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Nonparametric Stochastic Modeling Of Linear Systems With Pre-
scribed Variance Of Several Natural Frequencies

M.P. Mignolet
Arizona State University, Tempe, AZ 85287-6106, USA

C. Soize
Université de Marne-la-Vallée, 77454 Marne-la-Vallée, France

ABSTRACT: A complete probabilistic model of random positive definite matrices is developed that incorpo-
rates constraints on the standard deviations of a set of its eigenvalues. The model isin particular applicable to
the representation of the mass and stiffness matrices of random dynamic systems of which certain natural fre-
guencies are observed. The model development is based on the maximization of the entropy under a set of
constraints representing the prescribed eigenvalue standard deviations, the mean matrix being given, and the
existence of the mean Frobenius norm of the inverse of the random matrix. The efficient simulation of sam-
ples of random matrices according to the proposed model is discussed in details. Finally, examples of applica
tion validate the above concepts and demonstrate the usefulness of the proposed model.

Keywords: structural dynamics, random systems, random matrices, maximum entropy, probabilistic model

1 INTRODUCTION permits to derive, on arational basis, afull stochas-

The stochastic modeling and simulation of random
multi degree of freedom systems has often in the
past been accomplished by postulating joint prob-
ability density functions of the components of their
mass, stiffness, and/or damping matrices or, equiva
lently, of their corresponding natural frequencies,
damping ratios, and mode shapes (e.g. Ghanem and
Spanos, 1991, Kleiber et al, 1992, Rivas-Guerra and
Mignolet, 2004, Schueller, 1997). However, a dif-
ferent approach has recently been proposed (Soize,
2000, 2001) and validated (see Soize, 2005, for are-
view) in which the probabilistic model of the mass,
stiffness, and/or damping matrices is not assumed
but rather determined to maximize the entropy under
the constraints (i) that these matrices are positive
definite, (ii) that their mean values are prescribed,
and (iii) of an overal measure of variation (variance
of the norms of the matrices prescribed). This ap-
proach has been named nonparametric since no pa-
rameter value is selected by the user. It will be fur-
ther qualified of unconstrained to differentiate it
from its constrained extension presented below.

The unconstrained approach is applicable to a
broad range of situationsin which little, i.e. only a
single measure of variability, is known about the
randomness of the system. In such cases, the uncon-
strained approach is particularly advantageous as it

tic model of the system. There are however various
other situations in which more than a single measure
of randomness is known, e.g. when tests have been
conducted. Natural frequencies are the most standard
information obtained from dynamic tests and thus
estimates of the mean and variance of the first few
natural frequencies of the system may readlistically
be available. Since the mean natural frequencies are
likely to be close to the values obtained for the de-
sign configurations, it istypically the variances
which provide the most valuable information about
the system randomness. They should thus be incor-
porated in the stochastic model of the system.

In thislight, the goal of the present investigation
isto extend the formulation of the unconstrained
nonparametric approach to allow for additional con-
straints on the standard deviations of some of the ei-
genvalues of the mass, damping, and/or stiffness ma-
trices. This novel approach will be referred to as
constrained in the remainder of the paper.

Note that the expected domain of application of
these concepts is the low frequency range in which
the natural frequencies are distinguishable and ob-
servable.



2 ENTROPY MAXIMIZATION AND CON-
STRAINTS

It is desired here to simulate realizations of symmet-
ric positive definite random matrices, e.g. the mass
and/or stiffness matrix of alinear dynamic system,
the properties of which, i.e. eigenvalues, eigenvec-
tors, components, etc., are all random. Thisrequire-
ment necessitates the specification of the joint prob-
ability density function of all elements of the matrix.
In most practical problems, however, thisinforma-
tion is not available - only some moments and/or
marginal probability density functions are likely to
be available. In the absence of the exact distribution,
it isthen appropriate to ask what are the desirable
features of this distribution. In this context, note that
the design of structural systemsis often robust, i.e.
that small perturbations in their geometrical and ma-
terial properties do not ater significantly the prob-
ability of failure/fatigue life of the system consid-
ered (see Rivas-Guerra and Mignolet, 2004 for a
notable counterexample in turbomachinery). It is
thus desirable to dispose of a probabilistic model
which places particular emphasis on “larger” devia-
tions from the design conditions. Equivalently, this
model should have alarge value of the entropy as
defined by

S=-[ px (x)In px (x)dx (1)
Q
where X denotes the vector of random variables con-
sidered of joint probability density function py (x).
Further, x denotes the realized values of X, and Q
the domain of support of py (x).

Consistently with the above discussion, a prob-
abilistic model of uncertain nxn matrices A has

been formulated (Soize, 2000, 2001) to maximize
the value of the entropy S

s=- pa@)in pa(a)da )
given the foIIovizi ng physical constraints:
[ pala)da=1 )
Q
E[A]= [a pa(a)da=A 4
and "’
[ In[det(a)] pé(g)dg =v finite (5)
Q

where E[.] denotes the operation of mathematical

expectation, pé(i‘) isthe joint probability density

function of the elementsof A, and det(A) isitsde-

terminant.

The first two of the above constraints correspond
to the normalization of the total probability to 1 (Eq.
(3)) and the specification of the mean matrix (Eq.
(4)). Thethird one, Eq. (5), implies the existence of
the mean squared Frobenius norm of the inverse ma-

trix é‘l(see Soize (2000,2001) for discussion). To
apply this approach to the simulation of random
mass, stiffness, and damping matrices of dynamical
systems, it is further required to ensure both the
symmetry and positive definiteness of every realized
matrix A. Thisis achieved by introducing the Cho-

lesky decomposition of A, i.e.

A=LCL' (6)

where £ isan lower triangular matrix with non-

negative diagonal elements and T denotes the op-
eration of matrix transposition. The domain of sup-
port Q of the obtained proba_kgi lity density function is
then such that the elements Ljj belong to (— oo, + o)
fori#j and [0,+0)fori=j,i.e
Qz{gig;hj i, j=1..n:
[Lij € (—eoteo)i> j]nLji € [0,+o)]}

The maximization of the entropy, Eqg. (2), under
the constraints of Egs (3)-(6) yields aclosed form
expression for the joint probability density function
of the elements of the random matrix A(Soize,

2000, 2001). Further, this distribution only depends
on the single parameter v so that only a broad
knowledge of the matrix uncertainty needsto be
known or can be enforced. In some situations how-
ever, e.g. when considering insertable turbomachin-
ery blades, tests may have been performed that pro-
vide more information on the system variability. In
the context of structural dynamics, such tests will of -
ten focus on the natural frequencies of the system
and will likely result in estimates of the variance of
thefirst few natural frequencies. In such circum-
stances, it is highly desirable to dispose of a prob-
abilistic model of the corresponding mass and stiff-
ness matrices that accurately accounts for al the
available information. If only one natural frequency
IS observed, its variance as estimated by the tests
can serve for the determination of the parameter v,
Eq. (5), corresponding to the mass and/or stiffness
matrix model. However, to account for two or more
variances, it is necessary to extend the formulation
of Eq. (2)-(5) by introducing additional constraints
that can reflect the knowledge on the natural fre-



guencies.
To address this extension, consider the general-

ized eigenvalue problems

A, =1 B, ™)
and

A =1i B, (8)
where B isadeterministic symmetric, positive defi-
nite matrix. In the ensuing discussions, it will be as-
sumed that the eigenvectors 9. and 9i are normal-

ized with respect to B so that

¢ Bo; =1 ol A =1 (9)
and
¢ By, =1 o Ag =%, (10
Constraining the variance of the eigenvalues A;

directly is unfortunately extremely challenging be-
cause of the lack of an exact expression for the natu-
ral frequencies of the random matrix A in terms of

its elements. Accordingly, an indirect approach will
be selected here which relies on simple constraints
that are akin to the second order moments of the ei-
genvalues. More specificaly, it will be assumed that

the value of E{@Iéq_)i)z} is specified, i.e.

E[(‘l’?ﬁ‘?i )Z} = g{(dfggi )Z pala)da= 72

(11)
where s, i e | < [1,n], are mknown positive con-
stants and g)i are the eigenvectors of the mean ma-

trix 5 corresponding to the m eigenvalues of which
the variance is known. For example, if the variances
of the three lowest eigenvalues of A have been es-

timated, then q_)i will in turn be the eigenvector of

the mean matrix A corresponding to its three lowest
eigenvalues.

Several comments can made in regards to the
constraints of Eq. (11). First, these conditions in-
volve second order moments, not variances, but this
switch is appropriate because the mean values of

(‘P.T ég)i ) are already prescribed by Eqg. (4). Next, as

discussed above, these conditions do not generally
relate exactly to the natural frequencies of the ran-
dom matrix A, but they do so when its eigenvectors

arethe same as those of itsmean A. Finally, it

should be noted that the specification of the con-
straints of Eq. (11) provides freedom in the prob-

abilistic model of the random matrix A which can

be used to match the known variances of the natural
frequencies. Thislast issue will be discussed in more
details further.

3 PROBABILISTIC MODEL DERIVATION

Following the discussions of the previous sections,
the proposed probabilistic model pa(a) maximizes
the entropy, Sof Eq. (2), under the constraints of
Egs (3)-(5) and (11) aswell as the symmetry and
positive definiteness requirements of Eqg. (6). Using
Lagrange multipliers pg, [{, A—1,and T; the con-
strained maximization of Eq. (2) is reduced to the
unconstrained maximization of

S*Zs_uoij(g)dg—tr{E [ap
_ZTII@’ ao, )2 IOA(é1 da (12)

Proceeding next by calculus of variations, itis
shown that

ple) = Cleetla)]

IISD
IIQJ

é

jln[det(_ pa(a)da

e -u(i"a)- %o a0, f

iel

(13)
where C isthe appropriate constant to satisfy the
normalization condition, Eq. (3). It should be noted
from Eq. (13) that this probabilistic model isinde-
pendent of a rotation/change of coordinate system as
the vectors 9i are fixed in space.
Before addressing the evaluation of the Lagrange
multipliers, it is desired to smplify Eq. (13) and to
address the positive definiteness requirement. In re-
gards to ssimplifications, introduce first the matrix L

such that
~1/2
ad L @= lé } (14a,b)

3>
Il

=1

=1

where ® denotes the nxm matrix formed by the m

eigenvectors q_;i ,1el,and A isthe corresponding

diagona matrix of eigenvalues. Note that the condi-
tion of Eq. (14b) isintroduced to simplify the con-
straints of Eq. (11) aswill be shown below. From

Egs (7)-(10), it can be proved that L can be ex-
pressed in the partitioned form



L-|A2i"? D] (15)

where the nx(n-m) matrix D isany decomposition,

e.g. Cholesky, of

DD = A-A® A‘lgT
6) b

Pre- and postmultiplying Eq.

respectively, it is found that
Eq. (14b).
Next, express the random matrix A as

A-LoL'. an

Proceeding with this change of random variables, it
is found that the probability density function of the

elements of g is
i 2
Dotigh| (18)

pe(0)=Cloetlg exp{— il 2)_i=1

where C isanew normalization constant,
E:LTEL,and T =T AL

To guarantee the symmetry and positive definite-
nessof G, andthusof A, themodel of Eq. (18) is

reformulated in terms of the elements of the lower
triangular matrix H such that

G=HH'. (19)

As demonstrated in Soize (2000), the Jacobian of the
transformation is

n
J=2"T[hi"* (20)
=1
so that

pu(h)=C {lﬂ[ h-! +2x_1}

o =1

where C is the appropriate normalization constant
over the domain
Q=i i =Leni[hy e (=oosteo)i > ][y € [0+e0)])

To evaluate the Lagrange multipliers i and 7; , it
is necessary to first express the constraints of Eqgs (4)
and (11) in terms of the elements of the random ma-
trix H . Combining Egs (4), (17), and (19), itis
found that

Elc]=1, (22)

where L, denotes the nxn identity matrix. The sim-

plicity of this condition implies an equally ssmple

form of the matrix p . Specificaly, it can be shown

that thismatrix is diagonal and thus Eq. (21) reduces
to

pu (0)= 1115 PO exq - (zh] (zh}

i=1

x ﬁ{C. hlP(l)eXp[_Hii hi%]}x ]ﬂ[ i]:[l{C” expl-m; hﬁ]}

i=m+1 i=m+1l=1
(23)

where C; , i=1,...,n,and Cj; , i=m+1,..., n; [=1,...,i-1,

are appropriate normalization constants and
pi)=n—i+2\-1. (24)

It is concluded from Eq. (23) that:

(i) the elements hy , i>l and i>mare all independent

of each other and independent of the other ele-
ments hy; . Further, they are normally distributed

with mean O and standard deviation
oj =1/y2u;; .
(i) the elements hy; , i>m, are all independent of

each other and independent of the other elements
h; . Further, they are distributed according to

pr, (hi)=C |h|P(I)eXpl_Hii ht] hi =0 (25)

where

ZMi[ip(i W1)/2

“ () + 072
and T'(.) denotes the Gamma function.
(iii) the elements hy , 1=1, ..., i for agiven i e [1, m]
are dependent on each other but independent of
the other elements hy; . Their joint distribution is

i i 2
pH” (h ) Ci h“p(l) exp| — Wij [Z hﬁ}—ri (Z hﬁj
=1

(26)

(27)
over the domain
Qi =1{hy | =1....1 : [y € (=o0,400),i > 1] [hyj € [0,40)]}.
From the first observation, (i), it is concluded that
E[G;; |=0 for i> and i>m. Further, the observation
(iii) and the symmetry of the distribution of Eq. (27)
with respect to the origin imply similarly that
E[G; =0 fori>l and i< m. It then remains to sat-

isfy the diagonal terms of the mean condition, Eq.
(22). For i>m,

Gjl=1= ZE[H

where E[H J is obtal ned by integration of Eq. (27)
as (p(i)+1)/ 2u;; . Combining this result and Egs

=(i- Z—MH+E[H ] (28)



(26) and (28), it is found that
Wi = %H for i>m. (29)

At thispoint, it only remains to determine the La-
grange multipliers u;; and t; for i e [, m]. This
step is achieved by enforcing the conditions

ElG;i|=1 (30)
and Eqg. (11) or

Ele?)= & (31
fori<m. Tothisend, it is useful to proceed with the
following change of variables that highlights the
random element G;;

i
Gij = Y Hf (32)

=i
Hii =1IG“ COS@il (33)
Hi(i-1) = Gii SiN©j1 c0sO;, (34)

Hi(i—2) :\/G_”sinG)ilsinG)iz C0sO;3 (35
and so ontill

Hij1 = \/G_”SinG)ilSin@iz...Sin@i(i_l) (36)
where ©;, € [0,7/2], ©; €[0,x], 1=2,..,i-2, and
Oj(i—1) € [0,2r) . The Jacobian of this transformation
can be found (e.g. see Soize, 2000) to be

( )i/2—1
, T’ . -2 . -3 |.
J'= % |S|n9i1|l |sm9i2|' ...‘Slnei(i_z)‘(37)
Then, the joint probability density function of G;;
and ®i| , |:1,..., i-l, is

1 _
PG, o, (Gii 0 )=§Ci gi(in+zx A2

. i—2 i . i—3 .
x|sin 04|~ [cos; |P1) x|sin ;| ...‘smei(i_z)‘.
(38)

The above expression demonstrates that the random
variables G;; and ©;;, 1=1,..., i-1 are al independent
of each other and that the joint probability density
function of the angles ©;;, 1=1,..., i-1 does not de-
pend on the values of t; . Thisimportant observation
will be used in the next section. Further, the mar-
ginal distribution of G;; is

PG;; (gii)=Ci gi(in+27”_3)lzexp[—uii gi =T gi%J (39)

where gj; = 0. For each value of i, the two parame-
ters p;; and t; arethen finally solved from the con-
straints given by Eqgs (30) and (31).

eXIO[—Mii Qi — T gi%]

4 SIMULATION OF RANDOM MATRICES

The simulation of random matrices A according to
the model derived above is achieved by first generat-
ing random matrices H according to the joint distri-
butions of Egs (23), (25), (27), (38) and (39). Once a
sample of H has been generated, the corresponding
matrix G is determined from Eq. (19) and, finally, a
realization of A isobtained from Eq. (17). Thus, the
simulation effort reduces to the generation of appro-
priate samples of H . From the observations drawn
in the previous section, it is concluded that there are,
besides the smulation of the Gaussian variates Hj; ,
i>mand i>l, three particular issues. These are: (i) the
generation of the diagonal elements Hj; , i>mac-
cording to the distribution of Eq. (25), (ii) the simu-
lation of the ratios Hj| / Gj; , i< m, described by the
angular variablesin Eqgs (33)-(38), and (iii) the gen-
eration of samplesof G;j; , i< m, according to Eq.
(39). These three issues are addressed in order be-
low.

4.1 Smulation of Hj;,i>m
The generation of samples of Hj; issimplified by

considering the variable Yj; = ;i Hﬁ. Proceeding
with the change of variables, it isfound that the
probability density function of Y;; is

(p(i)-1)/2

yi|
Py Oin) = Fipm +272)

That is, Y;; isaGammadistributed random variable

for which efficient simulation algorithms exist, e.g.
see Devroye (1986). Once a sample of Y;; has been
simulated according to the Gamma distribution, the
corresponding value of Hj;, 1> m, isfound as
Hii = Ji (41)
Hii
where ;i isgiven by Eq. (29).

expl-vii], Vii 20. (40)

4.2 Smulation of Hj //G;j ,ism, I1=1,..,i

A first approach for the ssmulation of the random
variables H;, //G;j; , I=1,...,i-1, and i< m, is to pro-
ceed from the generalized spherical coordinates
transformation of Eqgs (33)-(36) and to generate in-
dependent angles ©;, , 1=1,..., i-1, according to the
distributions



I0@i1(9i1)=Ci1|3m(9i1|I [cos6;, ]P0, 9i1€[03}

(42)
and
= i—1-1
Po, (6i1)=Cij [sin®; I (43)
with 0; € [O, 1T,] for1=2,...,i-2, and ei(i_l) € [0, 21'5)

and where the coefficients C~:i| are appropriate nor-
malization constants.

Note however that the above distributions are non
standard and thus a different, easier approach was
selected here. Specifically, it was observed in the
previous section that the probability density func-
tions of Egs (42) and (43) do not depend on t; and
thus they would be the same for t; =0. In this case
however, the smulation of the random variables
H;; iscompletely similar to the casei>m, i.e. the
random variables H;;, | #i, are Gaussian variates
with mean zero and standard deviation 1/ /2
while Hj; = /Y;j /Kij whereY;; isaGammaran-
dom variable. Note further that the appropriate value
of uj; to be used isthe one given by Eq. (29) to in-
sure the consistency with p(i) of Eq. (24).

In view of these comments, the simulation of the
terms H; //G;; , I=1,...,i-1, and i< m, can effi-
ciently be accgmplished asfollows:

() generate H;; as
Hjj = i (44)
M

where ;i isgiven by Eq. (29) and Y;; isa

Gamma distributed random variable of probabil-

ity density function given by Eq. (40).

(b) generate H;j;, 1=1,..., i-1, as zero mean Gaussian
random variables with standard deviation

1/ Zuii .

(c) form Gji = > H{? and the desired ratios
1=1

Hi _Hiooo (45)

—~

Giji Gij

4.3 Smulationof Gj;,i<m

The last step in the ssimulation of the random matrix
H isthe generation of the diagonal elements G;;
according to their probability density function of Eq.
(39). Thisdistribution is non standard and thus a
dedicated simulation algorithm by rejection from the

Student’ st distribution with 3 degrees-of-freedom
was devised (see Devroye (1986) for background).
Such an algorithm requires that there exists a con-
stant cg such that

P, (Gii )<Co Pz, (gii) foral gjj >0 (46)
where pg. (g;) isdefined by Eq. (39) and
Pz, (gii) isthe probability density function of
Zg = Yo +0Z inwhich Zisarandom variable hav-
ing the Student’ st distribution with 3 degrees-of-

freedom. That is, the probability density function of
Zis
-3/2
0y@)=-t 122 se(miw) @)
22| 2 |

and thus,

1 ( )2 -3/2
gii — Yo

i )= 1+ 48

pZe(gu) 2\/59( 262 J (48)

for gjj € (—oo,+0). If valuesof ¢y, 8, and yg can

be found for which Eq. (46) holds, then random de-

viates G;; can be generated as

Gii = Zg provided that cg pz, (Z) U < pg, (Z¢)
(49)

inwhich U denotes arandom variable uniformin

theinterval [0,1] and independent of Zg. When the

inequality in Eq. (49) is not satisfied, no sample G;;
is generated. Note further that 1/ cqy isthe probability
that this inequality be satisfied, so that ¢y represents
the average number of pairs of samples (Zg U ) that
must be generated per value of G;j; to be simulated.
Accordingly, it isdesired to have avalue of cgy as

close aspossible to 1.

The Student’ st distribution with 3 degrees-of-
freedom was selected for the random variable Z first
because it can easily be simulated as

2 1
el ™

where U is arandom number uniformly distributed
in [0,1]. Another advantage of the Student’ st distri-
bution isthat it led to values of cg that remained

reasonably small, i.e. to efficient simulation algo-
rithms, over a broad range of values of the parame-

tersp(i) and T /u? .
The approach selected here for the determination
of the parameters ¢y, 6, and yq isto force the two

distributions pg, (gij) and pz, (gji) to have their



respective modes at the same value gi*i =Yyp and to
have pg, (g,*, )= Co Pz, (gl*, ) These 2 conditions will
provide the values of ¢y and yg intermsof 6. This
last parameter will then be selected to minimize cg
while maintaining the inequality of Eq. (46) over the
entire domain g;; = 0.

Matching the modes of the two distributions
P, (gii) and pz, (gi;) leads directly to the condi-

tion
27 Y§ +Mij Yo -9 =0 (51)
or
0= 4 (WhE +8am i J20
where the notation
_n+ 22k -3 (53)

has been adopted for simplicity.
Next, matching the peak values of pg. (g;;) and

Co Pz, (9ii) requiresthat
Co =232 6Ci yg eXDl—Mii Yo — Ti ng (54)
which indicatesthat cg isproportional to 6 while
Yo isindependent of this parameter, see Eq. (52).
An acceptable simulation algorithm is obtained for
all values of 6 for which the inequality of Eq. (46) is
satisfied. However, the most efficient of these algo-

rithmsis the one that minimizes the corresponding
Cy, See Eq. (54). Inview of the linearity of cg with

respect to 0, it is concluded that the best algorithmiis
the one for which 0 has the smallest possible value
that guarantees the satisfaction of the inequality of
Eq. (46) for al values of g;j > 0. To determinethis
value of 0, introduce first the function
C +w
r(w)=In 0 pzo(YO )
P, (Yo +w)
and it isdesired that r(w) be nonpositive for all
W = —Yq . From the above conditions, it is found that
r(0)=0and r’(0) = 0. Thus, a sufficient condition for
r(w) to be nonpositive is that
r'(w)>0forw<0 and r’(w)<Oforw>0. (56)

After differentiation of Eq. (55) and some algebraic
manipulations, it is found that Eq. (56) is equivaent
to

(55)

300w 2
(Wi +47; yo +21; W)
for all w>—-yg. Accordingly, the smallest value of
0 corresponds to the maximum of the right-hand-

202 >

side of Eq. (57). In thisregards, note from Eqgs (51)
and (52) that u; +47; yg + 2t; w isaways positive
for all w2 —-yg. Then, the right-hand-side of Eq.
(57) is monotonically increasing in we [ yg,0] and
thus the maximum must occur for w > 0. Further,
max 3(yo +w) W2
w>0 | (i +471; Yo + 27 W)
< max{ 3(yo+w) Wz} _ 9+12yp (i + 4Ti2yo)

w>0 (Mii +47; yO) 4Qlii + 47, yo)
which suggests the value of 6 as

e:\/9+1ZYO(Hii +4Ti2yo)_ (59)
8(uii +47; Yo)

The above expression is simple but overestimates
the maximum of the function on the right-hand-side
of Eq. (57). This maximum can be obtained by dif-

ferentiating and solving a cubic equation in w. Spe-
cifically, it isfound that

(58)

3(y0+w*) *9

-— (60

0

i 2(11.” +4’Ci y0+2ri W*)

where W denotes the location of the maximum as
given by

w ={2-2) (61)
2’Ci
where
2
p-Y,2a .2 (62)
6 3y 3
v3 =108b+8a +12\/81b% +12ba®  (63)
and
a=Ujj +41iYp b =31 (i + 27 yp). (64)

A comparison of the simulation algorithms based on
Egs (59) and (60)-(64) will be presented in section
6.1.

The simulation of random values G;; according
to the probability density function of Eqg. (39) then
proceeds as follows. For given values of p;; and 7,

the mode y isfirst determined according to Eq.

(52), and 6 and ¢ / Ci are obtained in order from
Eqgs (59), or (60)-(64), and (54). After this prepara
tion phase, pairs of independent random numbers
(U,U) uniformin [0,1] are simulated. From U, a
variate Z of the Student’ st distribution is obtained
from Eqg. (50) and the corresponding variable Zg is
determined as Zg = yg+0Z . It is next necessary to
assess if the inequality of EQ. (49) is satisfied. To



this end, the term [cg /Ci | Pz, (Zo) U isevaluated

from the above values of ¢y /Ci and U and with
Pz, (Z¢) denoting the value of pz, (gii), Eq. (48),
for gjj = Zy. Theratio pg, (Zg)/Ci issimilarly
obtained from Eq. (39). If

o6 /Ei]loze (Ze)U<pg, (Zg)ICi, (65)
avaue of Gj; isobtained as Gj; = Zg. Otherwise,
the value of Z isrejected and no corresponding
sample of G;j; is generated. Either way, the process
is repeated starting with the simulation of a new pair
of uniform random variables (U ,U) until the appro-
priate number of samples of G;; has been obtained.

Note that Eq. (65) is equivalent to the inequality of
Eq. (49) but is preferableto it because it does not re-
quire the numerical evaluation of the normalization

constant C; .

5 IDENTIFICATION OF NONPARAMETRIC
MODEL PARAMETERS

5.1 Dispersion Parameter 6

It isdesired next to characterize the overall variabil-
ity of the random matrices A around their mean 5
To this end, introduce the dispersion parameter ¢ as

#orgle-ff] e

where

2 T
M =] ©7)
is the square of the Frobenius norm of an arbitrary
matrix V . Expanding, the right-hand-side of Eq.
(67) and taking Eq. (22) into account, it is found that

&2 =%{E[tr(2£T )]— n} (689)
ZE IkH]kHI|HJ|] (69)

s’} 3o

where, by its lower triangular nature, H;; =0 forl >
I. The evaluation of the right-hand-side of Eq. (69) is
accomplished by first separating the cases in which
I=j and those in which i#j. Further, it isrecalled
from Eq. (23) that Hj and H j areindependent if
i. Noting finally from Eq. (23) that E[H; H; ]=0
for kzl, it isfound that

with

elrle™ |- > elez]- > (el ]
i=1 i,k=1 ] 5 (70)
+ Z[E _ZH%D
k=1\ Li=k

To evaluate the above expression, it should further
be noted that E[HiiJ: E[H iz(i_l)J, for ki, in view
of the symmetry of the variables H;;, | >, in Eq.

(23) and further that these expectations are the same
if i>mof i<min view of Eq. (30). Moreover, from
Eqgs (30), (33), and (34), it is found that

n+ 2k —i
glnz|-1r2=t (71)
n+2A-1
and
1
HE |=—— . 72
[” n+2L-1 (72

Introducing Eq. (71) and (72) into (70) and combin-
ing the above results yi elds

Z Elo? (73)

n2k1

Noting finally that E[G J s fori<m(Egq. (31))
and ElGi%J:(n+27L+1)/(n+2x—l) for i>m (from
Eq. (25)) itisfound that

Z2 n+1-(m/n)(n+21+1)
n+2h-1 '

(74)

5.2 Identification of the parameters A, v, and T;

The above derivations have been carried out in terms
of the parameters A, p;i , and t; but these coeffi-
cients are not part of the original problem statement
and thus they should, in principle, be evaluated in
terms of the stated constraints, Egs (5), (30), and
(31). Note in thisregard that the constraint of Eq.

(5) has two aspects: the finiteness of v and its spe-
cific value. The finiteness of v guarantees the exis-
tence of the mean squared Frobenius norm of the in-

verse matrix é‘l while the specific value of this
coefficient providing an overall measure of the ran-
domness of the matrices A. Inthislight, v and 6
play asimilar role and it is thus appropriate to re-
place Eq. (5) by afixed value of 9, Eq. (74), see So-
ize (2001) for discussion. Proceeding in this manner
would provide a direct expression for A as

n+2L-1=2q+2= n+1-2(m/n)

1 m|
62—232+}
[ nS" n

(75)



Note however that the available information
about the randomness of the mode! liesin the stan-
dard deviations of some of its natural frequencies
and thus it would be desirable to identify all model
parameters from that information alone. Such an ap-
proach has already been proposed (Capiez-L ernout
et a, 2005): the standard deviation of the first natu-
ral frequency was used to evaluate the parameter A
of an unconstrained model. A similar procedureis
accordingly proposed here. Specifically, it will be
assumed that the standard deviations of m+1 natural
frequencies are known. Then, one of these standard
deviation conditions will be used to yield the value
of A while the m others will be enforced through
constraints of the form of Eq. (11).

To complete this strategy, it remains to determine
which standard deviation should be singled out and
used to compute A. In thisregard, it is valuable to
analyze the behavior of the distribution of Eq. (39)
as q — oo aslarge values of this parameter occur for
small to moderate system variability. In this limit, it
is found that a positive value of t; isobtained only

if
32 <1+1/q. (76)
In thisregard, note that 1+1/q isthe value of

E|G2] obtained from the unconstrained distribution
of Eq. (25) inthe samelimit of g — oo. It isthus

concluded that the specified value of s* must be

less than what would be obtained by the uncon-
strained model with the same A. Thisresult isin fact
not surprising since enforcing a higher value of
E[Gﬂ would lead to an entropy larger than its
maximum obtained for the unconstrained model.
This result also elucidates the determination of
the parameter A. Specifically, it will be evaluated

from the standard deviation of the natural frequency
which amongst the m+1 prescribed ones has the

largest value of s1-2. Equality will be achieved in Eq.

(76) for that value of i and the corresponding pa-
rameter t; will be zero.

The above observation that E GﬁJ =1+1/q as
g — < independently of i for the unconstrained
model impliesfirst that the ratios of the standard de-
viation of arandom natural frequency divided by the
corresponding natural frequency of the mean model
are dl the same, i.e. 1/g. Next, note that not impos-
ing a second order constraint on the eigenvalues
mt+1 to n has led to the corresponding rows of the
matrix H being obtained from the unconstrained

approach. Therefore, the natural frequencies m+1 to

n will then all have approximately the same ratio of
standard deviation to value of mean model and equal

to the largest 32 . Equivalently, the natural frequen-

ciesm+1ton would, in this manner, have their
largest possible variances of value dictated by
whichever eigenvalue exhibits the largest 32 . While
this condition will certainly lead to the largest value
of the entropy, it would seem that the observed natu-
ral frequency of highest rank would provide the best
basis for forecasting the variations of the unob-
served, higher rank natural frequencies. Accord-
ingly, it is proposed here to modify the modeling
approach so that the parameters ;; and t; obtained
for therow of H associated with the observed natu-
ral frequency of highest rank be used also for the
rows corresponding to unobserved, higher rank natu-
ral frequencies. Thus, the standard deviations of
these random variables will be approximately (for
finite value of ) constant as the rank increases.

6 NUMERICAL RESULTSAND VALIDATION

6.1 Evaluation of the Smulation Algorithm by Re-
jection

It isfirst desired to evaluate the performance, as

measured by cg, of the simulation algorithm by re-

jection of the random variables G;; , see section 4.3.
The parameter cg, which represents the average

number of pairs of uniform random numbers (U ,L_J)
to be simulated before an acceptable sample G;; is
obtained, is determined by introducing Eg. (59) into
Eq. (54). Note however that the resulting expression
does depend on the normalization constant Cj

which could not be evaluated in closed form. Ac-
cordingly, the present validation will be carried first
on limiting cases for which Cj can be evaluated and
then through anumerical study.

Previous applications of the nonparametric ap-
proach and the example below suggest that the pa-
rameter A is generally much larger than 1 so that q,
Eq. (53), islarge. In such cases, the distribution of
Eq. (39) can be closely approximated near its mode
by a Gaussian distribution (see Devroye (1986) for a
similar results for the Gamma distribution corre-
sponding hereto tj = 0). To demonstrate this limit-

ing behavior, note first that the mode yg tendstoin-
finity as g — «, see Eq. (52). Next, consider the
behavior of pg, (Yo +y) for fixed, finite values of y



as Yg,q— e=. With

(Yo+y)9=yg exp[qln(“ y—i)ﬂ

i 2
~ ygexp ﬂ_qy_z : (77)
_yO 2y0

it isfound that

pg; (Yo +Y)=Ciexpl - (Ti + %J y2| (79
i A

where

Ci =Ci yg eXp[—Mii Yo— T yg]“ ELTi +%J - (79)
T A

It is thus concluded from Eq. (67) that the distribu-

tion of Eq. (39) is, around its mode, approximately

Gaussian. Next, combining Egs (54), (59), and (79)

provides the asymptotic limit of cg as q — - as

Cg = \E =1.382 (80)
T

for all valuesof p;; and t; . Note that the same as-
ymptotic result was obtained from Eqgs (60)-(64)
thereby demonstrating the equivalency of Egs (59)
and (60)-(64) inthe limit g — <. It should finally
be observed that Eq. (80) isvalid independently of
the mean and standard deviation of the approximate
Gaussian distribution of Eg. (78) and thusisvalid
for al Gaussian distributions.

Although of alesser practical interest, the other
limiting situation of asmall value of qwas also in-
vestigated. Consider for example g = 0. In this case,
the probability density function of EqQ. (39) reduces
to atruncated Gaussian distribution for which it is
found that

where ®(.) denotes the cumulative distribution
function of a standard Gaussian random variable.
The determination of the parameter cg is achieved
separately for pj; <0 and pj; 2 0.

In the first case, the modeis yg = —u; / 2t and
the computation of cy proceeds from Egs (59), or
(60)-(64), and (54) and (81). For large values of
lWii|/ 7, itisagain found that the two values of cg
obtained (one from Eg. (59) and the other from Eqs
(60)-(64)) are very close to each other and to the
value of Eq. (80). Thisresult is not surprising as the
truncation of the normal distribution plays avery
small role for large values of the mode. As |Mii |/ Tj

decreases, the values of cg obtained by the two dif-

ferent algorithms differ increasingly from each
other. For example, at |u;;|/ 7; =0, the parameter cg
corresponding to Egs (60)-(64) converges to twice
the value of Eq. (80), as expected since half of the
produced Z values, those which are negative, are
automatically rejected. On the contrary, the parame-
ter cg obtained from Eq. (59) tends to infinity, due
to the vanishing of the denominator of Eq. (59).

For positive values of y;; , thereisno mode and
Eq. (52) correctly yields the location of the maxi-
mum of the distribution as yg =0. For p;; =0, the pa-

rameter cg iscontinuous and the values of 2v6/n
and infinity are recovered for the algorithms based
on Egs (60)-(64) and (59), respectively. As Wj; / T
increases, the two values of ¢y converge to each
other and to 3 as pjj / Ty — oo.

It is concluded from the above discussion that the
algorithm based on Egs (52), (54), (60)-(64) per-
forms very well, typically requiring an average of
1.4 pairs of independent uniform random numbers
per sample G;; to be simulated. In unusual cases,
the number of pairs of uniform variates may riseto
3. The algorithm based on Eq. (59) in place of Egs
(60)-(64) performs amost as well in the cases of

greater practical interest but may lead to alarge
simulation effort when g is small (e.g. equal 0) and

lwii|/ 7 istypically lessthan 3.

6.2 Numerical Estimation of the parameters A, L;; ,
and T

Theinitial conditions, uﬁ and rio, that were used

to start these computations correspond to the large q
Gaussian approximation of Eq. (39), i.e. Eqs (78)
and (79). Accordingly, the constraints of Eqgs (30)
and (31) imply that

1 2
y8=—O[V(uﬁ) +8qri°—ui°j=1 (82)
4‘Ei
and
-1
51-2—1=% 049 | (83)

2y8f

The solution of Eqgs (82) and (83) isreadily found as

-2 2

1

Mt = -2t =29~ (85)

$2



Next, it is necessary to evaluate p;; and t; from
Egs (30) and (31), or Eg. (30) and fixed second
moments of the exact eigenvalues. In fact, neither of
these constraints can be matched analytically given
the complexity of EqQ. (39) and thus a numerical ap-
proach must be undertaken. Either set of constraints
(Eq. (30) and either Eqg. (31) or the second moment
of the exact eigenvalues) were considered and suc-
cessfully matched using a polytope algorithm (IMSL
routine DUMPOL).

At this point, note that the parameter rio must be

positive for the distribution of Eqg. (39) to be inte-
grable at infinity but this condition is automatically
satisfied if the constraint of Eq. (76) is met.

6.3 Examples of Application

To exemplify the above devel opments, a n=5 degree
of freedom dynamic system was considered exhibit-
ing variations of its stiffness matrix. The above

methodology was then applied with A and B being

the stiffness and mass matrices, respectively. Fur-
ther, the analysis of the system was carried out in
the modal coordinates of the mean model with mass
normalized modes. Thus, B isthe 5x5 unit matrix

and 5 is the diagonal matrix containing the squares

of the natural frequencies which were first assumed
tobel, 3,5, 7, and 9 rad/s (mean model 1). Finally,
the damping matrix was constructed by assuming a
damping ratio of 1% on al modes.

Three sets of computations were carried out, two
with the unconstrained nonparametric approach and
one with the present constrained formulation. The
first unconstrained model was obtained by enforcing
a standard deviation of the first natural frequency
equal to 0.058, i.e. 5.8% of the corresponding value
for the mean model. The second unconstrained
model was similarly determined but with alower
standard deviation, i.e. 0.033. As stated earlier, it
was observed that the ratios of the standard devia-
tions of the natural frequencies of the random sys-
tems divided by their corresponding values for the
mean models varied very little, from 0.00575 to
0.00584 for the first system and from 0.00331 to
0.00334 for the second one.

The constrained approach was applied next by
imposing ratios of standard deviations to mean
model value of 5.8% and 3.3% for the first and sec-
ond natural frequency, respectively. Since the first
natural frequency exhibits the largest relative varia-
tions, thefirst row of H , i.e. the one most closely
associated with the first frequency, was character-
ized by an unconstrained model, i.e. T4 =0. Given
the lack of information on the third, fourth, and fifth

natural frequencies, the parameters p;; and t; were

assumed to be the samefor i > 2. Accordingly,
there were only 4 model parameters to be deter-
mined: wqq, A, Lo, and to. They wereiteratively
obtained by imposing the prescribed standard devia-
tions on natural frequencies (the exact constraints,
not the approximate ones of Eg. (11)) and Eq. (30)
fori=1and 2. Infact, Eq. (30) for i=1 isreadily sat-
isfied by selecting 1, and A to berelated by Eq.
(29) with i=1. Note further that the conditions of Eq.
(30) for i= 3, 4, and 5 are automatically satisfied
when it isfor i=2 as the model parameters p;; and

T; arethesamefor i > 2. A sample of 10,000 ran-
dom matrices was assumed for all computations.
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Figure 1. Probability density functions of the
squared natural frequencies divided by their corre-
sponding value for the mean model. Mean mode! 1.
Constrained Model (“2Freq”), unconstrained models
with higher (“ 1FregHi”) and lower (“ 1FregLo”)
level of variations.

Shown in Fig. 1 are, for each of the three random
systems, the distributions of the five natural fre-
quencies divided by their corresponding value for
the mean model. It is seen from this figure that the
probability density function of the first natural fre-
guency of the constrained system closely match its
counterpart for the unconstrained system with the
largest, i.e. 5.8%, level of variations. Similarly, the
distributions of the 2"-5" natural frequencies of the
constrained system (divided by their corresponding
value for the mean model) match those of the uncon-
strained model with the lowest, i.e. 3.3%, level of
variations. It is thus concluded that the constrained
model accurately matches the prescribed information
on the variations of its natural frequencies.

A comparison of the frequency response func-
tions of the 3 random systems was carried out next.
Shown in Fig. 2 are the 95th percentile of the Fro-
benius norm of the frequency response matrix
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k - oozﬁ + icogy for the constrained model, for

the two corresponding unconstrained models, and
for the mean model. It is clearly seen from thisfig-
ure (and additional results not shown here for brev-
ity) that the frequency response functions of the con-
strained model and of the unconstrained one
corresponding to the smaller (3.3%) variationsin
natural frequencies match very closely in the range
> 1.5rad/s. For smaller frequencies however, e.g.
see Fig. 2(b), the constrained model frequency re-
sponse function closely match the unconstrained
model with the largest variations natural in frequen-
cies. These results arein fact in complete agreement
with the distributions of natural frequencies pre-
sented in Fig. 1.

It was desired next to assessiif the closeness of
two natural frequencies of the mean model could af -
fect the applicability of the approach and/or the va-
lidity of the above observations. To thisend, the
above computations were repeated exactly except
for the second natural frequency of the mean model
which was selected to be 1.06 rad/s., i.e. very close
to the first one (mean model 2). The parameters of
all three random systems were recomputed and the
distributions of natural frequencies and norm of fre-
guency response functions were again determined.
Notwithstanding the closeness of the natural fre-
guencies of the mean system, the constrained model
accurately matched the prescribed variations of the
natural frequencies, see Fig. 3. Note again that the
distribution of the first natural frequency matches
the one from the unconstrained model with higher
level of variations, while the probability density
function of the second one matches its counterpart
for the other unconstrained model, as seenin Fig. 1.
Finally, the norm of the frequency response function
matrix, see Fig. 4, exhibits the properties already de-
scribed in connection with Fig. 2. In regardsto the
behavior near 1Hz, note first that the two peaks of
the mean model have merged when considering any
of its statistics (mean, 5th, and 95th percentile) for
either of the three random systems. Finally, note that
the 95th percentile of the norm of the frequency re-
sponse function of the constrained model matches
closely its unconstrained counterpart with the larger
level of variations left of the peak (as dictated by the
first natural frequency) and the one with the lower
level of variations right of the peak (as dictated by
the second natural frequency).

10000 -

1000
------ Mean Model —— 2Freq

—e— 1FregHi —*— 1Freqlo
100

10

0.1+

Frequency Response Function Norm

0.01 4

0.001

Frequency (rad/s)

@

10000 -

------ Mean Model —— 2Freq
—e— 1FregHi —%— 1FreqLo

1000 -

Frequency Response Function Norm

T T T T T T ]
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Frequency (rad/s)

(b)

Figure 2. (a) Frobenius norm of the frequency response func-
tion matrix, (b) same, zoomed. Mean model 1.Constrained
Model (“2Freq”), unconstrained models with higher
(“1FregHi”) and lower (“1FregLo”) level of variations.
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Figure 3. Probability density functions of the squared first and
second natural frequencies. Mean model 2. Constrained Model
(“2Freq”), unconstrained models with higher (“1FregHi”) and
lower (“1FregLo”) level of variations.
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Figure 4. (a) Frobenius norm of the frequency response func-
tion matrix, (b) same, zoomed. Mean model 2.Constrained
Model (“2Freq”), unconstrained models with higher
(“1FregHi”) and lower (“1FregLo”) level of variations.
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7 SUMMARY

The focus of this paper was on the derivation and
validation of a maximum entropy based probabilistic
model of positive definite matrices, such as the stiff-
ness and mass matrices of a dynamic system. Fol-
lowing prior work in this area, the maximum of the
entropy is sought under the additional constraints
that the mean matrix is known, that each realization
A ispositive definite, and that the mean squared

Frobenius norm of itsinverse exists. A new set of
constraints was however added in the present effort,
Eq. (11), to permit the enforcement of prescribed
standard deviations of an arbitrary number of natural
frequencies of the random system. Accordingly, the
present methodology provides afull probabilistic
model of random systems from basic variability in-
formation. Further, this model is independent of a
rotation/change of coordinate system, as desired. It
should be noted that if only the standard deviation of
asingle natural frequency is prescribed, the present
model reduces to the one previously developed.

Central to the inclusion of natural frequency
variations in the model are the Rayleigh quotient
type constraints of Eq. (11) and the representations

of the mean and random matrices 5 and A inthe

specific form of Eqgs (14), (15), and (17). These rep-
resentations transfer the mfrequency constraints of
Eq. (11) into prescribed second order moments of
the first m diagonal elements of the positive definite
random matrix G, the mean value of which isiden-

tity. Enforcing the positive definiteness of G is

achieved by formulating directly the probabilistic
model in terms of its Cholesky decomposition H .

In fact, the joint probability density function of its
elementsis given by Eq. (23) in which it is recog-
nized that each row is stochastically independent of
the others. Further, the first mrows, i.e. those asso-
ciated with the natural frequency constraints, and the
remaining ones are characterized by two different
types of joint probability density functions. For rows
nmt+1ton, itisfound, asin prior investigations, that
all elements are independent of each other with the
diagonal ones being distributed as square root of
Gamma random variables. Further, the non-diagonal
elements are found to follow a Gaussian distribution.
The joint probability density function of the ele-
ments in the rows 1 to mis more complex because of
the frequency constraints which induce a statistical
coupling between these random variables. Neverthe-
less, the joint probability density function of these
elements was obtained, Eq. (27), and discussed ex-
tensively. Further, a simple approach was given to
simulate these elements which hinges on the genera-
tion of samples of the diagonal elements G;; accord-

ing to the distribution of Eq. (39). Thistask was
achieved by an efficient, specially designed rejection
algorithm, see Egs (46) and (59)-(64).

The details of the application of this model were
discussed and exemplified on the stiffness matrix of
two 5 degree of freedom models, one exhibiting
widely spread frequencies while the other has two
very close natural frequencies. In both cases, the
model accurately matched the prescribed informa-
tion on the natural frequency variations and thus
provides a sound and compl ete probabilistic descrip-
tion of the random stiffness matrix of these stochas-
tic systems.
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