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ABSTRACT: A complete probabilistic model of random positive definite matrices is developed that incorpo-
rates constraints on the standard deviations of a set of its eigenvalues. The model is in particular applicable to 
the representation of the mass and stiffness matrices of random dynamic systems of which certain natural fre-
quencies are observed. The model development is based on the maximization of the entropy under a set of   
constraints representing the prescribed eigenvalue standard deviations, the mean matrix being given, and the 
existence of the mean Frobenius norm of the inverse of the random matrix. The efficient simulation of sam-
ples of random matrices according to the proposed model is discussed in details. Finally, examples of applica-
tion validate the above concepts and demonstrate the usefulness of the proposed model. 
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1 INTRODUCTION 

The stochastic modeling and simulation of random 
multi degree of freedom systems has often in the 
past been accomplished by postulating joint prob-
ability density functions of the components of their 
mass, stiffness, and/or damping matrices or, equiva-
lently, of their corresponding natural frequencies, 
damping ratios, and mode shapes (e.g. Ghanem and 
Spanos, 1991, Kleiber et al, 1992, Rivas-Guerra and 
Mignolet, 2004, Schueller, 1997). However, a dif-
ferent approach has recently been proposed (Soize, 
2000, 2001) and validated (see Soize, 2005, for a re-
view) in which the probabilistic model of the mass, 
stiffness, and/or damping matrices is not assumed 
but rather determined to maximize the entropy under 
the constraints (i) that these matrices are positive 
definite, (ii) that their mean values are prescribed, 
and (iii) of an overall measure of variation (variance 
of the norms of the matrices prescribed). This ap-
proach has been named nonparametric since no pa-
rameter value is selected by the  user. It will be fur-
ther qualified of unconstrained to differentiate it 
from its constrained extension presented below. 

The unconstrained approach is applicable to a 
broad range of situations in which little, i.e. only a 
single measure of variability, is known about the 
randomness of the system. In such cases, the uncon-
strained approach is particularly advantageous as it 

permits to derive, on a rational basis, a full stochas-
tic model of the system. There are however various 
other situations in which more than a single measure 
of randomness is known, e.g. when tests have been 
conducted. Natural frequencies are the most standard 
information obtained from dynamic tests and thus 
estimates of the mean and variance of the first few 
natural frequencies of the system may realistically 
be available. Since the mean natural frequencies are 
likely to be close to the values obtained for the de-
sign configurations, it is typically the variances 
which provide the most valuable information about 
the system randomness. They should thus be incor-
porated in the stochastic model of the system. 

In this light, the goal of the present investigation 
is to extend the formulation of the unconstrained 
nonparametric approach to allow for additional con-
straints on the standard deviations of some of the ei-
genvalues of the mass, damping, and/or stiffness ma-
trices. This novel approach will be referred to as 
constrained in the remainder of the paper. 

Note that the expected domain of application of 
these concepts is the low frequency range in which 
the natural frequencies are distinguishable and ob-
servable.  



2 ENTROPY MAXIMIZATION AND CON-
STRAINTS 

It is desired here to simulate realizations of symmet-
ric positive definite random matrices, e.g. the mass 
and/or stiffness matrix of a linear dynamic system, 
the properties of which, i.e. eigenvalues, eigenvec-
tors, components, etc., are all random. This require-
ment necessitates the specification of the joint prob-
ability density function of all elements of the matrix. 
In most practical problems, however, this informa-
tion is not available - only some moments and/or 
marginal probability density functions are likely to 
be available. In the absence of the exact distribution, 
it is then appropriate to ask what are the desirable 
features of this distribution. In this context, note that 
the design of structural systems is often robust, i.e. 
that small perturbations in their geometrical and ma-
terial properties do not alter significantly the prob-
ability of failure/fatigue life of the system consid-
ered (see Rivas-Guerra and Mignolet, 2004 for a 
notable counterexample in turbomachinery). It is 
thus desirable to dispose of a probabilistic model 
which places particular emphasis on “larger” devia-
tions from the design conditions. Equivalently, this 
model should have a large value of the entropy as 
defined by 

    ( ) ( )∫
Ω

−= xdxpxpS XX ln       (1) 

where X denotes the vector of random variables con-
sidered of joint probability density function ( )xpX . 
Further, x denotes the realized values of X, and Ω 
the domain of support of ( )xpX . 

Consistently with the above discussion, a prob-
abilistic model of uncertain nxn matrices A  has 
been formulated (Soize, 2000, 2001) to maximize 
the value of the entropy S  

    ( ) ( )∫
Ω

−= adapapS AA ln       (2) 

given the following physical constraints: 

                      ( )∫
Ω

= 1adapA            (3) 

             [ ] ( )∫
Ω

== AadapaAE A       (4) 

and 

               ( )[ ] ( )∫
Ω

ν= finite  detln adapa A     (5) 

where  denotes the operation of mathematical 

expectation, 

[ ].E

( )apA  is the joint probability density 

function of the elements of A , and det( A ) is its de-
terminant. 

The first two of the above constraints correspond 
to the normalization of the total probability to 1 (Eq. 
(3)) and the specification of the mean matrix (Eq.  
(4)). The third one, Eq. (5), implies the existence of 
the mean squared Frobenius norm of the inverse ma-
trix 1−A (see Soize (2000,2001) for discussion). To 
apply this approach to the simulation of random 
mass, stiffness, and  damping matrices of dynamical 
systems, it is further required to ensure both the 
symmetry and positive definiteness of every realized 
matrix A . This is achieved by introducing the Cho-
lesky decomposition of A , i.e. 

        TLLA ~~=             (6) 
where L~  is an lower triangular matrix with non-

negative diagonal elements and T  denotes the op-
eration of matrix transposition. The domain of sup-
port Ω of the obtained probability density functio
then such that the elements 

n is 
ijL~  belong to  

for 

( )∞+∞− ,

ji ≠  and [  for )∞+,0 ji = , i.e. 
{

( )[ ] [ )[ ]}.,0,,

:,...,1,,;

+∞∈∩>+∞∞−∈

===Ω

iiij

ij
T

LjiL

njiLLLa  

The maximization of the entropy, Eq. (2), under 
the constraints of Eqs (3)-(6) yields a closed form 
expression for the joint probability density function 
of the elements of the random matrix A (Soize, 
2000, 2001). Further, this distribution only depends 
on the single parameter ν so that only a broad 
knowledge of the matrix uncertainty needs to be 
known or can be enforced. In some situations how-
ever, e.g. when considering insertable turbomachin-
ery blades, tests may have been performed that pro-
vide more information on the system variability. In 
the context of structural dynamics, such tests will of-
ten focus on the natural frequencies of the system 
and will likely result in estimates of the variance of 
the first few natural frequencies. In such circum-
stances, it is highly desirable to dispose of a prob-
abilistic model of the corresponding mass and stiff-
ness matrices that accurately accounts for all the 
available information. If only one natural frequency 
is  observed, its variance as estimated by the tests 
can serve for the determination of the parameter ν, 
Eq. (5), corresponding to the mass and/or stiffness 
matrix model. However, to account for two or more 
variances, it is necessary to extend the formulation 
of Eq. (2)-(5) by introducing additional constraints 
that can reflect the knowledge on the natural fre-



quencies. 
To address this extension, consider the general-

ized eigenvalue problems 
          iii BA ϕλ=ϕ           (7) 

and 
           iii BA φλ=φ ~        (8) 

where B  is a deterministic symmetric, positive defi-
nite matrix. In the ensuing discussions, it will be as-
sumed that the eigenvectors iϕ  and iφ  are normal-

ized with respect to B  so that 

   1=ϕϕ i
T
i B      ii

T
i A λ=ϕϕ       (9) 

and 
   1=φφ i

T
i B             ii

T
i A λ=φφ ~ .    (10) 

Constraining the variance of the eigenvalues  
directly is unfortunately extremely challenging be-
cause of the lack of an exact expression for the natu-
ral frequencies of the random matrix 

iλ

A  in terms of 
its elements. Accordingly, an indirect approach will 
be selected here which relies on simple constraints 
that are akin to the second order moments of the ei-
genvalues. More specifically, it will be assumed that 

the value of ( ) ⎥⎦
⎤

⎢⎣
⎡ φφ

2
i

T
i AE  is specified, i.e. 

  ( ) ( ) ( )∫
Ω

λ=φφ=⎥⎦
⎤

⎢⎣
⎡ φφ 2222 ~

iiAi
T
ii

T
i sadapaAE  

(11) 
where is , [ ]nIi ,1⊆ , are m known positive con-∈
stants and iφ  are the eigenvectors of the mean ma-

trix A  corresponding to the m eigenvalues of which 
the variance is known. For exampl  if the variances
of the three lowest eigenvalues of 

e,  
A  have been es-

tim nated, the  iφ  will in turn be the eigenvector of 

the mean matrix A  corresponding to its three lowest 
eigenvalues. 

Several comments can made in regards to the 
constraints of Eq. (11). First, these conditions in-
volve second order moments, not variances, but this 

se the mean values of switch is appropriate becau
( )ii  are already prescribed by Eq. (4). Next, as 

discussed above, these conditions do not generally 
relate exactly to the natural frequencies of the ran-
dom matrix 

T Aφφ

A , but they do so when its eigenvectors 

are the same as those of its mean A . Finally, it 
should be noted that the specification of the con-
straints of  Eq. (11) provides freedom in the prob-

abilistic model of the random matrix A  which can 
be used to match the known variances of the natural 
frequencies. This last issue will be discussed in more 
details further. 

3 PROBABILISTIC MODEL DERIVATION 

Following the discussions of the previous sections, 
the proposed probabilistic model ( )apA  maximizes 

the entropy, S of Eq. (2), under the constraints of 
Eqs (3)-(5) and (11) as well as the symmetry and 
positive definiteness requirements of Eq. (6). Using 
Lagrange multipliers 0μ , μ~ , 1−λ , and iτ~  the con-

strained maximization of Eq. (2) is reduced to the 
unconstrained maximization of 

( ) ( )∫ ∫
Ω Ω ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
μ−μ−= adapaadapSS A

T
A

~tr0
*    

( ) ( )[ ] ( )∫
Ω

−λ+ adapa Adetln1  

( ) ( )∫∑
Ω∈

φφτ− adapa Ai
T
i

Ii
i

2~        (12) 

Proceeding next by calculus of variations, it is 
shown that 

( ) ( )[ ] ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
φφτ−μ−= ∑

∈

−λ

Ii
i

T
ii

T
A aaaCap

21 ~~trexpdet~

                      (13) 
~where C  is the appropriate constant to satisfy the 

normalization condition, Eq. (3). It should be noted 
from Eq. (13) that this probabilistic model is inde-
pendent of a rotation/change of coordinate system as 
the vectors iφ  are fixed in space. 

Before addressing the evaluation of the Lagrange 
multipliers, it is desired to simplify Eq. (13) and to 
address the positive definiteness requirement. In re-
gards to simplifications, introduce first the matrix L  
such that 

 TLLA =    and   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡Λ=Φ
0

~ 2/1TL   (14a,b) 

where Φ  denotes the nxm matrix formed by the m 

eigenvectors iφ , Ii ∈ , and Λ~  is the corresponding 

diagonal matrix of eigenvalues. Note that the condi-
tion of Eq. (14b) is introduced to simplify the con-
straints of Eq. (11) as will be shown below. From 
Eqs (7)-(10), it can be proved that L  can be ex-
pressed in the partitioned form 



          ⎥⎦
⎤

⎢⎣
⎡ ΛΦ= −AL 2/1~ D        (15) 

-m) matrix where the nx(n D  is any decomposition, 
e.g. Cholesky, of 
     AAADD T TΦΛΦ−= −1~  .     (16) 

tmultiplying Eq. (16) by Pre- and pos T  and Φ Φ , 

respectively, it is found that 0=ΦTD
Eq. (14b). 

Next, expre

 as required in 

ss the random matrix A  as 

            TLGLA = .           (17) 
hange of ra  aProceeding with this c ndom vari bles, it 

is found that the probability density function of the 
elements of G  is 

( ) ( )[ ] ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
τ−μ−= ∑

=

−λ
m

i
iii

T
G gggCgp

1

21 trexpdet   (18) 

where C  is a new normalization constant, 

LLT=μ , and 2μ~ ~~
iii λτ=τ . 

try and positive definite-To guarantee the symme
ness of G , and thus of A , the model of Eq. (18) is 
reformulated in terms of the elements of the lower 
triangular matrix H  such that 

         THHG = .           (19) 
ize (2000) a i

                    (20) 

so that 

As demonstrated in So , the J cob an of the 
transformation is 

∏
=

+−=
n

l

ln
ll

n hJ
1

12   
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⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ−μ−×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

∑ ∑

∏

= =

=

−λ+−

m

i

i

l
ili

TT

n

l

ln
llH

hhh

hChp

1

2

1

2

1

12

trexp

       (21) 

where C is the appropriate normalization constant 
over the domain 

( )[ ] [ )[ ]{ }+∞∈∩>+∞∞−∈ ,0,,: iiij hjih . 

To evaluate the Lagrange multipliers
==Ω ,...,1,,ij njih

 μ  and  

is ts s
iτ , it 

necessary to first express the constrain  of Eq  (4) 
and (11) in terms of the elements of the random ma-
trix H . Combining Eqs (4), (17), and (19), it is 
found that 
         [ ] nIGE =          (22) 

where nI  denotes the tity matrix. The sim- nxn iden
plicity of this condition implies an equally simple 

form of the matrix μ . Specifically, it can be shown

that this matrix is di gonal and thus Eq. (21) reduces
to 

 

a  

( ) ∏ ∑∑
= == ⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ−=

m

i

i

l
ili

i

l
ilii

ip
iiiH hhhChp

1

2

1

2

1

2)( exp

[ ]{ } [ ]{ }∏ ∏∏
+=

−

=+=
μ−×μ−×

n

mi

i

l
iliiil
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                      (23) 

   (24) 
om Eq.  (23) that: 

 all independent 

d 

where iC , i=1,..., n, and ilC , i=m+1,..., n; l=1,...,i-1, 
are appropriate normalization constants and 
       ( ) 12 −λ+−= inip .    
It is concluded fr
(i) the elements ilh , i>l and i>m are

of each other and independent of the other ele-
ments ilh . Further, they are normally distribute
with m  0 and standard deviation ean

iiil μ=σ 2/1 . 

ii(ii) the elements i>m, are all independent of 
ts 

   

h , 
each other and independent of the other elemen

ilh . Further, they are distributed according to 

( ) [ ]2)( exp iiii
ip hhChp μ−= , 0≥iih   (iiiiiH ii

25) 
e 

          )

      wher
( )[ ]

( )( 2/1)(
2 2/1

+Γ
μ

=
+

ip
C

ip
ii

i                        (26) 

       and ( ).Γ  denotes the Gamma function. 
(iii) the e ents ilh , l=1, ..., i for a given i ∈lem ,1  

dent of 
 

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎜
⎜
⎝
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⎟
⎠

⎜
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⎝
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== 1

2

1

2)( exp
l

ili
l

ilii
ip

iiiilH hhhChp
il

                     (27) 

[ ]m
are dependent on each other but indepen
the other elements ilh . Their joint distribution is

⎤⎞⎛⎞⎛
2ii

( )
⎥
⎥
⎥

⎦

over the domain  
( )[{ == :,...,1, ilili hilh ] [ )[ ]}+∞∈∩>+∞∞−∈Ω ,0,, iihli . 

From the first observation, (i), it is concluded tha

(iii) and th

sat-
isfy the di

t 
[ ] 0=ilG  for i>l and i>m. Further, the observation 

e symmetry of the distribution of Eq. (27) 
with respect to the origin imply similarly that 

[ ] 0=ilGE  for i>l and i≤ m. It then remains to 
agonal terms of the mean condition, Eq. 

(22). For i>m, 

 [ ]

E

[ ] ( ) [ ]2

1

2
2

111 ii
i

l ii
ilii HEiHEGE ∑

=
+

μ
−===  (28) 

 where [ ]2
iiHE  is obtained by integration of Eq. (27) 

as ( )( ) iiip μ+ 2/1 . Combining this result and Eqs 



(26) and (28), it is found that 

      
2

12 −λ+=μ n
ii   for i>m.         (29) 

At this point, it only remains to determine the La-
grange multipliers iiμ  and iτ  for [ ]mi ,1∈ . This 
step is achieved by enforcing the conditions  
        [ ] 1=iiGE           (30) 

 
and Eq. (11) or 
       [ ] 22

iii sGE =           (31) 
d, it is usef

          (32) 

       

for i≤ m. To this en ul to proceed with the 
following change of variables that highlights the 
random element iiG  

          ∑
=

=
i

l
ilii HG

1

2

1cos iiiii GH Θ=           (33) 

      21( siiH Θ−           (34) 1) cosin iiiiG Θ=  

     3( iiiH Θ    (35)  21)2 cossinsin iiiiG ΘΘ=−
on till and so 
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where nd [ ]2/,01 π∈Θi , [ ]π∈Θ ,0il , 
[ )π∈Θ − )1(ii  J  this transformation 

g. see Soize, 2000) to be 
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−

iiii
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g
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2
' −θθθ= iiiiJ (37) 

Then, the joint probability density function of iiG  
and ilΘ , l=1,..., i-1, is 

( ) [ ]22/)32( exp
2
1, gCgp =θ iiiiiii
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8)
The above expression demonstrates that the random 
variables iiG  and ilΘ , l=1,..., i-1 are all independent
of each other and that the joint probability density 
function of the angles ilΘ , l=1,..., i-1 does not de-
pend on the values of τ This important observatio
will be used in the nex ection. Further, the mar-
ginal distribution of iiG  is 

 ( )

i .
t

[ ]22/)2(n
iiiiiG gCgp

ii
= + 3 exp iiiiiii gg τ−μ−−λ   (39) 

here . For each value of i, the two paraw me- 0≥iig
ters iiμ

4 SIMULATION OF RANDOM MATRICES 

The simulation of random matrices A  according to 
the model derived above is achieved by first generat-
ing random matrices H  according to the joint distri-
butions of Eqs (23), (25), (27), (38) and (39). On
sample of 

ce a 
H  has b n generated, the correspo

matrix 
ee nding 

G  is determine from Eq. (19) and, finally
realization of 

d , a 
A  is obtained from q. (17). Thus, the 

simulation effort reduces to the generation of appro-
priate samples of 

 E

H . From the observ ions drawn 
in the previous section, it is concluded that there 
besides the simulation of the Gaussian variates ilH
i>m and i>l, three part ar issues. These are:
generation of the diagonal elements iiH , i>m ac-
cording to the distri ion of Eq. (25), (ii) the 
lation of the ratios iiil GH / , i≤ m, described by th
angular variables in Eqs (33)-(38), and (iii) the g
eration of samples of iiG , i≤ m, according to Eq. 
(39). These three issues are addressed in order be-
low. 

at
are, 

icul  (i) the 

but simu-
e 

en-

, 

4.1 Simulation of iiH , i>m 

The generation of samples of  is simplified by 

considering the variable . Proceeding 
with the change of variables, it is found that the 
probability density function of  is 

iiH
2
iiiiii HY μ=

iiY

 ( ) ( )[ ] [ ]ii

ip
ii

iiY y
ip

y
yp

ii
−

+Γ
=

−
exp

2/1)(

2/)1)((
,  .  (40) 0≥iiy

That is,  is a Gamma distributed random variable 
for which efficient simulation algorithms exist, e.g. 
see Devroye (1986). Once a sample of  has been 
simulated according to the Gamma distribution, the 
corresponding value of , i > m, is found as  

iiY

iiY

iiH

        
ii

ii
ii

YH
μ

=          (41) 

where iiμ  is given by Eq. (29). 

4.2 Simulation of iiil GH / , i≤ m, l=1,..., i 

A first approach for the simulation of the random 
variables iiil GH / , l=1,..., i-1, and i≤ m, is to pro-
ceed from the generalized spherical coordinates 
transformation of Eqs (33)-(36) and to generate in-
dependent angles , l=1,..., i-1, according to the 
distributions 

ilΘ

 and i  are then finally solved from the con-
straints given by Eqs (30) and  (31). 

τ



( ) [ ] )(
1

2
111 cossin~

1
ip

i
i

iii Cp
i

θθ=θ −
Θ ,  ⎥⎦

⎤
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⎡ π∈θ

2
,01i  

                                                                              (42) 
and 

        ( ) 1sin~ −−
Θ θ=θ li

ililil Cp
il

              (43) 

with  for l=2,..., i-2, and  

and where the coefficients 

[ π∈θ ,0il ] [ )π∈θ − 2,0)1(ii

ilC~  are appropriate nor-
malization constants. 
Note however that the above distributions are non 
standard and thus a different, easier approach was 
selected here. Specifically, it was observed in the 
previous section that the probability density func-
tions of Eqs (42) and (43) do not depend on  and 
thus they would be the same for =0. In this case 
however, the simulation of the random variables 

 is completely similar to the case i>m, i.e. the 
random variables , , are Gaussian variates 

with mean zero and standard deviation 

iτ

iτ

ilH

ilH il ≠

iiμ2/1  

while iiiiii YH μ= /  where  is a Gamma ran-
dom variable. Note further that the appropriate value 
of 

iiY

iiμ  to be used is the one given by Eq. (29) to in-
sure the consistency with p(i) of Eq. (24).  

In view of these comments, the simulation of the 
terms iiil GH / , l=1,..., i-1, and i≤ m, can effi-
ciently be accomplished as follows: 
(a) generate iiH~  as 

        
ii

ii
ii

YH
μ

=
~~          (44) 

where iiμ  is given by Eq. (29) and iiY~  is a 
Gamma distributed random variable of probabil-
ity density function given by Eq. (40). 

 (b) generate ilH~ , l=1,..., i-1, as zero mean Gaussian 
random variables with standard deviation 

iiμ2/1 . 

(c) form  and the desired ratios ∑
=

=
i

l
ilii HG

1

2~~

      
ii

il

ii

il

G

H
G

H
~

~
=       l=1,..., i .         (45) 

4.3 Simulation of iiG , i≤ m 

The last step in the simulation of the random matrix 
H  is the generation of the diagonal elements  
according to their probability density function of Eq. 
(39). This distribution is non standard and thus a 
dedicated simulation algorithm by rejection from the 

Student’s t distribution with 3 degrees-of-freedom  
was devised (see Devroye (1986) for background). 
Such an algorithm requires that there exists a con-
stant  such that 

iiG

θc
     for all    (46) ( ) ( iiZiiG gpcgp

ii θθ≤ )
)

)

0≥iig

where  is defined by Eq. (39) and 

 is the probability density function of 

 in which Z is a random variable hav-
ing the Student’s t distribution with 3 degrees-of-
freedom. That is, the probability density function of 
Z is 
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for . If values of , θ, and  can 
be found for which Eq. (46) holds, then random de-
viates  can be generated as 

( ∞+∞−∈ ,iig ) θc 0y

iiG

θ= ZGii  provided that ( ) ( )θθθ ≤
θ

ZpUZpc
iiGZ  

                                            (49) 
in which U  denotes a random variable uniform in 
the interval [0,1] and independent of . When the 
inequality in Eq. (49) is not satisfied, no sample  
is generated. Note further that 1/  is the probability 
that this inequality be satisfied, so that  represents 
the average number of pairs of samples ( ,

θZ

iiG

θc

θc

θZ U ) that 
must be generated per value of  to be simulated. 
Accordingly, it is desired to have a value of  as 
close as possible to 1. 

iiG

θc

The Student’s t distribution with 3 degrees-of-
freedom was selected for the random variable Z first 
because it can easily be simulated as 
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where U is a random number uniformly distributed 
in [0,1]. Another advantage of the Student’s t distri-
bution is that it led to values of  that remained 
reasonably small, i.e. to efficient simulation algo-
rithms, over a broad range of values of the parame-
ters p(i) and  . 

θc

2/ iii μτ
 The approach selected here for the determination 

of the parameters , θ, and  is to force the two 
distributions  and  to have their 

θc 0y
( iiG gp

ii
) )( iiZ gp

θ



respective modes at the same value  and to 

have 
0

* ygii =

( ) ( )**
iiZiiG gpcgp

ii θθ= . These 2 conditions will 

provide the values of  and  in terms of θ. This 
last parameter will then be selected to minimize  
while maintaining the inequality of Eq. (46) over the 
entire domain . 

θc 0y

θc

0≥iig
Matching the modes of the two distributions 

 and  leads directly to the condi-
tion 
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where the notation 
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has been adopted for simplicity. 
Next, matching the peak values of  and 

 requires that 
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which indicates that  is proportional to θ while 
 is independent of this parameter, see Eq. (52). 

An acceptable simulation algorithm is obtained for 
all values of θ for which the inequality of Eq. (46) is 
satisfied. However, the most efficient of these algo-
rithms is the one that minimizes the corresponding 

, see Eq. (54). In view of the linearity of  with 
respect to θ, it is concluded that the best algorithm is 
the one for which θ has the smallest possible value 
that guarantees the satisfaction of the inequality of 
Eq. (46) for all values of . To determine this 
value of θ, introduce first the function 

θc
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θc θc

0≥iig
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and it is desired that r(w) be nonpositive for all 
. From the above conditions, it is found that 

r(0)=0 and . Thus, a sufficient condition for 
r(w) to be nonpositive is that 

0yw −≥
( ) 00 =′r

    and  .  (56) ( ) 0for  0 <≥′ wwr ( ) 0for  0 >≤′ wwr
After differentiation of Eq. (55) and some algebraic 
manipulations, it is found that Eq. (56) is equivalent 
to 
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for all . Accordingly, the smallest value of 
θ corresponds to the maximum of the right-hand-

side of Eq. (57). In this regards, note from Eqs (51) 
and (52) that 

0yw −≥

wy iiii τ+τ+μ 24 0  is always positive 
for all . Then, the right-hand-side of Eq. 
(57) is monotonically increasing in  and 
thus the maximum must occur for w > 0. Further, 
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which suggests the value of θ as 
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The above expression is simple but overestimates 
the maximum of the function on the right-hand-side 
of Eq. (57). This maximum can be obtained by dif-
ferentiating and solving a cubic equation in w. Spe-
cifically, it is found that 
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where  denotes the location of the maximum as 
given by 

*w
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  04 ya iii τ+μ=    ( )023 yb iiii τ+μτ= .  (64) 
A comparison of the simulation algorithms based on 
Eqs (59) and (60)-(64) will be presented in section 
6.1. 

The simulation of random values  according 
to the probability density function of Eq. (39) then 
proceeds as follows. For given values of 

iiG

iiμ  and , 
the mode  is first determined according to Eq. 

(52), and θ and 

iτ

0y

iCc /θ  are obtained in order from 
Eqs (59), or (60)-(64), and (54). After this prepara-
tion phase, pairs of independent random numbers 
( UU , ) uniform in [0,1] are simulated. From U, a 
variate Z of the Student’s t distribution is obtained 
from Eq. (50) and the corresponding variable  is 
determined as . It is next necessary to 
assess if the inequality of Eq. (49) is satisfied. To 

θZ
ZyZ θ+=θ 0



this end, the term [ ] ( ) UZpCc Zi θθ θ
/  is evaluated 

from the above values of iCc /θ  and U  and with 
 denoting the value of ), Eq. (48), 

for . The ratio 
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/θ  is similarly 
obtained from Eq. (39). If  
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// θθθ ≤
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a value of  is obtained as . Otherwise, 
the value of  is rejected and no corresponding 
sample of  is  generated. Either way, the process 
is repeated starting with the simulation of a new pair 
of uniform random variables 

iiG θ= ZGii

θZ

iiG

( UU , ) until the appro-
priate number of samples of  has been obtained. 
Note that Eq. (65) is equivalent to the inequality of 
Eq. (49) but is preferable to it because it does not re-
quire the numerical evaluation of the normalization 
constant 

iiG

iC . 

5 IDENTIFICATION OF NONPARAMETRIC 
MODEL PARAMETERS 

5.1 Dispersion Parameter δ 

It is desired next to characterize the overall variabil-
ity of the random matrices A  around their mean A . 
To this end, introduce the dispersion parameter δ as 
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where 
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is the square of the Frobenius norm of an arbitrary 
matrix V . Expanding, the right-hand-side of Eq.  
(67) and taking Eq. (22) into account, it is found that 
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where, by its lower triangular nature,  for l > 
i. The evaluation of the right-hand-side of Eq. (69) is 
accomplished by first separating the cases in which 
i=j and those in which i≠j. Further, it is recalled 
from Eq. (23) that  and  are independent if 

i≠j. Noting finally from Eq. (23) that  
for k≠l, it is found that 
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To evaluate the above expression, it should further 
be noted that [ ] [ ]2

)1(
2

−= iiik HEHE , for k≠i, in view 

of the symmetry of the variables , l > i, in Eq. 
(23) and further that these expectations are the same 
if i>m of i≤m in view of Eq. (30). Moreover, from 
Eqs (30), (33), and (34), it is found that 

ilH
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Introducing Eq. (71) and (72) into (70) and combin-
ing the above results yields 
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Noting finally that [ ] 22
iii sGE =  for i≤ m (Eq. (31)) 

and [ ] )12/()12(2 −λ++λ+= nnGE ii  for i> m (from 
Eq. (25)), it is found that 

 ( )( )∑
= −λ+

+λ+−++=δ
m

i
i n

nnmns
n 1

22
12

12/11 .    (74) 

5.2 Identification of the parameters λ, iiμ , and iτ  

The above derivations have been carried out in terms 
of the parameters λ, iiμ , and  but these coeffi-
cients are not part of the original problem statement 
and thus they should, in principle, be evaluated in 
terms of the stated constraints, Eqs (5), (30), and 
(31). Note in this regard that the constraint of Eq.  
(5) has two aspects: the finiteness of ν and its spe-
cific value. The finiteness of ν guarantees the exis-
tence of the mean squared Frobenius norm of the in-
verse matrix 

iτ

1−A  while the specific value of this 
coefficient providing an overall measure of the ran-
domness of the matrices A . In this light, ν and δ 
play a similar role and it is thus appropriate to re-
place Eq. (5) by a fixed value of δ, Eq. (74), see So-
ize (2001) for discussion. Proceeding in this manner 
would provide a direct expression for λ as 
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Note however that the available information 
about the randomness of the model lies in the stan-
dard deviations of some of its natural frequencies 
and thus it would be desirable to identify all model 
parameters from that information alone. Such an ap-
proach has already been proposed (Capiez-Lernout 
et al, 2005): the standard deviation of the first natu-
ral frequency was used to evaluate the parameter λ 
of an unconstrained model. A similar procedure is 
accordingly proposed here. Specifically, it will be 
assumed that the standard deviations of m+1 natural 
frequencies are known. Then, one of these standard 
deviation conditions will be used to yield the value 
of λ while the m others will be enforced through 
constraints of the form of Eq. (11). 

To complete this strategy, it remains to determine 
which standard deviation should be singled out and 
used to compute λ. In this regard, it is valuable to 
analyze the behavior of the distribution of Eq. (39) 
as  as large values of this parameter occur for 
small to moderate system variability. In this limit, it 
is found that a positive value of  is obtained only 
if 

∞→q

iτ

         .      (76) qsi /112 +≤
In this regard, note that  is the value of q/11+

[ ]2
iiGE  obtained from the unconstrained distribution 

of Eq. (25) in the same limit of . It is thus 

concluded that the specified value of  must be 
less than what would be obtained by the uncon-
strained model with the same λ. This result is in fact 
not surprising since enforcing a higher value of 

∞→q
2
is

[ ]2
iiGE  would lead to an entropy larger than its 

maximum obtained for the unconstrained model. 
This result also elucidates the determination of 

the parameter λ. Specifically, it will be evaluated 
from the standard deviation of the natural frequency 
which amongst the m+1 prescribed ones has the 
largest value of . Equality will be achieved in Eq. 
(76) for that value of i and the corresponding pa-
rameter  will be zero. 

2
is

iτ

The above observation that [ ]2
iiGE  =  as 

 independently of i for the unconstrained 
model implies first that the ratios of the standard de-
viation of a random natural frequency divided by the 
corresponding natural frequency of the mean model 
are all the same, i.e. 1/q. Next, note that not impos-
ing a second order constraint on the eigenvalues 
m+1 to n has led to the corresponding rows of the 
matrix 

q/11+
∞→q

H  being obtained from the unconstrained 
approach. Therefore, the natural frequencies m+1 to 

n will then all have approximately the same ratio of 
standard deviation to value of mean model and equal 
to the largest . Equivalently, the natural frequen-
cies m+1 to n  would, in this manner, have their 
largest possible variances of value dictated by 
whichever eigenvalue exhibits the largest . While 
this condition will certainly lead to the largest value 
of the entropy, it would seem that the observed natu-
ral frequency of highest rank would provide the best 
basis for forecasting the variations of the unob-
served, higher rank natural frequencies. Accord-
ingly, it is proposed here to modify the modeling 
approach so that the parameters 

2
is

2
is

iiμ  and  obtained 
for the row of 

iτ
H  associated with the observed natu-

ral frequency of highest rank be used also for the 
rows corresponding to unobserved, higher rank natu-
ral frequencies. Thus, the standard deviations of 
these random variables will be approximately (for 
finite value of q) constant as the rank increases. 

6 NUMERICAL RESULTS AND VALIDATION 

6.1 Evaluation of the Simulation Algorithm by Re-
jection 

It is first desired to evaluate the performance, as 
measured by , of the simulation algorithm by re-
jection of the random variables , see section 4.3. 
The parameter , which represents the average 

number of pairs of uniform random numbers 

θc

iiG

θc

( )UU ,  
to be simulated before an acceptable sample  is 
obtained, is determined by introducing Eq. (59) into 
Eq. (54). Note however that the resulting expression 
does depend on the normalization constant 

iiG

iC   
which could not be evaluated in closed form. Ac-
cordingly, the present validation  will be carried first 
on limiting cases for which iC  can be evaluated and 
then through a numerical study. 

Previous applications of the nonparametric ap-
proach and the example below suggest that the pa-
rameter λ is generally much larger than 1 so that q, 
Eq. (53), is large. In such cases, the distribution of 
Eq. (39) can be closely approximated near its mode 
by a Gaussian distribution (see Devroye (1986) for a 
similar results for the Gamma distribution corre-
sponding  here to ). To demonstrate this limit-
ing behavior, note first that the mode  tends to in-
finity as , see Eq. (52). Next, consider the 
behavior of  for fixed, finite values of y 
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it is found that 
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It is thus concluded from Eq. (67) that the distribu-
tion of Eq. (39) is, around its mode, approximately 
Gaussian. Next, combining Eqs (54), (59), and (79) 
provides the asymptotic limit of  as  as θc ∞→q

       382.16 =
π

=θc         (80) 

for all values of iiμ  and . Note that the same as-
ymptotic result was obtained from Eqs (60)-(64) 
thereby demonstrating the equivalency of Eqs (59) 
and (60)-(64) in the  limit . It should finally 
be observed that Eq. (80) is valid independently of 
the mean and standard deviation of the approximate 
Gaussian distribution of Eq. (78) and thus is valid 
for all Gaussian distributions. 

iτ

∞→q

Although of a lesser practical interest, the other 
limiting situation of a small value of q was also in-
vestigated. Consider for example q = 0. In this case, 
the probability density function of Eq. (39) reduces 
to a truncated Gaussian distribution for which it is 
found that 
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where  denotes the cumulative distribution 
function of a standard Gaussian random variable. 
The determination of the parameter  is achieved 
separately for 

( ).Φ

θc
0≤μii  and 0≥μii . 

In the first case, the mode is iiiy τμ−= 2/0  and 
the computation of  proceeds from Eqs (59), or 
(60)-(64), and (54) and (81). For large values of 

θc

iii τμ / , it is again found that the two values of  
obtained (one from Eq. (59) and the other from Eqs 
(60)-(64)) are very close to each other and to the 
value of Eq. (80). This result is not surprising as the 
truncation of the normal distribution plays a very 
small role for large values of the mode. As 

θc

iii τμ /  

decreases, the values of  obtained by the two dif-
ferent algorithms differ increasingly from each 
other. For example, at 

θc

iii τμ / =0, the parameter  
corresponding to Eqs (60)-(64) converges to twice 
the value of Eq. (80), as expected since half of the 
produced Z values, those which are negative, are 
automatically rejected. On the contrary, the parame-
ter  obtained from Eq. (59) tends to infinity, due 
to the vanishing of the denominator of Eq. (59). 

θc

θc

For positive values of iiμ , there is no mode and 
Eq. (52) correctly yields the location of the maxi-
mum of the distribution as =0. For 0y iiμ =0, the pa-

rameter  is continuous and the values of θc π/62  
and infinity are recovered for the algorithms based 
on Eqs (60)-(64) and (59), respectively. As  iii τμ /  
increases, the two values of  converge to each 
other and to 3 as 

θc
∞→τμ iii / . 

It is concluded from the above discussion that the 
algorithm based on Eqs (52), (54), (60)-(64) per-
forms very well, typically requiring an average of 
1.4 pairs of independent uniform random numbers 
per sample  to be  simulated. In unusual cases, 
the number of pairs of uniform variates may rise to 
3. The algorithm based on Eq. (59) in place of Eqs 
(60)-(64) performs almost as well in the cases of 
greater practical interest but may lead to a large 
simulation effort when q is small (e.g. equal 0) and  

iiG

iii τμ /  is typically less than 3. 

6.2 Numerical Estimation of the parameters λ, iiμ , 
and iτ  

The initial conditions,  and , that were used 
to start these computations correspond to the large q 
Gaussian approximation of Eq. (39), i.e. Eqs (78) 
and (79). Accordingly, the constraints of Eqs (30) 
and (31) imply that 
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The solution of Eqs (82) and (83) is readily found as 
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Next, it is necessary to evaluate iiμ  and  from 
Eqs (30) and (31), or Eq.  (30) and fixed second 
moments of the exact eigenvalues. In fact, neither of 
these constraints can be matched analytically given 
the complexity of Eq. (39) and thus a numerical ap-
proach must be undertaken. Either set of constraints 
(Eq. (30) and either Eq. (31) or the second moment 
of the exact eigenvalues) were considered and suc-
cessfully matched using a polytope algorithm (IMSL 
routine DUMPOL).  

iτ

At this point, note that the parameter  must be 
positive for the distribution of Eq. (39) to be inte-
grable at infinity but this condition is automatically 
satisfied if the constraint of Eq. (76) is met. 

0
iτ

6.3 Examples of Application 

To exemplify the above developments, a n=5 degree 
of freedom dynamic system was considered exhibit-
ing variations of its stiffness matrix. The above 
methodology was then applied with A  and B  being 
the stiffness and mass matrices, respectively. Fur-
ther, the analysis of the system was  carried out in 
the modal coordinates of the mean model with mass 
normalized modes. Thus, B  is the 5x5 unit matrix 

and A  is the diagonal matrix containing the squares 
of the natural frequencies which were first assumed 
to be 1, 3, 5, 7, and 9 rad/s (mean model 1). Finally, 
the damping matrix was constructed by assuming a 
damping ratio of 1% on all modes. 

Three sets of computations were carried out, two 
with the unconstrained nonparametric approach and 
one with the present constrained formulation. The 
first unconstrained model was obtained by enforcing 
a standard deviation of the first natural frequency 
equal to 0.058, i.e. 5.8% of the corresponding value 
for the mean model. The second unconstrained 
model was similarly determined but with a lower 
standard deviation, i.e. 0.033. As stated earlier, it 
was observed that the ratios of the standard devia-
tions of the natural frequencies of the random sys-
tems divided by their corresponding values for the 
mean models varied very little, from 0.00575 to 
0.00584 for the first system and from 0.00331 to 
0.00334 for the second one. 

The constrained approach was applied next by 
imposing ratios of standard deviations to mean 
model value of 5.8% and 3.3% for the first and sec-
ond natural frequency, respectively. Since the first 
natural frequency exhibits the largest relative varia-
tions, the first row of H , i.e. the one most closely 
associated with the first frequency, was character-
ized by an unconstrained model, i.e. . Given 
the lack of information on the third, fourth, and fifth 

natural frequencies, the parameters 

01 =τ

iiμ  and  were 
assumed to be the same for . Accordingly, 
there were only 4 model parameters to be deter-
mined: , λ, , and . They were iteratively 
obtained by imposing the prescribed standard devia-
tions on natural frequencies (the exact constraints, 
not the approximate ones of Eq. (11)) and Eq. (30) 
for i=1 and 2. In fact, Eq. (30) for i=1 is readily sat-
isfied by selecting  and λ to be related by Eq. 
(29) with i=1. Note further that the conditions of Eq. 
(30) for i= 3, 4, and 5 are automatically satisfied 
when it is for i=2 as the model parameters 

iτ
2≥i

11μ 22μ 2τ

11μ

iiμ  and 
 are the same for . A sample of 10,000 ran-

dom matrices was assumed for all computations. 
iτ 2≥i
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Figure 1. Probability density functions of the 
squared natural frequencies divided by their corre-
sponding value for the mean model. Mean model 1. 
Constrained Model (“2Freq”), unconstrained models 
with higher (“1FreqHi”) and lower (“1FreqLo”) 
level of variations. 
 

Shown in Fig. 1 are, for each of the three random 
systems, the distributions of the five natural fre-
quencies divided by their corresponding value for 
the mean model. It is seen from this figure that the 
probability density function of the first natural fre-
quency of the constrained system closely match its 
counterpart for the unconstrained system with the 
largest, i.e. 5.8%, level of variations. Similarly, the 
distributions of the 2nd-5th natural frequencies of the 
constrained system (divided by their corresponding 
value for the mean model) match those of the uncon-
strained model with the lowest, i.e. 3.3%, level of 
variations. It is thus concluded that the constrained 
model accurately matches the prescribed information 
on the variations of its natural frequencies. 

A comparison of the frequency response func-
tions of the 3 random systems was carried out next. 
Shown in Fig. 2 are the 95th percentile of the Fro-
benius norm of the frequency response matrix 



[ 12 −
ω+ω− CiMK ]  for the constrained model, for 

the two corresponding unconstrained models, and 
for the mean model. It is clearly seen from this fig-
ure (and additional results not shown here for brev-
ity) that the frequency response functions of the con-
strained model and of the unconstrained one 
corresponding to the smaller (3.3%) variations in 
natural frequencies match very closely in the range 

5.1≥ω rad/s. For smaller frequencies however, e.g. 
see Fig. 2(b), the constrained model frequency re-
sponse function closely match the unconstrained 
model with the largest variations natural in frequen-
cies. These results are in fact in complete agreement 
with the distributions of natural frequencies pre-
sented in Fig. 1. 

It was desired next to assess if the closeness of 
two natural frequencies of the mean model could af-
fect the applicability of the approach and/or the va-
lidity of the above observations. To this end, the 
above computations were repeated exactly except 
for the second natural frequency of the mean model 
which was selected to be 1.06 rad/s., i.e. very close 
to the first one (mean model 2). The parameters of 
all three random systems were recomputed and the 
distributions of natural frequencies and norm of fre-
quency response functions were again determined. 
Notwithstanding the closeness of the natural fre-
quencies of the mean system, the constrained model 
accurately matched the prescribed variations of the 
natural frequencies, see Fig. 3. Note again that the 
distribution of the first natural frequency matches 
the one from the unconstrained model with higher 
level of variations, while the probability density 
function of the second one matches its counterpart 
for the other unconstrained model, as seen in Fig. 1. 
Finally, the norm of the frequency response function 
matrix, see Fig. 4, exhibits the properties already de-
scribed in connection with Fig. 2. In regards to the 
behavior near 1Hz, note first that the two peaks of 
the mean model have merged when considering any 
of its statistics (mean, 5th, and 95th percentile) for 
either of the three random systems. Finally, note that 
the 95th percentile of the norm of the frequency re-
sponse function of the constrained model matches 
closely its unconstrained counterpart with the larger 
level of variations left of the peak (as dictated by the 
first natural frequency) and the one with the lower 
level of variations right of the peak (as dictated by 
the second natural frequency). 
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(b) 

Figure 2. (a) Frobenius norm of the frequency response func-
tion matrix, (b) same, zoomed. Mean model 1.Constrained 
Model (“2Freq”), unconstrained models with higher 
(“1FreqHi”) and lower (“1FreqLo”) level of variations. 
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Figure 3. Probability density functions of the squared first and 
second natural frequencies. Mean model 2. Constrained Model 
(“2Freq”), unconstrained models with higher (“1FreqHi”) and 
lower (“1FreqLo”) level of variations. 
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Figure 4. (a) Frobenius norm of the frequency response func-
tion matrix, (b) same, zoomed. Mean model 2.Constrained 
Model (“2Freq”), unconstrained models with higher 
(“1FreqHi”) and lower (“1FreqLo”) level of variations. 

7 SUMMARY 

The focus of this paper was on the derivation and 
validation of a maximum entropy based probabilistic 
model of positive definite matrices, such as the stiff-
ness and mass matrices of a dynamic system. Fol-
lowing prior work in this area, the maximum of the 
entropy is sought under the additional constraints 
that the mean matrix is known, that each realization 
A  is positive definite, and that the mean squared 
Frobenius norm of its inverse exists. A new set of 
constraints was however added in the present effort, 
Eq. (11), to permit the enforcement of prescribed 
standard deviations of an arbitrary number of natural 
frequencies of the random system. Accordingly, the 
present methodology provides a full probabilistic 
model of random systems from basic variability in-
formation. Further, this model is independent of a 
rotation/change of coordinate system, as desired. It 
should be noted that if only the standard deviation of 
a single natural frequency is prescribed, the present 
model reduces to the one previously developed. 

Central to the inclusion of natural frequency 
variations in the model are the Rayleigh quotient 
type constraints of Eq. (11) and the representations 
of the mean and random matrices A  and A  in the 
specific form of Eqs (14), (15), and (17). These rep-
resentations transfer the m frequency constraints of 
Eq. (11) into prescribed second order moments of 
the first m diagonal elements of the positive definite 
random matrix G , the mean value of which is iden-
tity. Enforcing the positive definiteness of G is 
achieved by formulating directly the probabilistic 
model in terms of its Cholesky decomposition H . 

In fact, the joint probability density function of its 
elements is given by Eq. (23) in which it is recog-
nized that each row is stochastically independent of 
the others. Further, the first m rows, i.e. those asso-
ciated with the natural frequency constraints, and the 
remaining ones are characterized by two different 
types of joint probability density functions. For rows 
m+1 to n, it is found, as in prior investigations, that 
all elements are independent of each other with the 
diagonal ones being distributed as square root of 
Gamma random variables. Further, the non-diagonal 
elements are found to follow a Gaussian distribution. 
The joint probability density function of the ele-
ments in the rows 1 to m is more complex because of 
the frequency constraints which induce a statistical 
coupling between these random variables. Neverthe-
less, the joint probability density function of these 
elements was obtained, Eq. (27), and discussed ex-
tensively. Further, a simple approach was given to 
simulate these elements which hinges on the genera-
tion of samples of the diagonal elements  accord-
ing to the distribution of Eq. (39). This task was 
achieved by an efficient, specially designed rejection 
algorithm, see Eqs (46) and (59)-(64). 

iiG

The details of the application of this model were 
discussed and exemplified on the stiffness matrix of 
two 5 degree of freedom models, one exhibiting 
widely spread frequencies while the other has two 
very close natural frequencies. In both cases, the 
model accurately matched the prescribed informa-
tion on the natural frequency variations and thus 
provides a sound and complete probabilistic descrip-
tion of the random stiffness matrix of these stochas-
tic systems. 
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