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The aim of this paper is to introduce a simplified model useful for the ultrasonic characterization of
a solid with uncertain elastic behavior. The model consists of a solid layer sandwiched between two
acoustic fluid layers and an acoustic source placed in one fluid layer. Uncertainties are taken into
account with a probabilistic model of the elasticity tensor. Its parameters are the mean value of the
random tensor and a coefficient δ that controls the statistical fluctuation level. The characterization
of the solid layer given a database of actual measurements consists in the identification of the
(i) elastic parameters of the mean elasticity model; (ii) coefficient δ; and (iii) mass density. This is
performed with a numerical solver of wave propagation. The model is representative of measurements
of human bone properties with the so-called axial transmission technique. The identification was
conducted for in vivo data collected previously. The capability of the model to predict the velocity
of the first experimental arriving signal in the statistical sense is proved. The identified anisotropic
elasticity tensor of cortical bone from actual data based on the simplified model is given.

PACS numbers: 20

I. INTRODUCTION

Elastic wave propagation can be used to characterize
the anisotropic elasticity tensor of solids. For highly het-
erogeneous materials (e.g. concrete, wood, soft tissue,
bone, etc.) not only the values of the stiffness constants
may vary within the tested structure but also the mate-
rial symmetry. For biological materials this is basically a
consequence of their multi-scale organization and of sig-
nificant variations of the constitution at the nanoscopic
scales. When the length scale of the heterogeneities is
larger or of the order of magnitude of the wavelength,
the determination of the elastic properties with acous-
tic waves is a challenge. If the acoustic signals used for
material characterization have a large amount of scatter,
the elastic tensor may be considered as not unique: the
probed elastic properties depend on the actual wave path
inside the material. In this context, the problem of elas-
ticity identification may advantageously be formulated
as the determination of a mean elasticity tensor and of
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the fluctuations of the elasticity around the mean tensor.
In other words, since any model useful for the elasticity
identification is always a rough approximation of the re-
ality, the modeling of uncertainties may be considered in
order to extend the domain of validly of the model.

The aim of this paper is to introduce a simplified
elasto-acoustic model useful for the ultrasonic character-
ization of a solid layer with uncertain elastic behavior.
The identification of the material properties of an elas-
tic layer that represents a human compact bone is con-
sidered. However the method developed is of a wider
interest as it may be applied straightforward to the char-
acterization of other materials. The model is representa-
tive of an in vivo measurement of bone properties with
the so-called axial transmission technique. The point is
to investigate whether the proposed wave propagation
model including a stochastic model of bone anisotropic
elastic properties is able to account for in vivo measure-
ments in a statistical sense. Thus, if it is possible to find
the parameters of a stochastic model whose response has
the same statistical properties as the in vivo measure-
ments database, then the model may be a good candi-
date to solve stochastic inverse problems and determine
bone elastic properties.

The axial transmission technique provides the velocity
of ultrasonic waves axially transmitted along compact
(cortical) bone through a linear arrangement of emitters
and receivers placed on the same side of the skeletal site.

Identification of an anisotropic elasticity tensor 1



This technique has been extensively used to probe bone
quality at the radius (see Bossy et al. (2004a); Camus et

al. (2000)). In particular, the bidirectional axial trans-
mission technique associated with a measurement of the
velocity of the first arriving contribution of the signal
(FAS) is a technique sensitive to the elasticity of radius
cortical bone. Bossy et al. (2004b,c); Grimal et al. (2007);
Raum et al. (1999) also suggest that bone mass density
and bone thickness are other less important determinants
of the FAS. Accordingly, as a matter of simplification,
thickness will be considered as fixed in this work and den-
sity will be taken as a deterministic varying parameter
which has to be identified as well as the elastic proper-
ties. For the purposes of the present work, experimental
data previously collected with a bidirectional axial trans-
mission device could be used to investigate the possible
determination of compact bone stiffness tensor.

The simplified elasto-acoustic model is a three-layers
system: a solid layer sandwiched between two inviscid
acoustic fluid layers. The elastic layer (cortical bone) is
a homogeneous anisotropic elastic material while the fluid
(acoustic) layers represent soft tissues. The uncertainties
on the elasticity of bone are introduced via a probabilis-
tic approach developped in Soize (2001, 2005). It should
be noted that a first application of the parametric proba-
bilistic approach to the axial transmission technique can
be found in Macocco et al. (2006). The parameters of
the probabilistic model are the mean value of the ran-
dom elasticity tensor and an additional parameter that
controls the statistical fluctuation level. The mean model
for bone is transversely isotropic and the uncertain fluc-
tuations are anisotropic.

The identification of the parameters of the algorithm of
the model, including the parameters of the probabilistic
model, is formulated as an optimization problem. The al-
gorithm used to calculate the values of the cost function
for several test values of the parameters of the stochas-
tic model is performed by means of a stochastic solver
based on the Monte Carlo method associated with a hy-
brid numerical solver of wave propagation presented in
Desceliers et al. (2008): for each independent realization
of the random effective elasticity tensor, the transient
elasto-acoustic response is calculated by the wave prop-
agation solver.

The capability of the stochastic model to represent
the elasto-acoustic response of the uncertain system is
demonstrated by a comparison of the model output to a
database of in vivo measurements. In order to obtained a
rich database from the statistical point of view, measure-
ments from 168 patients were pooled; then the database
takes into account of a large variability of the properties
of the elasto-acoustic system under consideration. Fi-
nally, the validation of the model consists in the compar-
ison of the statistical properties of the model response to
those of the in vivo measurements. Once validated, the
model can be used to analyse the cortical bone stiffness
tensor.

II. SIMPLIFIED MODEL OF THE MULTILAYER

SYSTEM

The model consists of an anisotropic elastic homoge-
neous layer of thickness h sandwiched between two ho-
mogeneous inviscid acoustic fluids. The two fluids have
identical density ρf and celerity cf . The elastic layer is
characterized by its mass density ρ and a stiffness tensor.
In this work, the multilayer system is used to simulate
experimental in vivo signals obtained with the so-called
axial transmission technique.

The model geometry, the location of the acoustic
source and receivers are shown in Fig. 1. The acoustic
source is defined as a line source, placed inside Ω1, and
parallel to e2 where (e1, e2, e3) is an orthonormal basis for
the space, e3 being normal to the fluid-solid interfaces.
The wave field will be computed at each point x of the
multilayer system with coordinate denoted (x1, x2, x3) in
the reference Cartesian frame R(O, e1, e2, e3), where O
is the origin placed on interface Σ1.

The upper fluid layer (domain Ω1) represents skin,
muscle and echographic gel used in the experiment to en-
sure a good contact between the ultrasonic probe and the
skin. The elastic layer (domain Ω) represents the cortical
bone while the lower fluid layer (Ω2) models the marrow.
The thicknesses of the fluid layers Ω1 and Ω2 and of the
elastic layer Ω are denoted h1, h2, and h respectively.
Free boundary conditions are applied on top of the up-
per fluid layer (surface Γ1) and bottom of the lower fluid
layer (surface Γ2). In this paper, attention is focused on
the biomechanical variability of bone elasticity. Accord-
ingly, the density and the stiffness tensor of the elastic
layer are varying parameters of the model while all the
other parameters have fixed values. The varying param-
eters are identified following the procedure described in
section V.
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FIG. 1. Geometry of the multilayer system

III. PROBABILISTIC MODEL OF UNCERTAINTIES FOR

THE ELASTICITY MATRIX OF THE SOLID LAYER

This section is devoted to the construction of a prob-
abilistic model of the elastic material constituting the
solid layer. The model accounts for uncertainties of the
elastic constants in the bone material. That is, the bone
elasticity is described by a mean stiffness tensor (with a
prescribed symmetry: transverse isotropy in the paper)
to which a random fluctuation is superimposed. Let cijkh
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be the components of the mean elasticity tensor on basis
(e1, e2, e3). Then, mean elasticity matrix is defined as

[C] =

(
[C̃1] [C̃2]

[C̃3] [C̃4]

)
,

in which

[C̃1] =




c1111 c1122 c1133

c2211 c2222 c2233

c3311 c3322 c3333


 ,

[C̃2] =





√
2c1123

√
2c1131

√
2c1112√

2c2223

√
2c2231

√
2c2213√

2c3323

√
2c3331

√
2c3312



 ,

[C̃3] =




√
2c2311

√
2c2322

√
2c2333√

2c3111

√
2c3122

√
2c3133√

2c1211

√
2c1222

√
2c1233


 ,

[C̃4] =




2c2323 2c2331 2c2312

2c3123 2c3131 2c3112

2c1223 2c1231 2c1212


 .

It should be noted that [C3] = [C2]
T . The construction

of the probabilistic model consists in substituting [C] by
a random matrix [C] for which the probability density
function is constructed using the information theory (see
Shannon (1948, 1997)) with the available information
defined as follows: (1) the random matrix [C] is a second-
order random variable with values in the set M+(R) of
all the (6 × 6) real symmetric positive-definite matrices;
(2) the mean value of random matrix [C] is the mean
elasticity matrix [C]; (3) the norm of the inverse matrix
of [C] is a second-order random variable. It has been
shown in Soize (2001, 2005) that the random matrix [C]
can then be written as

[C] = [L]T [G][L] , (1)

in which the (6 × 6) upper triangular matrix [L] corre-
sponds to the Cholesky factorization [C] = [L]T [L] and
where the probability density function p[G] of random
matrix [G] is written as

p[G]([G]) = 1M+(R)([G]) c (det[G])b exp{−atr[G]} , (2)

where a = 7/(2δ2), b = a(1− δ2), 1M+(R)([G]) is equal to

1 if [G] belongs to M+(R) and is equal to zero if [G] does
not belong to M+(R), tr[G] is the trace of matrix [G] and
where positive constant c is such that

c =
(2π)−15/2a6 a

∏6
j=1 Γ(αj)

,

in which αj = 7/(2δ2) + (1 − j)/2 and where Γ is the
Gamma function. The parameter δ allows the dispersion
of the random matrix [C] to be controlled. Thus, the pa-
rameters of the probabilistic model of uncertainties for

the elasticity matrix are the components of [C] and the
coefficient δ. For such a probabilistic model, the random
matrix [G] manifests the same statistical fluctuation in
all the its diagonal components and the same statistical
fluctuation in all its extradiagonal components. It should
be noted that the statistical fluctuations of the random
matrix [C] are scaled with respect to the coefficients of
the mean matrix [C] (see Eq. (1) ). One of the impor-
tant aspects of the probabilistic model is that it takes
into account any anisotropic fluctuation of the elasticity
tensor. However, the components of random matrix [C]
are statistically dependent real-valued random variables.
The generator of the independent realizations of random
matrix [G] according to its probability density fucntion
(Eq. (2) ) is given in Appendix A.

IV. COMPUTATION OF THE RANDOM TRANSIENT

WAVE RESPONSE

A. Solving the equations

The transient elasto-acoustic response of the multilayer
fluid-solid system is computed in the time-domain with
a fast and efficient hybrid solver (see Desceliers et al.

(2008)). The symmetry of the problem allowed the pre-
vious problem to be reformulated in terms of the spa-
tial coordinates x1 and x3 yielding a 2D-space boundary
value problem. The solver is based on a time-domain for-
mulation associated with a 1D-space Fourier transform
for the infinite layer dimension (along the x1 direction)
and uses a finite element approximation in the direction
perpendicular to the layers (along the x3 direction). For
a given mean elasticity matrix [C], this solver allows the
displacement field u in Ω and the pressure fields p1 and
p2 in Ω1 and Ω2 respectively, to be calculated. Conse-
quently, there exist three mappings gp1

, gu and gp2
such

that

p1(x, t) = gp1
(x, t; [C]) , (3)

u(x, t) = gu(x, t; [C]) , (4)

p2(x, t) = gp2
(x, t; [C]) . (5)

In addition, we introduce the von Mises stress at point
x ∈ Ω and at time t which is denoted by σvm(x, t). There
also exists a mapping gvm such that

σvm(x, t) = gvm(x, t; [C]) . (6)

B. Velocity of the FAS and the axial transmission

technique

The simulation of the actual measurements performed
with the axial transmission technique consists in record-
ing the signals t 7→ p1(x, t) at several receivers located in
Ω1. The first arriving contribution of the signal (FAS) is
considered. Following the signal processing method used
with the experimental device the, velocity of FAS is de-
termined from the time of flight of the first extremum of
the contribution. Figure 2 shows a part of a simulated
signal and the FAS. The simulated velocity vmod of the
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FIG. 2. Example of a signal at a receivers calculated by the
model.

FAS is estimated based on the different time arrivals at
the consecutive receivers. Consequently, there exists a
mapping gvelo such that

vmod = gvelo(p1) . (7)

C. Random transient wave response and random velocity

of the FAS

The transient elasto-acoustic response of the stochastic
multilayer fluid-solid system is random. Accordingly, the
pressure and displacements fields are modeled by three
random fields P1, U and P2 indexed by Ω1 × [0, Tmax],
Ω × [0, Tmax] and Ω2 × [0, Tmax] and with values in R,R3 and R respectively. Substituting the mean elasticity
matrix [C] by the random matrix [C] in Eqs. (3) to (5)
yields

P1(x, t) = gp1
(x, t; [C]) ,

U(x, t) = gu(x, t; [C]) ,

P2(x, t) = gp2
(x, t; [C]) .

In addition, the velocity of the FAS and the von
Mises stress are random variables denoted by V mod and
Σvm(x, t) respectively such that (see Eqs. (6) and (7) )

Σvm(x, t) = gvm(x, t; [C]) ,

V mod = gvelo(P1) . (8)

V. IDENTIFICATION PROCEDURE

The objective of this section is to present a method to
identify all the parameters of the stochastic model from a
database of in vivo signals obtained previously. The pa-
rameters to identify are the components [C]ij of the mean
elasticity matrix [C],the coefficient δ that controls the
statistical fluctuations of random elasticity tensor and
the mass density ρ.

A. Experimental database and random experimental

velocity of the FAS

The in vivo measurements were previously performed
on a population of 168 subjects examined at the third
distal radius. This group is a subset of a larger group
of patients who participated to a clinical evaluation of
the bidirectional axial transmission device. The multi-
element probe operating at a center frequency of 1 MHz
recorded twenty series of axially transmitted signals with-
out particular angular scanning protocol except natu-
ral micro-movements of the operator. The experimen-
tal database finally consisted of 2018 measurements of
FAS velocity. Each velocity measurement is considered
as a realization of a random variable V exp correspond-
ing to the random variable V mod obtained with the
stochastic simplified model. The mean value of V exp is
vexp = E{V exp} and its coefficient of variation ∆exp is
defined by (∆exp)2 = E{(V exp)2}/(vexp)2 − 1 in which
E{·} is the mathematical expectation. Accordingly, the
database consists of N = 2018 statistically independent

realizations V exp(θ̂1), . . . , V
exp(θ̂N ) of random variable

V exp. Using the usual statistical estimators and since
N is sufficiently large, vexp and ∆exp can reasonably be
estimated by

vexp =
1

N

N∑

k=1

V exp(θ̂k) ,

∆exp =
1

vexp

√√√√ 1

N

N∑

k=1

V exp(θ̂k)2 − (vexp)2 .

B. Optimization problem for the identification

For the identification, it is assumed that the mean elas-
ticity matrix represents a transverse isotropic homoge-
neous medium. Then, all the components [C]ij are zeros
except the following

[C]11 =
e2

L(1 − νT )

(eL − eLνT − 2eT ν2
L)

,

[C]22 =
eT (eL − eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

,

[C]12 =
eT eLνL

(eL − eLνT − 2eT ν2
L)

,

[C]23 =
eT (eLνT + eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

,

[C]44 = gT ,

[C]55 = gL ,

with [C]22 = [C]33, [C]12 = [C]13 = [C]21 = [C]31,
[C]23 = [C]32 and [C]55 = [C]66 and where (1) eL and eT

are the longitudinal and transverse Young moduli, (2) gL

and gT are the longitudinal and transversal shear moduli
and (3) νL and νT are the longitudinal and transver-
sal Poisson coefficients such that gT = eT /2(1 + νT ).
Consequently, for this case, the matrix [C] is written
as [C] = [χ(eL, νL, gL, eT , νT )] in which the function
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[χ] is completely defined. This equation shows that
[C] does not depend on 21 independent coefficients but
only on 5 independent coefficients. Then, the parame-
ters of the stochastic model which have to be identified
would be the coefficients eL, νL, gL, eT , νT , the mass den-
sity ρ and the coefficient δ. Let a be the vector such
that a = (ρ, eL, νL, gL, eT , νT ). The identifiction prob-
lem consists in finding vector a and coefficient δ such
that the stochastic model can represent the experimen-
tal database in a statistical sense. The optimal values
(aopt, δopt) for (a, δ) is given by solving the following op-
timization problem

(aopt, δopt) = argmin
(a,δ)

F cost(a, δ) , (9)

in which F cost(a, δ) is a cost function which has to be
defined. The optimization problem defined by Eq. (9)
is solved by the simplex algorithm (see Nelder and Mead
(1965)). For each iteration of the simplex algorithm, the
cost function has to be calculated which requires to solve
the stochastic equations with Monte Carlo simulations
(see Appendix A).

1. Cost function associated with the usual least-square

approach

The cost function F cost(a, δ) associated with the usual
least-square approach is defined as

F cost(a, δ) = E{(V exp − V mod(a, δ))2} ,

in which V mod(a, δ) is defined by Eq. (8) and where
the dependance is a and δ is written. It should be noted
that V exp and V mod(a, δ) are two independent random
variables. Consequently, F cost(a, δ) can be rewritten as

F cost(a, δ) = E{(V exp − vexp)2} + (vexp − vmod(a, δ))2

+ E{(V mod(a, δ) − vmod(a, δ))2}, (10)

in which vmod(a, δ) = E{V mod(a, δ)}. The first term in
the right-hand side of Eq. (10) represents the variance
of the random experimental velocity V exp of the first ar-
riving signal (which is independent of a and δ). The sec-
ond term in the right-hand side of Eq. (10) correponds
to the bias between the stochastic simplified model and
the experimental system. The last term in the right-
hand side of Eq. (10) is variance of the random ve-
locity V mod of the first arriving signal calculated with
the stochastic simplified model. It should be noted that
this variance is equal to zero if δ = 0. Nevertheless, nu-
merical experiments show that, for δ = 0, it is always
possible to find a value aopt

0 of parameter a such that
vexp − vmod(a, δ) = 0. Consequently, the usual least-

square approach yields aopt = aopt
0 and δopt = 0. Such a

solution does not allow the statistical fluctuations due to
uncertainties to be taken into account (because δopt = 0)
which proves that the cost function defined by Eqs. (10)
is not adapted. This is the reason why a non usual cost
function is introduced below.

2. Cost function adapted to the problem

We introduce a cost fuction F cost which is more sen-
sitive to the statistical fluctuations of the model, i.e. to
the values of δ. Such a cost function is written as

F cost(a, δ) =
(vexp − vmod(a, δ))2

(vexp)2

+
(∆exp − ∆mod(a, δ))2

(∆exp)2
,

in which

∆mod =

√
E{(V mod(a, δ)2}

vmod(a, δ))2
− 1 .

This cost funtion is used for the optimization problem
defined by Eq. (9) in order to identify the parameters
a and δ.

VI. RESULTS

A. Numerical data

The mean elasticity matrix of the cortical bone
(layer Ω) is completely defined by the vector a =
(ρ, eL, νL, gL, eT , νT ). The following numerical values
for the components of a are used (1) for the direct
simulations presented in section VI.B and (2) as ini-
tial parameters for the optimization presented in sec-
tion VI.C: ρ = 1722 kg.m−3, eL = 16.6 GPa, νL = 0.38,
gL = 4.7 GPa, eT = 9.5 GPa, νT = 0.44, gT = 3.3 GPa,
ρf = 1000 kg.m−3 and cf = 1500 m.s−1. The acoustic
line source is located at xS

1 = 0 and xS
3 = 2 × 10−3m

and the time-history of the acoustic pulse is F (t) =

F1 sin(2πfct)e
−4(t fc−1)2 where fc = 1 MHz is the center

frequency and F1 = 100 N.

B. Analysis of the propagation of the uncertainties

In this section, we present an analysis of the propa-
gation of the uncertainties in the multilayer system with
h1 = 10−2m, h = 4 × 10−3m and h2 = 10−2m. Firstly,
the wave propagation of one realization of the system is
analysed and clearly shows the effect of the anisotropy.
Secondly, we analyse the mean value and the variance of
the random wave propagation. This information allows
the propagation of uncertainties to be quantified.

Let [C(θ)] be one realization of the random elasticity
matrix [C]. For an elasticity matrix [C(θ)], the realiza-
tions of the pressure fields in the two fluid media and the
realization of the von Mises field in the solid medium are
P1(θ), P2(θ) and Σvm(θ) and such that

P1(x, t; θ) = gp1
(x, t; [C(θ)]) ,

P2(x, t; θ) = gp2
(x, t; [C(θ)]) ,

Σvm(x, t; θ) = gvm(x, t; [C(θ)]) .

Figures 3(a) to (h) show the graphs of the functions
(x1, x3) 7→ P1(x1, x3, t; θ), (x1, x3) 7→ Σvm(x1, x3, t; θ)

Identification of an anisotropic elasticity tensor 5



(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Wave propagation in the three layers for a given
realization of the random elasticity matrix at t = 1.56 µs (a),
t = 2.06 µs (b), t = 2.94 µs (c), t = 5.89 µs (d), t = 9.72 µs

(e), t = 13.55 µs (f), t = 15.31 µs (g), t = 119.88 µs (h).

and (x1, x3) 7→ P2(x1, x3, t; θ) at different time t. Let
P 1, Σvm and P 2 be the mean values of the stochastic
fields P1, Σvm and P2. Figures 4(a) to (h) show the
graphs of functions (x1, x3) 7→ P 1(x1, x3, t), (x1, x3) 7→
Σvm(x1, x3, t) and (x1, x3) 7→ P 2(x1, x3, t) at differ-
ent time t. Let varP1

, varΣvm and varP2
be the vari-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Propagation of the mean waves in the three layers at
t = 1.56 µs (a), t = 2.06 µs (b), t = 2.94 µs (c), t = 5.89 µs

(d), t = 9.72 µs (e), t = 13.55 µs (f), t = 15.31 µs (g),
t = 119.88 µs (h).

ances of the stochastic fields P1, Σvm and P2. Fig-
ures 5(a) to (h) show the graphs of the functions
(x1, x3) 7→ varP1

(x1, x3, t), (x1, x3) 7→ varΣvm(x1, x3, t)
and (x1, x3) 7→ varP2

(x1, x3, t) at different time t.

The Figs. 3 to 5 taken together illustrate the stochastic
wave propagation phenomenon. It can be seen in Fig. 3
that for one given realization, the wave field is particu-
larly complex due the anisotropy: in Fig. 3 (which corre-

(b)

(d)

(f)

(h)

(a)

(c)

(e)

(g)

FIG. 5. Propagation of the uncertainties in the three layers at
t = 1.56 µs (a), t = 2.06 µs (b), t = 2.94 µs (c), t = 5.89 µs

(d), t = 9.72 µs (e), t = 13.55 µs (f), t = 15.31 µs (g),
t = 119.88 µs (h).

sponds to a realization [C(θ)] of the stiffness matrix with
a relative strong deviation from transverse anisotropy)
the complex anisotropy is in particular evidenced by the
asymmetry with respect to (O, e3) of the wave field in
the solid and in the bottom fluid layer. Such an asym-
metry can be understood making use of slowness curves
for anisotropic media (see for instance Royer and Dieule-
saint (1999)): if the slowness curves happen to be asym-
metric with respect e3, the waves at the right and left
of (O, e3) will travel at different velocities. In contrast,
the mean and variance wave fields shown in Figs. 4 and
5 are quasi symmetric with respect to (O, e3). This il-
lustrates the fact that the anisotropic fluctuations of the
stochastic elasticity matrix driven by δ do not have, on
average, any preferential direction. Of course this can
only be observed for the mean value and the variance.
It should also be noted that the mean value of the dif-
ferent wave field realizations is not identical to the wave
field obtained with the mean model unless δ = 0 (i.e. no
statistical fluctuation of the elasticity tensor). Figure 5
shows that there is a significant propagation of the uncer-
tainties whose intensity is relative to the variances. Note
that the upper wavefront in Figs. 3 and 4 correponding
to the direct cylindrical wave from the source is missing
in Figs. 5 while the other waves which have interacted
with the solid layer are observed. This is an illustation
of the fact that the uncertainties in the wave propaga-
tion problem are associated to an interaction with the
random elastic layer. Furthermore the intensity of the
uncertainties is higher where the amplitude of the wave
(close to the wave front) is higher. In addition, it can be
deduced from the comparison of Figs. 4 and 5 that the
dispersion coefficient of the wave propagation are not the
same everywhere in the multilayer system.

Identification of an anisotropic elasticity tensor 6



C. Experimental validation of the stochastic model and

identification of the model parameters
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FIG. 6. Graph of the probability density function v 7→

pV exp(v) (thick solid lines) and graph of the density probabil-
ity density functions v 7→ p

V mod(v; aopt, δopt) with a = aopt

and δ = δopt (thin solid lines)

The identification of the vector a =
(ρ, eL, νL, gL, eT , νT ) and the coefficient δ was car-
ried out using the method presented in Section V with
h1 = 2 × 10−3m, h = 4 × 10−3m and h2 = 10−2m.
The solution aopt =

(
ρopt, eopt

L , νopt
L , gopt

L , eopt
T , νopt

T

)

and δopt are such that ρopt = 1598.8 kg.m−3,
eopt

L = 17.717 GPa, νopt
L = 0.3816, gopt

L = 4.7950 GPa,

eopt
T = 9.8254 GPa, νopt

T = 0.4495 and δopt = 0.1029.
For a = aopt and δ = δopt, the realizations
V mod(a, δ; θ1), . . . , V

mod(a, δ; θN ) of random veloc-
ity V mod(a, δ) are constructed with the stochastic
simplified model and then, the probability density
function v 7→ pV mod(v; a, δ) of V mod(a, δ) is estimated.
Figure 6 shows in linear scale (1) the probability density
function v 7→ pV exp(v) of the random variable V exp

estimated with N = 2018 experimental realizations

V exp(θ̂1), . . . V
exp(θ̂N ); and (2) the probability density

function v 7→ pV mod(v; aopt, δopt). The same data is
plotted in Fig. 7 in logarithm scale in order to analyse
the small levels of probabilities. These figures validate
the stochastic simplified model in the statistical sense
for the prediction of the velocity of the FAS.

VII. DISCUSSION AND CONCLUSIONS

A simplified elasto-acoustic multilayer model has been
developed to simulate the ultrasonic wave propagation
in a complex biomechanical system. In order to improve
the simplified model, the uncertainties related to elastic
behavior of the solid part have been taken into account
using a probabilistic approach. The identification of the
stochastic model parameters was conducted for in vivo

data collected previously with an ultrasonic axial trans-
mission device.
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FIG. 7. Graphs of v 7→ log(pV exp(v)) (thick solid lines) and
v 7→ log(pV exp(v; aopt, δopt)) (thin solid lines).

Because the plots of the experimental and modeled
probability density functions in Figs. 6 and 7 are so
close, the stochastic simplified elasto-acoustic model is
validated in the statistical sense regarding the prediction
of the velocity of the FAS. Not only the mean value and
the variance of the velocity are accurately predicted but
also the experimental probability distribution is very well
predicted; this remarkable result is not usual for such a
complex system as that under consideration.

Furthermore, some values of the mean elastic constants
of cortical bone and their fluctuations corresponding to
the in vivo measurement database have been identified.
As far as we know, the present work is the first attempt to
identify the anisotropic elasticity tensor of cortical bone
from actual measurement data. Note that the elastic pa-
rameter of the mean model which, after the optimization,
is the most changed compared to the provided nominal
elasticity values is the Young modulus eL in the axial di-
rection. This is consistent with the physics of the wave
propagation associated with the FAS when the thickness
is large compared to the wavelength: basically the veloc-
ity of the observed FAS tends to the velocity of a head
wave initiated on the flat fluid- solid interface (see Bossy
et al. (2002)) and which is associated to bulk longitudinal
waves propagation in the solid.

However the identified elasticity values may not be
compared straightforward to the actual bone elasticity
values since they depend on the model configuration and
on the fact that only the FAS contribution was consid-
ered. In the calculations , the thickness of the bone layer
has been fixed among the largest physiological values; in
these conditions, the FAS is known to be almost insensi-
tive to the radius thickness (see Bossy et al. (2002)).

APPENDIX A: STOCHASTIC SOLVER

In this section, we present the stochastic solver that
we have used to calculate the cost function F cost. This
stochastic solver is based on the Monte Carlo numerical
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method. First, the generator of independent realizations
of the random matrix [G] presented in Soize (2001, 2005)
is used. Random matrix [G] is written [G] = [LG]T [LG]
in which [LG] is a random upper triangular (6 × 6) real
matrix whose random elements are independent variables
defined as follow:
(1) For j < j′, the real-valued random variable [LG]jj′ is

written as [LG]jj′ = σ Ujj′ in which σ = δ /
√

7 and where
Ujj′ is a real-valued Gaussian random variable with zero
mean and variance equal to 1.
(2) For j = j′, the positive-valued random variable
[LG]jj′ is written as [LG]jj′ = σ

√
2 Vj in which σ is

defined above and where Vj is a positive-valued gamma
random variable whose probability density function pVj

with respect to dv is written as

pVj
(v) = 1R+(v)

v(7/(2δ2)+(1−j)/2)) e−v

Γ(7/(2δ2) + (1 − j)/2)
.

Then, ns statistical independent realizations of ran-
dom elasticity matrix [C] are constructed and are
such that [C(θ1)] = [L]T [G(θ1)][L], . . . , [C(θns

)] =
[L]T [G(θns

)][L]. Let P1(θ1), . . . , P1(θns
) be ns statisti-

cal independent realizations of random field P1 which
are such that, for all x ∈ Ω1 and t ≥ 0, P1(x, t; θ1) =
gp1

(x, t; [C(θ1)]), . . . , P1(x, t; θns
) = gp1

(x, t; [C(θns
)]).

As soon as the realizations of the random field P1 are ob-
tained, the realizations of the random velocity V mod are
deduced by V mod(θ1) = gvelo(P1(θ1)), . . . , V

mod(θns
) =

gvelo(P1(θns
)). For each value of a and δ, the value of

the cost function F cost(a, δ) is calculated by F cost
ns

(for
sufficiently large values of ns) such that

F cost
ns

=
(vexp − vmod

ns
)2

(vexp)2
+

(∆exp − ∆mod
ns

)2

(∆exp
N )2

,

in which vmod
ns

and ∆mod
ns

are the estimations of vmod and

∆mod defined as

vmod
ns

=
1

ns

ns∑

k=1

V mod(θk) ,

∆mod
ns

=
1

vmod
ns

√√√√ 1

ns

ns∑

k=1

V mod(θ̂k)2 − (vmod
ns

)2 .
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