E. Mcdonald and W. A. Kuperman, Time domain formulation for pulse propagation including nonlinear behavior at a caustic, The Journal of the Acoustical Society of America, vol.81, issue.5, pp.1406-1417, 1987.
DOI : 10.1121/1.394546

P. Castor, P. Gerstoft, B. Roux, W. Mcdonald, and . Kuperman, Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide, The Journal of the Acoustical Society of America, vol.116, issue.4, pp.2004-2010, 2004.
DOI : 10.1121/1.1756613

. Leissing, Nonlinear outdoor sound propagation ? A numerical implementation and study using the nonlinear progressive wave equation, 2007.

E. Mcdonald, P. Caine, and M. West, A tutorial on the Nonlinear Progressive wave Equation (NPE)???Part 1, Applied Acoustics, vol.43, issue.2, pp.159-167, 1994.
DOI : 10.1016/0003-682X(94)90059-0

E. Mcdonald, Weak shock interaction with a free???slip interface at low grazing angles, The Journal of the Acoustical Society of America, vol.91, issue.2, pp.718-733, 1992.
DOI : 10.1121/1.402534

M. Caine and . West, A tutorial on the nonlinear progressive wave equation (NPE)

P. Too and J. H. Ginsberg, Cylindrical and Spherical Coordinate Versions of NPE for Transient and Steady-State Sound Beams, Journal of Vibration and Acoustics, vol.114, issue.3, pp.420-424, 1992.
DOI : 10.1115/1.2930279

P. J. Too and S. T. Lee, Thermoviscous effects on transient and steady???state sound beams using nonlinear progressive wave equation models, The Journal of the Acoustical Society of America, vol.97, issue.2, pp.867-874, 1995.
DOI : 10.1121/1.412131

E. Mcdonald, High-angle formulation for the nonlinear progressive-wave equation model, Wave Motion, vol.31, issue.2, pp.165-171, 2000.
DOI : 10.1016/S0165-2125(99)00044-X

J. Ambrosiano, D. R. Plante, B. E. Mcdonald, and W. A. Kuperman, Nonlinear propagation in an ocean acoustic waveguide, The Journal of the Acoustical Society of America, vol.87, issue.4, pp.1473-1481, 1990.
DOI : 10.1121/1.399444

A. Piacsek, Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts, The Journal of the Acoustical Society of America, vol.111, issue.1, pp.520-529, 2002.
DOI : 10.1121/1.1377631

W. Sparrow and R. Raspet, A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses, The Journal of the Acoustical Society of America, vol.90, issue.5, pp.2683-2691, 1991.
DOI : 10.1121/1.401863

S. Wochner, A. A. Atchley, and V. W. Sparrow, Numerical simulation of finite amplitude wave propagation in air using a realistic atmospheric absorption model, The Journal of the Acoustical Society of America, vol.118, issue.5
DOI : 10.1121/1.2047109

D. Heimann and R. Blumrich, A linearized Eulerian sound propagation model for studies of complex meteorological effects, J. Acoust. Soc. of Am, vol.112, pp.446-455, 2002.

E. Ostashev, D. K. Wilson, L. Liu, D. F. Aldridge, N. P. Symons et al., Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, The Journal of the Acoustical Society of America, vol.117, issue.2, pp.503-517, 2005.
DOI : 10.1121/1.1841531

D. Karle and . Heimann, A linearized eulerian finite-difference time-domain sound propagation model with terrain-following coordinates, J. Acoust. Soc. of Am, vol.119, pp.3813-3821, 2006.

M. Salomons, R. Blumrich, and D. Heimann, Eulerian time-domain model for sound propagation over a finite impedance ground surface. Comparison with frequency-domain models, Acta Acustica United With Acustica, vol.88, pp.483-492, 2002.

K. Wilson, V. E. Ostashev, and S. L. Collier, Time-domain equations for sound propagation in rigid-frame porous media (L), The Journal of the Acoustical Society of America, vol.116, issue.4, pp.1889-1892, 2004.
DOI : 10.1121/1.1785691

. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

. Plewa, Adaptive Mesh Refinement -Theory and Applications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, 2003.
DOI : 10.1007/b138538

H. Forchheimer, Wasserbewegung durch boden, Z. Ver. Dtsch. Ing, vol.45, pp.1782-1788, 1901.

K. Wilson, J. D. Mcintosh, and R. F. Lambert, Forchheimer-type nonlinearities for high-intensity wave propagation of pure tones in air-saturated porous media, J. Acoust

C. W. Zwikker and . Kosten, Sound absorbing materials, New York), 1949.

S. Krylov, A. Sorek, G. Levy, and . Ben-dor, Simple Waves in Saturated Porous Media. I. The Isothermal Case., JSME International Journal Series B, vol.39, issue.2, pp.294-298, 1996.
DOI : 10.1299/jsmeb.39.294

. Védy, Simulations of flows in porous media with a flux corrected transport method, Noise Control Engineering Journal, vol.50, issue.6, pp.211-217, 2002.
DOI : 10.3397/1.2839693

K. Umnova, A. Attenborough, and . Cummings, High amplitude pulse propagation and reflection from a rigid porous layer, Noise Control Engineering Journal, vol.50, issue.6, pp.204-210, 2002.
DOI : 10.3397/1.2839692

L. E. Di and . Gilbert, An exact Laplace transform formulation for a point source above a ground surface, The Journal of the Acoustical Society of America, vol.93, issue.2, pp.714-720, 1993.
DOI : 10.1121/1.405435

B. Cockburn, C. Johnson, C. Shu, and E. Tadmor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol.1697, issue.1697, pp.325-432, 1998.
DOI : 10.1007/BFb0096351

P. Leissing, J. Jean, C. Defrance, and . Soize, Nonlinear parabolic equation model for finite-amplitude sound propagation in an inhomogeneous medium over a nonflat, finiteimpedance ground surface, Proceedings of EuroNoise 08, pp.1889-1894, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00691718

S. Wochner, Numerical simulation of multi-dimensional acoustic propagation in air including the effects of molecular relaxation, 2006.