) : (D™ (x)) in order to construct the random local displacement field D,

(2) calculatethefourth-order tensor-val ued random field H defined by Eqg. (11) and corresponding
to the strain localization.

(3) estimate the probabilistic properties of the fourth-order random effective stiffnesstensor C
defined by Eqg. (14).

In order to solve this problem, the following computational stochastic method is used.

(1) The weak formulation of the stochastic BVP is constructed and the existence of a unique
second-order stochastic solution is proven.

(2) The stochastic finite element method is used for discretizing the weak formulation and
Egs. (11) and (14). For such a numerical approximation, the random local stiffness tensor field
X +— C;rem(X) and the random local strain tensor field X +— ¢ (D*™(x)) are discretized at all
the Gauss-L egendre quadrature points of the finite elements.

(3) Theprobabilistic quantitiesarethen estimated by using the Monte Carlo numerical simulation
method which is made up of 3 main steps. (a) developing a generator for constructing n
independent realizations {x — C(x,0,.) ,r = 1,...n,} of therandomfield x — C(x) using the
probability model presentedin Sections3and 4; (b) for eachrealizationx — C(x, 6,.), calculating
the corresponding realization C*(,.) of the effective tensor (and related quantities such as the
random eigenval uesof therandomtensor C*") by solving adeterministic matrix equation; (c) with
the n independent realizations, estimating the probabilistic quantities (moments, probability
distributions) using the mathematical statistics and studying the convergence with respect ton ;.

5.1. Weak formulation of the stochastic BVP

Below, ¢ and m arefixedin {1, 2, 3}. Let X — d(x) = (d1(X), d2(X), d3(X)) beafunction from
QintoR3. LetV = (H*(2))3, Vo € V and V;,,, C V betherea Hilbert spaces such that

V=1{djeL*Q) , %eLQ(Q) , forjandk=1,2,3} ,

Vo={deV , dXx)=0 for xedQ} ,
Vim ={d eV, d(x)=d""(x) for xcdQ} ,
inwhich d‘™ isthefunction from 992 into R? suchthat d“™ (x) = ¢"x. Theinner productinV is
denoted by < d,d’ >y, and the associated normisdenoted by ||d||y . LetV,Vy Cc VandV,, C V
be the three real Hilbert spaces of all the second-order random variables 6 — {x — D(x,0)}
defined on probability space (©, 7, P), withvaluesin V', Vi and V,,, respectively,
V=L*O,V) , Yo=L*(©,Vo) , Vem =L*(O,Vin)
The inner product in V and the associated norm are such that

<D,0D>y= E{<D,éD>y} and |D|y = (E{||D|?})'/?
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The new indices I = (j,k) and J = (¢, m) introduced in Section 2.3 are used and the strain
vector

e(d) = (811(d), 822(d), 833(d), 2 612(d), 2 813(d), 2 623(d)) (39)

isintroduced. The weak formulation of the stochastic BV P defined by Egs. (9)-(10) can then be
written as follows. Find the random field D¢ in V,,,, such that,

K(D™ 6D)=0 as. , VéDeV, , (40)

in which the random bilinear form (D, 6D) — K (D, éD) onV x V is defined by

K(D,cSD):/ <[A(X)] &(D(X)), e(6D(X)) > dx . (41)
Q

5.2. Existence and uniqueness of a second-order solution

The following problem: find D™ inV,,,, such that, K (D", 6D) = 0 a.s. for al 6D inV,, has
aunique solution.

To prove thisresult and in order to simplify the notation, the random field D™ isrewritten as D
(no confusion is possible).

(i) Due to the fundamental property defined by Eq. (32) (non uniform elipticity condition
replacing the usual uniform ellipticity condition), it is proven (Soize, 2006) that, for all random
field D inV such that D is not a random rigid body displacement field, one has

VE{K(D,D)?} > ¢k DIy . (42)
inwhich cg isafinite positivereal constant.

(ii) The usua proof of the existence of a solution can be directly deduced from Eg. (40) if a
uniform ellipticity condition and a uniform boundness condition for the fourth-order tensor-
valued random field x — C(x) is used. This usua proof cannot be used here due to the
non introduction of these uniformness conditions which are substituted by the more realistic
probabilistic hypothesis which has been introduced and which corresponds to the introduction
of the non uniformness condition. Therefore, the weak formulation is reformulated using a
deterministic Lagrange multiplier field x — q(x) from 9Q in R? belonging to the space Qs
which is defined as the continuous dual space of the space Vs, constituted of al the functions
X — d|,, (x) from 9 in R* which are the traces on 952 of the functionsd belongingto V. Find
DinVandqgin Qs suchthat, for all 6D inV and for al dg in Qsq, one has

K (D, 6D)+ <4q,D,, —d“"> + <q,éD|,,>=0 as. , (43)

inwhich d* isthe function from 9 into R? defined in Section 5.1 and where < ¢, v>> isthe
dual bracket between Qo0 and Vyq.

(iii) One now proves the existence of asolution D in V,,,, of EQ. (43).

(iii-1) If D isarandom rigid body displacement field, then K(D, D) = 0 and consequently,
Eq. (43) showsthat, for al 6D inV and for al 6q in Qsq, onehas < dq, D), — dm> + <«
q,0D,, >= 0 a.s.. ThisequationyieldsD,, = d“™ which contracdicts with the fact that
d™ isnot the trace on 952 of arigid body displacement field.
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(iii-2) 1t is now assumed that D belongsto V but is not arandom rigid body displacement field.
In this condition, Eq. (42) holds. Taking 6D = D and 6q = g € Qg in Eq. (43) yields

K(D, D)+ <(q,2D,, —d“">=0 as. . (44)
Equations (42) and (44) yield
¢k IDllv < E{<q,2D,, —d™>?} . (45)

It can easily be proven that
E{<<q ) 2D\aQ - dﬁm >>2} sa+ CQHDH%/ ) (46)

inwhich ¢; = 2 lall,,, 14113, < +ooandc; =82 |qll3,,, < +oo inwhich ¢, isthe
finite constant such that ||d||v,., < ¢, ||d|v. From Egs. (45) and (46), it can be deduced that
¢k IDIly < ¢ + c2||D])§ whichyields || Dy < ¢ < +oc. One then has proven the existence
of asolution in V but since any solution of Eq. (43) is such that D, = d“™ on 92, one has
proven the existence of asolution D inVy,,.

(iv) The proof of the uniquenessis straightforward.

5.3. Finite element discretization

The stochastic finite element method is used to discretize the weak formulation defined by
Eq. (40).

(i) A finite element mesh of domain €2 is carried out using 3D solid finite elements. One then
has Q2 = U, €. inwhich €2, isthe domain of the finite element number e. Any displacement
fieldx — d(x) in V and its associated strain vector field x — e(X) are then approximated by

dx) ~ [B(x)lw, x€ Q , eXx)=[SX)]w, xeQ ,
inwhichw = (wq, ..., w,)isthevector of the v degrees of freedom corresponding to the values
of the components of the field d at the nodes of the mesh. The (3 x v) real matrices [B(X)]
and [S(x)] are known matrices usually constructed by using the interpolation functions of the

finite elements. For any integrable function x — f(x) defined on €2 and continuous on 2., the
following usual numerical approximation can be written

Ne
/ FO)dx > we, FX*)
e k=1

inwhich {wa,, ..., way,  and {x*, ..., x*Ne} are the sets of all the N. weights and the IV,
Gauss-L egendre quadrature pointsfor thefinite element €2.. Consequently, it can be written that

N
/Q Fax=3 /Q RCEED NN (47)

inwhich {wy,...,wx} and {x!,... xV} are the sets of al the N weights and the N Gauss-
L egendre quadrature pointsfor Q = U, Q2. with N = 3~ N,.

C. Soize, Final version - 15 Oct 2007 - Journal of Probabilistic Engineering Mechanics 15



For all x in 2, the finite element approximation of all D and D in V isthen written as D(x) ~
[B(x)]W and 6D(x) ~ [B(x)] 0W, in which W and éW are R”-valued second-order random
vectors. Therefore, the corresponding finite element approximation of the random bilinear form
defined by Eq. (41) is such that

<[KW,6W > = K([B(.)W, [B(.)]oW) |

defining the (v x v) random stiffness matrix [K | such that
K]= / (ST A SX)] - (48)
Q

(i) Using Eq. (47), therandom stiffness matrix [K | defined by Eq. (48) can be approximated by
the random matrix [K n| such that

K] = Zwa A [SO) dx

in which the ¢ (R)-valued random field x — [A(x)] is discretized in the N Gauss-L egendre
quadrature points x!, ..., x". In order to analyse the value of N which is required to obtain a
good approximation of [K | by [K ] and taking into account Section 5.2,it can be deduced that the
integral over €2 in EQ. (48) must be read as a mean-square integral. In the vector space of al the
second-order random matrices with valuesin Mg(R), anecessary and sufficient condition (Krée
and Soize, 1986) for that the sequence of second-order random matrices { [K ]} n convergesto
the second-order random matrix [K | when N goesto infinity is

ol E{(Ka]T (KnD)) = E{(K )T [K]))

Since [K ] and [K x| are symmetric matrices, it can be deduced that [K x| will be agood approx-
imation of [K ] in the mean-square sense if E{tr([K y]?)} ~ E{tr([K ]?)}. One has

E{tr([K }—/ Z Skerre (X, Y) Riorrer (X, y) dXdy
Q ek

N
E{tr([Kn]?) Z ws Y Swewer (X, X%) Rygroor (x*,X7)
—1 o 0 K7 0

inwhich

v

Srewe (%Y) = Y [SOOLklSles [SW)wilSW)]es

2,j=1

Riorro (X, Y) = E{[AX)]ke[A(Y)] ke }

Thusthe convergenceisclearly reached when IV goestoinfinity. For agivenfixed /V, therandom
matrix [K ] will be a good approximation of the random matrix [K | in the mean-square sense
if the number N of the Gauss-L egendre quadrature points x*, . . ., x" is sufficiently large and
is adapted to the variations of the intercorrelation functions Ryx¢ Of the real-valued random
fields [A]kg and [A]k/g/.
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(iii) Thefinite element discretization of therandom field D™ inV,,,, whichissolution of Eq. (40)
isthen written as
D" (x) ~ [B(X)]W™ | xeQ . (49)

The second-order random vector W™ with valuesin R can then be written as
WO = (W™ wy™) (50)

in which me is the R”:-valued second-order random vector of the v; degrees of freedom
for the nodes inside the domain 2 and where w;™ is the R*> deterministic vector of the v,
degrees of freedom for the nodes belonging to the boundary 0€2. This last vector is such that
dm(x) =~ [B(x)]w{™ for al x in 9 and the vector wi™ is congtituted of the values of the
components of the field d“™ at the nodes belonging to boundary 2. The block writing of the
random stiffness matrix [K] related to Eq. (50) is introduced as follows,

_ | K] K]
= | ekl 1)

The finite element approximation of Eq. (40) is then given by the following random matrix
equation allowing the unknown random vector W ™ to be calculated,

K] Wi™ = —[Kgp] wy™ . (52)

The random values H(x!), ..., H(x") of H at the N pointsx!, ..., x" are calculated by using
Eq. (11). Let C(x!),...,C(x"V) bethe random values of C at the IV pointsx*, ..., x". Then,
using Eqg. (47), the finite element approximation of the fourth-order random effective stiffness
tensor C*" defined by Eq. (14) can be written as

N
ool ~ ﬁ 3 wa CX) 1 HXY) (53)

Let [A®"] be the 17 (R)-valued random matrix of the fourth-order random effective stiffness
tensor C*T such that

A"y = CHom - (54)

In order to perform the probability analysis of the fourth-order random effective stiffness tensor,
one introduces the following order statistics

A >Ay>...>Ag>0 (55)
of the random eigenvalues A of the random matrix [ A®f] such that

AT =A® . (56)
The random variable || A®" || defined by Eq. (30) is such that

1A = Ay (57)
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5.4. Defining the probabilistic quantities for the random effective stiffness matrix

Taking into account the large quantity of probabilistic information which can be constructed, it
is necessary to limit the quantities which will be computed.

In this context, it is assumed that the mean model of the microstructure is homogeneous, that
isto say [a(X)] = [a] isindependent of x. Consequently (see Section 4.2), the random field
[A] describing the fourth-order tensor-valued random field C of the random anisotropic mi-
crostructure can be viewed as the restriction to €2 of a homogeneous random field indexed by
R3. The dispersion parameter ¢ 4 defined by Eqg. (36) isthen independent of x and can easily be
deduced from the value of the dispersion parameter § defined by Eq. (27). Finaly, the spatial
correlation lengths L', L3 and L' defined by Eq. (38) depend on the values of the parameters

L7 13" L3 for 1 < j < j/ < 6 of the stochastic germs (see Section 3.1).

Therefore, every probabilistic analysis of the macroscopic properties of the random anisotropic

elastic microstructureis performed for agiven value of the parameters[a], d and L7, 137" 137"
forl <j<j <6.

The following probabilistic quantities can be constructed.

(i) The mean value [maer], ,, the standard deviation [oaet|,, and the coefficient of variation
[cvaer],, of the components [ A®];; of the random effective stiffness matrix [ A®"] are such
that

[mAe”]IJ = E{[Aeﬁ ]IJ} ) (58)
[JAeff]IJ = \/E{([Aeff]u - [mAeff]IJ)z} ) (59)
[CVAeff]IJ = % . (60)

(if) Themean val Uem the standard deviation o
of the random variable | A% || are given by

and the coefficient of variation ov,

| AS | | ASf |

7 gy =\ ELU A || =y )2} (62)
_ o)A
Vet = my ad | (63)

The Tchebychev inequality for the positive-valued random variable || A% || can be written as

eff
b { ‘ |A#)
T et |
From this inequality, it can be deduced that || A% || convergesin probability to the mean value
Mmoo, when CV, ., gOESto Zero. Consequently, the study of cv L act | defined by Eq. (63), asa
function of the spatial correlation lengths (or equivalently, asafunction of the RVE size), allows

the statistic fluctuations of the random matrix [ A®"] to be analysed. Such a quantification can
be improved in constructing the cumul ative probability distribution defined in point (iii) below.

k

cv
> —} < k2 (64)

(iii) Let z — pz(z) bethe probability density function with respect to dz of therandom variable
Z defined by
AT

m
Il Asff )

7 —

(65)
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The support of pz is RT. The cumulative distribution function z* +— Fz(z*) of the random
variable Z isthen defined by

*

Foe') = [ pa(e)ds = Blizes) | (66)
0
inwhichlz<.- =1if Z < z* and = 0 if not.

5.5. Solving the random equation and computing the statistical estimations

The random equations (52) to (57) are solved by the Monte Carlo numerical simulation method
by using ns independent realizations 0, ..., 60, in©.

(i) The independent stochastic germs U for 1 < j < j' < 6 are simulated in the N Gauss-
L egendre quadrature points x*, ..., x"V (see Section 5.3). Let U be any one of the random
fields U;;. for fixed j and j'. One then has to simulate realizations of the random vector
U= (UX),...,UXY)). A first representation adapted to a large value of N is based on the
usual numerical simulation of homogeneous Gaussian vector-valued randomfield U constructed
with the stochastic integral representation of homogeneous stochastic fields (see for instance
(Shinozuka, 1971), (Poirion and Soize, 1995)). A second representation adapted to a small or
moderate value of N consistsin writing U = [Ly]Txn inwhichn = (n1,...,ny) isan RY-
valued random variable whose components )y, . . ., ny are N independent normalized Gaussian
random variables (E{n;} = 0 and E{nf} =1forj =1,...,N)and where [Ly] isthe upper
real triangular matrix corresponding to the Cholesky factorization [Cy] = [Ly]*[Ly] of the
covariance matrix [Cy] in M}, (R) such that [Cyl;; = Ry (X* — 7). A third representation also
adapted to alarge value of N consistsin projecting U in the dominant el gensubspace of [C'y].
This dominant eigensubspace is constructed with the eigenvectors of [C'y] associated with the
first largest eigenvalues. The eigenvalue problem is solved with an iterative method (such as
the Lanczos or the subspace iteration method) without effective assemblage of matrix [Cy] (see
Soize, 2006).

(i1) The mathematical expectation of any random quantity R in Egs. (58) to (63) is estimated by

B{R} =Y RO, - (67)

The cumulative probability distribution F'; defined by Eq. (66) is estimated with the usual
estimator (Serfling, 1980).

L et v bethe number of degrees of freedom of the finite element model introduced in Section 5.3.
Let [A%"] bethe random effective stiffnessmatrix cal cul ated with thefinite element model having
v degrees of freedom. For a given value of v, the convergence of the Monte Carlo numerical
simulation with respect to the number n, of realizations can be controlled by studying the
function

ng > CONV(ng, v) = EZHAdf IDREVT-SH (68)

in which ||A%T(9,.)| is the realization 6,. of the random variable |A%"|| defined by Eq. (30) in
which the random effective stiffness matrix [A%"] is defined by Eq. (57) and where | A% isthe
norm defined by Eq. (30) of the effective stiffness matrix [A%"] of the mean model. If the mean
model of the microstructureishomogeneous, then thelocal stiffnessmatrix [a] isindependent of
x and then [A®"] = [a]. The right-hand side of Eq. (68) corresponds to the statistical estimation
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of the norm [||A%T||| = (E{||A%"||?})'/2 of the random matrix [ AST]. For a given value of n,
the convergence with respect to the number v of degrees of freedom of the finite element model
isgiven by the function v — conv(ng, v).

6. Application to an anisotropic random microstructure

This section dealswith the numerical application of the theory presented for a given mean model
of the microstructure.

6.1. Mean model and finite element discretization of the mean model of the microstructure

The open bounded domain € (the RVE) of R3 is such that 2 = (]0, 1])3. The mean model of
the microstructure corresponds to a homogeneous anisotropic linear el astic medium whose local
stiffness matrix [a] belonging to M (R) with n = 6 isthen independent of x and such that

- 3.3617  1.7027 1.3637 —0.1049 -—0.2278 2.1013 7]
1.7027 1.6092 0.7262 0.0437 —0.1197 0.8612
1.3637 0.7262 1.4653 —0.1174 —0.1506 1.0587
—-0.1049 0.0437 -0.1174 0.1319 0.0093 —0.1574
—0.2278 —0.1197 —0.1506 0.0093  0.1530 —0.1303

L 2.1013 0.8612 1.0587 —0.1574 —0.1303 1.7446

[a] =10"0x (69)

Thefiniteelement model isaregular meshof 12x12x12 = 1728 nodesand 11 x 11 x11 = 1331
finite elements which are 8-nodes solid elements with 2 x 2 x 2 Gauss-Legendre quadrature
points (see Fig. 1). Therefore there are 5184 degrees of freedom, N = 10648 Gauss-Legendre
guadrature points, v; = 3000 degrees of freedom for the nodesinside domain 2 and v, = 2184
degrees of freedom for the nodes belonging to boundary 0€2. In this case, the weights w,,
introduced in Section 5.3 are such that w,, = |€2| /N and consequently, Eq. (53) can be rewritten

as
eff 1 al
=y 2 o

6.2. Meso-scale probabilistic model, computational parameters and stochastic response

(i) Meso-scale probabilistic model. At the meso-scale, the probabilistic model of the elasticity
tensor of the random anisotropic microstructure is defined in Sections 2.3, 3 and 4. The random
field x — [A(x)], indexed by Q, with valuesin M (R), with n = 6, is such that (see Eq. (18)),
[A(X)] = [L]T [G(x)] [ L] inwhichthematrix [ a ], defined by Eq. (69), iswritten (see Eq. (17))
as[a] = [L]T[L]. Thestochastic field x — [G(x)], indexed by R3, with valuesin M.} (R), is
defined in Section 3.

(ii) Dispersion parameter. The dispersion parameter § 4 defined by Eq. (35) isthen independent
of x and can be calculated as a function of the parameter § by using Eq. (36) and yields§ 4 =
0.6192 x 9. Foré = 0.1,0.2,0.3and 0.4, onethenhas 4 = 0.0619, 0.1238,0.1858 and 0.2477
respectively. Below, al the results are given as function of ¢ instead of § 4.

(iii) Parameters of the stochastic germs and spatial correlation lengths of the random field [A]. In
this numerical application, it is assumed that the parameters L3 L3/ 13 for1 < j < j/ < 6
of the stochastic germs (see Section 3.1) are such that L/ = L' = 13" = L, for al j
and 7' inwhich L, isthe unique parameter relative to the length-scales of the stochastic germs.
For each given value of § and for each given value of L, the independent realizations of the
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random matrices [A(x1)], ..., [A(xY)] at the N = 10648 pointsx*, ..., x" (see Section 5.3)
are constructed by using Sections 3.3(iii) and 5.5(i). Since L' = L¥' = 3 = L, for
al 5 and j', it can easily be deduced that the correlation function defined by Eqg. (37) is such
that r4(n,0,0) = r4(0,1,0) = r*(0,0,7n). The following notation r7'(n) = r*(n,0,0) =
r4(0,7,0) = 74(0, 0, n) isthen used below. 1t can be proven that thefunctionr ;' isindependent
of 5. From Eq. (38), it can then be seen that the spatial correlation lengths L', L' and L4 of
the random field x — [A(X)] are then equal to a same value denoted by L 4.

For Ly = 0.1and L, = 1, Fig. 2 and Fig. 3 display the graphs of the function n — r4'(n)
calculated with Eq. (37) in which the mathematical expectation is estimated by using the Monte
Carlo simulation with 2000 independent realizations. For these values, the spatial correlation
length L 4 iscalculated by Eq. (38) andissuchthat L , = 0.1113for Ly =0.1and L4, = 1.113
for Ly = 1. More generally, onehas L , = 1.113 L4. Due to this correspondence between L 4
and L4, itisequivalent to present the resultsin terms of the spatial correlation length L 4 or the
parameter L,. Below, the results are presented in function of L.

Let C; bethecube Ly x L4 x L 4. For the smallest value of L 4 considered in the numerical
calculation (L4 = 0.1113 corresponding to L; = 0.1) there are about 14 Gauss-Legendre
quadrature pointsin C4. For L4 = 0.2226 corresponding to L, = 0.2, there are about 112
points. Thisis sufficient to obtain a good approximation of the random matrix [K] by [K ] in
the mean-square sense (see Section 5.3-(ii)) taking into account thevery slow variations (over any
interval of length L 4) of the correlation function displaysin Fig. 2. Inaddition, Fig. 5 showsthat
the convergence is reached with respect to V for this smallest value of L 4 and for the strongest
stochastic fluctuations considered (§ = 0.4). Thisis an additional important information to
conclude that the convergence is reached in the mean-square sense with a resonable accuracy.

(iv) Stochastic convergence analysis for the random effective stiffness matrix. For each given
value of the dispersion parameter ¢, for each given value of the parameter L, and for a given
finite element model having v degrees of freedom, the probabilistic quantities (defined in Section
5.4) for the random effective stiffness matrix are estimated by using the Monte Carlo numerical
simulation presented in Section 5.5 and by using the equations given in Sections 5.3 and 5.4.

(iv-1) The mean-square convergence with respect to n, (number of realizations used in the
Monte Carlo numerical method) is then studied by constructing the function n ; — conv(ng, v)
defined by Eq. (68). Fig. 4 displays the graph of n, — conv(ng,v) for § = 0.4 (the largest
value considered for the dispersion parameter), for L; = 0.1 (the smallest value considered
for this parameter) and for a finite element model having v = 5184 degrees of freedom and
corresponding to 11 x 11 x 11 finite elements. It can be seen that convergence is reached for
ns > 500.

(iv-2) The mean-sgquare convergence with respect to the number v of degrees of freedom of
the finite element model is studied by constructing the function v — conv(n, v) defined by
Eq. (68). Fig. 5 displays the graph of v — conv(ng,v) for § = 0.4, Ly = 0.1 and n, = 900.
Clearly, convergenceisreached for 11 x 11 x 11 finite elements corresponding to v = 5184.

(iv-3) All the results presented below have been computed with ng = 900 and 11 x 11 x 11
finite elements corresponding to v = 5184. Convergence is reached for the values of L, and §
which are considered below.

(v) Normalized mean value of the norm of the random effective stiffness matrix. Let || a || be the
norm (defined by Eq. (30)) of the local stiffness matrix [a] whichissuchthat || a || = A, where
)\, isthelargest eigenvalue of the matrix [ a |. The normalized mean value L act | of the random
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variable | A% || (see Eq. (30)) is then defined by

m
Il A% )

,u” e ) (70)

lal
in which the mean value m e is defined by Eq. (61). Fig. 6 shows [ et 8S a function of
the parameter L, for several values of the dispersion parameter §. Fig. 6 displays the graph of
thefunction Ly — 1 | (Lg) for Ly belonging to theinterval [0.1,1.0] and for 6 = 0.1 (circle
marker), § = 0.2 (square marker), 6 = 0.3 (cross marker) and § = 0.4 (diamond marker).

(vi) Coefficient of variation of the random norm of the random effective stiffness matrix. This
coefficient of variation OV, e is defined by Eq. (63). Fig. 7 shows the coefficient of variation
OV, et (Lq) of the random norm of the random effective stiffness matrix as a function of the
parameter L, for several values of the dispersion parameter §. Fig. 7 displays the graph of the
function Ly — Ve (Lq) for L, belonging to the interval [0.1,1.0] and for § = 0.1 (circle
marker), 6 = 0.2 (square marker), 6 = 0.3 (cross marker) and & = 0.4 (diamond marker).

(vii) Cumulative distribution function of the random variable Z related to the random effective
stiffness matrix. Fig. 8 shows the cumulative distribution function F',; (defined by Eqg. (66))
of the normalized random variable Z (defined by Eq. (65)) for several values of the spatial
correlation length L; and for § = 0.4. Fig. 8 displaysthegraphof z* — F(2*) = P{Z < z*}
for L, belonging to the interval [0.1,1.0] and for § = 0.4. Fig. 9 displays the graph of
21— Fyz(z*) = P{Z > z*} for the samevalues of L, and J.

(viii) Mean value and coefficient of variation of the random effective stiffness matrix. For§ = 0.4
and for L; = 0.1, the mean value [ma«] defined by Eq. (58) and the coefficient of variation
[cvaer] defined by Eq. (60) of the components [ A" ]; ; of the random effective stiffness matrix
[ A®"] are such that

r3.1917  1.6169 1.2936 —0.0991 —0.2165 1.9921 7
1.6169 1.5348 0.6899 0.0422 —-0.1138 0.8159
1.2936 0.6899 1.3991 —-0.1120 —0.1437 1.0053
—0.0991 0.0422 -0.1120 0.1266 0.0089 —0.1497
—0.2165 —0.1138 —0.1437 0.0089 0.1468 —0.1236

L 1.9921 0.8159 1.0053 —0.1497 —0.1236 1.6566

[mast] = 1010 x (71)

70.0174 0.0204 0.0237 0.0742 0.0403 0.01867
0.0204 0.0166 0.0288 0.1267 0.0505 0.0264
[V per] = 0.0237 0.0288 0.0166 0.0440 0.0394 0.0223 . (72)

0.0742 0.1267 0.0440 0.0165 0.1705 0.0361
0.0403 0.0505 0.0394 0.1705 0.0170 0.0494

L0.0186 0.0264 0.0223 0.0361 0.0494 0.0170

For 6 = 0.4andfor L; = 1, one has

r3.3187  1.6872 1.3438 —0.1065 —0.2265 2.0767 7]
1.6872  1.6055 0.7220 0.0448 —0.1171 0.8488
1.3438 0.7220 1.4576 —-0.1161 —0.1502 1.0413
—0.1065 0.0448 —0.1161 0.1314 0.0096 —0.1578
—0.2265 —0.1171 —0.1502 0.0096 0.1503 —0.1298

L 2.0767 0.8488 1.0413 —0.1578 —0.1298 1.7255 |

[maet] = 1010 x
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70.1793 0.2153 0.2385 0.7723 0.4223 0.19417
0.2153 0.1765 0.2946 1.2696 0.5328 0.2762
(V] = 0.2385 0.2946 0.1820 0.4935 0.4202 0.2294 . (74)
0.7723 1.2696 0.4935 0.1715 1.8137 0.4041

0.4223 0.5328 0.4202 1.8137 0.1828 0.5171

£0.1941 0.2762 0.2294 0.4041 0.5171 0.1818 ]

6.3. Probabilistic analysis of the RVE size

The probability analysis of the RVE size can be deduced from Figs. 7, 8 and 9. Stochastic
homogenization can be performed if the random fluctuations of || A®" || around its mean value
M, e, 1SVery small, that isto say if || A" || has values around 1.

(i) Intermsof the coefficient of variationcv ., of therandomvariable | A®T ||, theREV sizehas
to be small with respect to the parameter L4, i.e OVt < 1. For instance, Fig. 7 showsthat if
L;<0.72for§ =0.1,L; <0.35ford =0.2, L4 <0.24ford =0.30rL; < 0.18ford = 0.4,

then CVHAeff u < 0.04. For instance, for § = 0.4 (i.e. 64 = 0.2477), thismeansthat if stochastic

homogenization is performed with a RVE whose size is about five times the spatial correlation
length (REV size = 1 and parameter L, = 0.18), then the normalized standard deviation of the
random fluctuations of the effective stiffnesstensor islessthan 4%. Nevertheless, Eq. (74) shows
that the normalized standard deviation of the components [A®'];; can be much more larger than
4%. For instance, one has 18% for (1, 1) and 77% for (1, 4).

(ii) The above second-order analysis can be improved in studying the probability distributions.
Let 5 be apositivereal number. Let 5 — P(3) be the function defined by

P(B)=P{1-f<Z<1+8)=Fy(1+8)—Fz(1-5) . (75)

In terms of probability, this information is given by the function P defined by Eq. (75) and is
deduced from F';. For§ = 0.4 andfor L, belongingto [0.1, 0.7], Fig. 10 displaysthegraph of the
function P. For instance, for L; = 0.2 and for 5 = 0.02, 0.04 and 0.08, onehas P = 0.36, 0.65
and 0.95, which meansthat P{0.98 < Z < 1.02} = 0.36, P{0.96 < Z < 1.04} = 0.65 and
P{0.92 < Z < 1.08} = 0.95. For instance, for 6 = 0.4 (i.e. d4 = 0.2477), if stochastic
homogenization is performed with a RVE whose size is five times the spatial correlation length
(REV size = 1 and spatia correlation length L 4 = 0.2226), then the probability for which the
random fluctuations of the effective stiffness tensor is less than 2%, 4% or 8%, is0.36, 0.65 or
0.95 respectively.

7. Summary of the proposed theory

The proposed theory is devoted to stochastic homogenization of a random anisotropic elastic
microstructure which cannot be described in terms of its constituents and then for which the
standard method cannot be applied (for instance some cortical bones, somebiological membranes
and more generally, some living tissues, etc). The methodology consistsin directly introducing
a meso-scale probabilistic model of the random anisotropic elastic microstructure (which is
not deduced from the probabilistic models of its constituents). For this meso-scale model, the
local stiffnessfourth-order tensor-valued random field is {C;;xn (X) }i;x, and isrepresented by a
(6 x 6) real randommatrix [A(x)]. Itsmeanvalue{C, ., (X) }:;x» isrepresented by a (6 x 6) red
matrix [a(X)]. This meso-scale model allows a complete stochastic model of the fourth-order
random effective (macroscopic) stiffness tensor C*' related to a given Representative Volume
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Element (RVE) to be constructed. This random effective stiffness tensor C¥' is represented by
a (6 x 6) rea random matrix [A®"]. Three types of analysis can be performed with the theory
proposed.

(1) Thefirst type of analysis corresponds to a direct prediction of [A®"]. For such a prediction,
data are (@) the size of the RVE; (b) the mean value [a(x)]) of the local stiffness fourth-order
tensor-valued random field associated with the mean model of the meso-scale probabilistic
model of the random ani sotropic elastic microstructure; (c) the parametersdescribing the (6 x 6)
real random matrix [A(X)] which are the dispersion parameter § 4 and the correlation lengths
L{, L4, L4, The methodology then consists (a) in constructing n, independent realizations
[A(X,01)],...,[A(X,0,,)] forby,...,0,, inO,using Egs. (17) and (18) and Section 3.3; (b) in
solving random equations (52) to (57) by the Monte Carlo numerical simulation method by using
the n, independent realizations [A(X, 61)], . . ., [A(X, 0, )]; (c) in constructing the probabilistic
quantities (for instance, the moments and the probability distribution) of the random matrix
[ A®"] representing the fourth-order random effective stiffness, using Egs. (58) to (66).

(2) Thesecond typeisaprobability analysisof the RVE sizewith respect to the spatial correlation
lengthsof the proposed meso-scal e probabilistic model. The parametric study of theRV E sizecan
be performed in function of the dispersion parameter § 4 and the correlation lengths L, Ls!, L4
of the random field x — [A(x)]. Such astudy is also useful to get information on the RVE
size for which stochastic fluctuations are still significant and consequently, can be measured.
Such an analysisis carried out using the direct prediction of the probabilistic quantities of the
fourth-order random effective stiffness tensor as explained in point (1) above.

(3) The third type of analysis is related to the experimental identification of the meso-scale
probabilistic model of the random anisotropic elastic microstructure carried out in identifying
the parameters of the random field x — [A(x)]. Such an experimental identification can be
performed using field measurements deduced from digital image processing and solving an
inverse stochastic problem.

8. Conclusions

We have proposed a new approach useful for a direct experimental identification of random
anisotropic elastic microstructures introducing a meso-scale probabilistic model. Such an ap-
proach can be used when the standard method cannot easily be applied to anisotropic elastic
microstructures. A parametric probabilistic study of the RVE size has been performed with re-
spect to theintensity ¢ 4 of the stochastic fluctuations of the local stiffnesstensor-valued random
field describing the meso-scal e probabilistic model and in function of its correlation lengths L.
Such a study is also useful to get information on the RVE size for which stochastic fluctuations
are still significant and consequently, can be measured. Then the results presented in this pa-
per could allow the meso-scale probabilistic model to be identified from meso- or macro-scale
measurements solving an inverse stochastic problem. For fixed spatial correlation lengths, the
RVE size hasto increase with § 4. For afixed value of § 4, the RVE size hasto increase with the
gpatial correlation lengths. For fixed spatial correlation lengths and dispersion parameter 6 4,
the effective RVE size can effectively be calculated in a probability sense using the cumulative
distribution function of the random variable measuring the random fluctuations of the effective
stiffness tensor. A large numerical simulation has been carried out and the numerical results
obtained allow a probability analysis of the representative volume element size to be performed.
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Fig. 1. Finite element model of the Representative Volume Element

Fig. 2. Graph of the correlation function  +— r4'(n) for L, = 0.1. Horizontal axisn. Vertical
axisry (1)
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Fig. 3. Graph of the correlation function n +— r'(n) for Ly = 1.0. Horizontal axisn. Vertical
axisr4 (n)
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Fig. 4. Mean-square convergence of the random effective stiffness matrix with respect to
the number n of realizations of the Monte Carlo numerical simulation method for § = 0.4,
Ly = 0.1 and v = 5184. Graph of function ns — conv(ns, v). Horizontal axis ns. Vertica
axisconv(ng, v).
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Fig. 5. Mean-square convergence of the random effective stiffness matrix with respect to the
number v of degrees of freedom of the finite element model for § = 0.4, L; = 0.1 and for
ns = 900. Graph of function v — conv(ns, ). Horizontal axisv. Vertical axis conv(ns, v).

0.99

0.98f

0.97r

0.961

0.95¢

0.94 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Fig. 6. Normalized meanvaluep ,  (Laq) (vertical axis) of therandomnorm || A || of therandom

effective stiffness matrix [ A ] asafunction of the spatial correlation length L ; (horizontal axis).
Graph of function Ly — p,, (La) for 6 = 0.1 (circle marker), § = 0.2 (square marker),

0 = 0.3 (cross marker) and 6 = 0.4 (diamond marker).
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Fig. 7. Coefficient of variationcv ,  (Lq) (vertical axis) of therandomnorm || A || of therandom

effective stiffness matrix [ A ] asafunction of the spatial correlation length L ; (horizontal axis).
Graph of function Ly — cv,, (Lqg) for 6 = 0.1 (circle marker), 6 = 0.2 (square marker),

0 = 0.3 (cross marker) and 6 = 0.4 (diamond marker).
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Fig. 8. Graph of the cumulative distribution function z* — Fyz(z*) = P{Z < z*} of the
normalized random variable Z = || A || /m,,, for § = 0.4 and for several values of the spatial

correlationlength L; = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 0.5 (triangle-
up), 0.6 (no marker), 0.7 (triangle-down), 0.8 (no marker), 0.9 (no marker), 1.0 (diamond).
Horizontal axis z*. Vertical axis Fz(z*) inlog,, scale.
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Fig. 9. Graph of z* — 1 — Fz(z*) = P{Z > z*} relative to the normalized random variable
Z = ||All/m,,, for 6 = 0.4 and for several values of the spatial correlation length L, = 0.1
(circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 0.5 (triangle-up), 0.6 (no marker), 0.7
(triangle-down), 0.8 (no marker), 0.9 (no marker), 1.0 (diamond). Horizontal axis z*. Vertical
axis F'z(z*) inlog,, scale.
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Fig. 10. Graphof 8 — P(8) = P{1 — < Z < 1+ } for 6 = 0.4 and for several values of
the spatial correlation length L, = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker),
0.5 (triangle-up), 0.6 (no marker), 0.7 (triangle-down). Horizontal axis 3. Vertical axis P(f3).
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