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Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France

Abstract

This paper is devoted to the identification of high-dimension polynomial chaos ex-
pansions with random coefficients for non-Gaussian tensor-valued random fields
using partial and limited experimental data. The experimental data sets corre-
spond to partial experimental data made up of an observation vector which is the
response of a stochastic boundary value problem depending on the tensor-valued
random field which has to be identified. So an inverse stochastic problem has to
be solved to carry out the identification of the random field. A complete method-
ology is proposed to solve this challenging problem and consists in introducing
a family of prior probability models, in identifying an optimal prior model in the
constructed family using the experimental data, in constructing a statistical re-
duced order optimal prior model, in constructing the polynomial chaos expansion
with deterministic vector-valued coefficients of the reduced order optimal prior
model and finally, in constructing the probability distribution of random coeffi-
cients of the polynomial chaos expansion and in identifying the parameters using
experimental data. An application is presented for which several millions of ran-
dom coefficients are identified solving an inverse stochastic problem.
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1. Introduction

The methodology to construct a polynomial chaos expansion of random fields
has been introduced in [21, 20, 58]) (and is analyzed in [55, 62] for an arbi-
trary measure). The polynomial chaos expansions of stochastic processes and
random fields, and application to stochastic boundary value problems,have gen-
erated many works in the last decade (see [8, 11, 12, 13, 14, 15, 17, 18, 19, 22,
23, 24, 27, 28, 29, 30, 31, 32, 33, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 52,
53, 63, 66, 67, 68, 69]). The stochastic inverse methods and the Bayesian infer-
ence approach to inverse problems have recently received a particular attention
(see [34, 35, 36, 64, 65, 70]). The problem relative to the identification with
experimental data of the deterministic coefficients of the chaos expansion of a
non-Gaussian real-valued random field using the maximum likelihood has been
introduced in [9] and more recently, has been used in [59] and revisited in [6]. In
practice, the identification of these deterministic coefficients is performed using a
finite length of experimental data sets. Consequently, the maximum likelihood sta-
tistical estimator of these coefficients is not completely convergent and therefore,
there are residual statistical fluctuations which can be modeled in representing the
deterministic coefficients by random coefficients. Recently, an interesting work
[7] proposes to construct the probability model of these random coefficients by
using the asymptotic sampling Gaussian distribution constructed with the Fisher
information matrix and which is a consistent and asymptotically efficient estima-
tor. Such an approach has been used for model validation [16, 41]. Very recently,
in [1], as a continuation of [56], the identification of Bayesian posteriors for the
coefficients of chaos expansions is proposed. In this approach, the usual deter-
ministic coefficients of the chaos expansion are replaced by random coefficients
in order to quantify the uncertainties induced by the errors. Two types of errors
are considered. The first type is due to the use of a relatively low order of the
maximum degree of polynomials in the chaos expansion. The second type is due
to the finite length of the experimental data set. First, a prior probability density
function of the random coefficients is constructed by using the maximum likeli-
hood method and the projection of the experimental data sets on the eigenvectors
of the Karhunen-Loeve decomposition. A parametric representation of the pos-
terior probability density function is constructed using the formalism introduced
in [56] for the reduced chaos decomposition with random coefficients of vector-
valued random variables. Then the parameters of the posterior probability density
function are updated by the Bayes method with the experimental data set.
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This paper is devoted to the identification of high-dimension polynomial chaos
expansion with random coefficients for non-Gaussian tensor-valued random fields
using partial and limited experimental data. The main hypotheses are thus:
- a non-Gaussian tensor-valued random field must be identified, and not a real-
valued random field.
- the experimental data sets which are available do not correspond to direct field
measurements by image processing of the random field to be identified but corre-
spond to partial experimental data made up of an observation vector which is the
response of a stochastic boundary value problem depending on the tensor-valued
random field which has to be identified. So an inverse stochastic problem has to
be solved to carry out the identification of the random field.
- the convergence of the chaos expansion is generally not analyzed due to the
difficulties to solve the inverse stochastic problem which can be in very high di-
mension, that is to say which can have a very large number of coefficients (several
millions in the chaos expansion) which have to be identified In this paper we pro-
pose to carry out such an analysis.
Below, we define the challenging problem which has to be solved and we show
the main difficulties induced by this problem.

(1) Stochastic boundary value problem. We consider a boundary value prob-
lem for a vector-valued field {u(x) = (u1(x), u2(x), u3(x)), x ∈ Ω} on an
open bounded domain Ω of R

3 with generic point x = (x1, x2, x3). This bound-
ary value problem depends on a non-Gaussian fourth-order tensor-valued random
field {C(x), x ∈ Ω} in which C(x) = {C ijk�(x)}ijk�, which is unknown and
which has to be identified solving an inverse stochastic problem. The boundary
∂Ω of domain Ω is written as Γ0 ∪ Γobs ∪ Γ. Field u is only observed on Γobs

which means that the system is partially observable.

(2) Stochastic finite element approximation of the stochastic boundary value
problem. The above stochastic boundary value problem is discretized by the finite
element method. Let I = {x1, . . . , xNp} ⊂ Ω be the finite subset of Ω made up of
all the integrations points of the finite elements of the mesh of Ω. For all x fixed
in I ⊂ Ω, the fourth-order tensor-valued random variable C(x) is represented by
a real random matrix [A(x)] such that [A(x)]IJ = C ijk�(x) with a given adapted
correspondence I = (i, j) and J = (k, �). It should be noted that mathematical
properties on the matrix-valued random field {[A(x)], x ∈ Ω} are necessary in
order to preserve the mathematical properties of the boundary value problem.

Let U = (U1, . . . , Um) be the R
m-valued random vector of the observed de-
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grees of freedom (DOF) corresponding to the finite element approximation of the
trace on Γobs of random field u. Vector U will be called the observation vector.
Consequently, the random observation vector U appears as the unique determinis-
tic nonlinear transformation of the finite family of Np dependent real random ma-
trices {[A(x)], x ∈ I}. This set of random matrices can then be represented by
a R

mV-valued random vector V = (V1, . . . , VmV
). Consequently, the R

m-valued
random vector U of the observation vector can be written as

U = h(V) , (1)

in which v �→ h(v) is a deterministic nonlinear transformation from R
mV into R

m

which can be constructed solving the discretized boundary value problem.

(3) Experimental data sets. It is assumed that νexp experimental data are avail-
able for the observation vector. Each experimental data set corresponds to partial
experimental data (only the trace of the displacement field on Γobs is observed)
with a limited length (νexp is small). These νexp experimental data sets correspond
to measurements for νexp experimental configurations corresponding to the same
boundary value problem. For configuration �, with � = 1, . . . , νexp, the observa-
tion vector corresponding to U for the computational model is denoted by uexp,�

and belongs to R
m. Therefore, the available data are made up of the νexp vectors

uexp,1, . . . , uexp,νexp in R
m. Below, it is assumed that uexp,1, . . . , uexp,νexp can be

used as νexp independent realizations of a random vector U exp corresponding to
random vector U but random vectors U exp and U are not defined on the same
probability space.

(4) Construction of the polynomial chaos expansion with random coefficients
for the non-Gaussian matrix-valued random field. As explained in point (2) above,
using the finite element discretization, the non-Gaussian matrix-valued random
field {[A(x)], x ∈ Ω} is represented by the R

mV-valued random vector V. Let
{[A(x)], x ∈ Ω} with [A(x)] = E{[A(x)]} be the matrix-valued mean function
in which E is the mathematical expectation. The mean value V = E{V} is then
directly deduced from the matrix-valued mean function {[A(x)], x ∈ Ω} which
coincides with the value of the deterministic nominal model (the mean model).
In this paper, it is assumed that [A(x)] = [A ] is independent of x. This implies
that vector V depends only on the real matrix [A ] which has a small dimension. It
should be noted that such an assumption can easily be removed without changing
the methodology proposed.

4



In this paper, we are interested (a) in constructing a polynomial chaos ex-
pansion with random coefficients of the non-Gaussian random vector V and (b) in
identifying the random coefficients of this chaos expansion using a limited number
νexp of experimental data sets, each data set corresponding to partial observations
of the system. We then have to solve an inverse stochastic problem.

The methodology to construct a polynomial chaos expansion of random fields
(see [21, 20, 58]) consists (a) in reducing the field with a Karhunen-Loeve (KL)
expansion and then (b) in performing the polynomial chaos expansion of the KL
expansion random coordinates. Presently, because the tensor-valued random field
to be identified is unknown, in order to be able to represent any second-order
random field, the Gaussian space is required and consequently, the Gaussian chaos
decomposition is used. For the spatially sampled field, the first stage means that
random vector V (which is assumed to be a second-order random variable) is
written (finite approximation of the Karhunen-Loeve expansion for the matrix-
valued random field [A]) as

V � V +

n∑
j=1

√
λj ηj W

j , (2)

in which symbol ”�” means that the right-hand side in Eq. (2) is an approximation
of V for which mean-square convergence is reached for n sufficiently large.

The vectors W
1, . . . , Wn constitute an orthonormal family in R

m (for the Eu-
clidean inner product) made up of the eigenvectors associated with the first largest
positive eigenvalues λ1 ≥ . . . ≥ λn of the covariance matrix [CV] of the random
vector V. The R

n-valued second-order centered random variable η = (η1, . . . , ηn)
is such that

E{η} = 0 , E{η ηT} = [In] , (3)

in which [In] is the (n × n) identity matrix. Note that the components of the non-
Gaussian random variable η are not correlated but are statistically dependent. The
polynomial Chaos expansion with deterministic coefficients of random vector η
is written as

η �
N∑

α=1

yα Ψα(Ξ) , (4)

in which the coefficients y1, . . . , yN are vectors in R
n such that

N∑
α=1

yα yαT = [In] . (5)
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The real valued random variables Ψ1(Ξ), . . . , ΨN(Ξ) are the renumbered normal-
ized Hermite polynomials of the R

Ng -valued normalized Gaussian random vari-
able Ξ = (Ξ1, . . . , ΞNg) (that is to say E{Ξ} = 0 and E{ΞΞT} = [INg ]) such
that for all α and β in {1, . . . , N},

E{Ψα(Ξ)} = 0 , E{Ψα(Ξ) Ψβ(Ξ)} = δαβ , (6)

in which δαβ is the Kronecker symbol. It should be noted that the constant Hermite
polynomial with index α = 0 is not included in Eq. (4). If Nd is the integer number
representing the maximum degree of the Hermite polynomials in Eq. (4), then the
number N of chaos in Eq. (4) is N = h(Ng, Nd) = (Nd +Ng)! /(Nd! Ng!)− 1. In
Eq. (4), symbol ”�” means that the right-hand side is an approximation of η for
which mean-square convergence is reached for Nd and Ng sufficiently large. From
Eqs. (2) and (4), it can be deduced the polynomial chaos expansion of random
vector V,

V � V +

N∑
α=1

vα Ψα(Ξ) , vα =

n∑
j=1

√
λj yα

j W
j , (7)

in which {v1, . . . , vN} is a family of N vectors in R
m which are not orthogonal.

(5) Difficulties concerning the identification of the polynomial chaos expan-
sion in high dimension solving an inverse stochastic problem. This challenging
problem of identification is due to the presence of the following major difficulties.

(d1) The first one is due to the fact that the experimental data which are avail-
able do not correspond to direct field measurements by image processing in do-
main Ω allowing realizations of V to be directly deduced but correspond to partial
experimental data made up of observation vector U . So an inverse stochastic
problem has to be solved to carry out the identification of the coefficients.

(d2) The second difficulty is related to the size of the inverse problem which
has to be solved. The identification of the chaos expansion has to be converged
with respect to N for problems for which dimension n of the reduced model can
be large. This means that the number of real coefficients yα

j which has to be
identified is n×N (for instance, for N = 15 000 and n = 500, there are 7 500 000
real coefficients which have to be identified).

(d3) The third one is related to the length of the experimental data which are
effectively available. If the number of experimental data is less than the number
of coefficients which have to be identified, we have an ill-posed problem (if no
additional information to experimental data is available).
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(d4) The covariance matrix [CV] of random vector V must be known to con-
struct the representation defined by Eq. (2). In the context of a statistical identifi-
cation, this means that a lot of experimental data relative to the complete displace-
ment random field {u(x), x ∈ Ω} should be available with an adapted spatial
resolution at the meso-scale. From point (d3) above, clearly the assumptions do
not allow the covariance matrix [CV] of V to be estimated from the experimental
data. It should be noted that if the basis made up of the eigenvectors W

1, . . . , Wn

of [CV] was replaced by another orthogonal basis, then the components of η would
become correlated and above all, the mean-square convergence of the right-hand
side of Eq. (2) would be reached for a value of n much more larger and conse-
quently, the statistical reduction would not be efficient. In such a case, firstly n
can be so large that the identification problem to be performed becomes unrealis-
tic but secondly, the value of n is unknown because only partial experimental data
are available.

(d5) An uncertainty model induced by model errors and sampling errors should
be introduced to improve the robustness of the identified representation.

In this paper, we present a methodology and we validate it to solve the chal-
lenging problem of the identification in high dimension of the polynomial chaos
expansion of random field with partial and limited experimental data. The method
proposed is efficient in high dimension, that is to say, for which νexp is small, mV,
n, Nd, Ng and N can be high or very high. For instance, for the application shown
in Section 4, the number of sets of partial experimental data is νexp = 110. The di-
mension of random vector V is mV = 36 288. The dimension of random vector η
in the expansion of V is n = 550. The maximum degree of the Hermite polynomi-
als is Nd = 22 and the dimension of the vector-valued Gaussian germ is Ng = 4
yielding N = 14 949 chaos. Such a relatively large dimension n = 550 of the
Karhunen-Loeve expansion of the random field is encountered if the spatial corre-
lation length of the random field is smaller than the size of the domain and when
a good convergence of the expansion is searched. This is the case for mesoscale
stochastic modeling of complex microstructures such as the microstructures of
live tissues. For instance, in Section 4, the value n = 550 corresponds to a corre-
lation length 0.3 which has to be compared to the size of the domain which is 1
and the convergence is reached with a relative error of 0.1.

In Section 2, each step of the methodology is developed. The fundamental
aspects of the algorithms are presented in Section 3. The last section deals with
an application in high dimension.
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2. Methodology

In this section, we summarize the methodology proposed to solve the chal-
lenging problem introduced in Section 1 and then we develop it.

2.1. Summarizing the methodology

The methodology proposed is made up of five main steps.
Step 1. Introduction of a family of prior models V

prior(w) for random vector
V depending on a vector-valued parameter w with a very low dimension. Typ-
ically, the components of w will be the algebraically independent parameters of
matrix [A] (which generates the mean value V), the spatial correlation lengths and
the dispersion parameters controlling the statistical fluctuations of matrix-valued
random field [A].

Step 2. Use of the experimental data {uexp,1, . . . , uexp,νexp} to identify the opti-
mal value wopt of parameter w through an optimization problem in w that requires
to solve the stochastic boundary value problem and deduce an optimal prior model
V

prior = V
prior(wopt).

Step 3. Generation of νKL independent realizations V
prior(wopt, θ�) for � =

1, . . . , νKL from the optimal prior model. Estimation of the covariance matrix
[CVprior ] of the optimal prior model V

prior. Solving [CVprior ] Wj = λjW
j. From the

statistical reduced-order optimal prior model V
prior � V +

∑n
j=1

√
λj ηprior

j W
j,

deducing νKL independent realizations ηprior(θ�) for � = 1, . . . , νKL of random vec-
tor ηprior = (ηprior

1 , . . . , ηprior
n ). It should be noted that the experimental realizations

of ηprior associated with the partial experimental data cannot be constructed within
the context introduced.

Step 4. Construction of the polynomial chaos expansion with determinis-
tic vector-valued coefficients of the reduced-order optimal prior model ηprior �
ηchaos(N) with ηchaos(N) =

∑N
α=1 yα Ψα(Ξ) and analyzing the convergence with

respect to N . The optimal values (y1,opt, . . . , yN,opt) of (y1, . . . , yN) are ob-
tained using the maximum likelihood method with the independent realizations
ηprior(θ1), . . . , η

prior(θνKL). It should be noted that the corresponding optimization
problem in high dimension can be solved thanks to the use of an adapted random
search algorithm which will be detailed in Section 3.

Step 5. In general, the family of prior stochastic models which is introduced
is not capable to perfectly represent the data (for instance, this can be the case
for the mesoscale stochastic modeling of complex anisotropic and heterogeneous
microstructures). It should be noted that the family of prior stochastic models
does not take into account modeling errors but is introduced to model the random
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medium. Consequently, a posterior stochastic model must be introduced in order
to improve the optimal prior stochastic model and in order to take into account
the modeling errors induced by the choice of a prior stochastic model. Following
the method of reduced polynomial chaos expansions with random coefficients of
vector-valued random variables presented in [56] and in order to take into account
model uncertainties, the optimal values (y1,opt, . . . , yN,opt) constructed in Step 4
are replaced by a family of random vectors {Y 1, . . . , Y N} which are indepen-
dent of the family of random variables {Ψ1(Ξ), . . . , ΨN(Ξ)}. We then defined a
posterior model V

post of V such that

V
post = V +

n∑
j=1

√
λj ηpost

j W
j , (8)

in which the posterior model ηpost = (ηpost
1 , . . . , ηpost

n ) is written as the following
polynomial chaos expansion with random coefficients deduced from Eq. (4),

ηpost =
N∑

α=1

Y α Ψα(Ξ) . (9)

The first equation in Eq. (3) clearly holds for the posterior model and the mean
values of the random coefficients have to be such that

E{Y α} = yα , for α = 1, . . . , N , (10)

in which y1, . . . , yN are N given vectors in R
n. For the posterior model, the

second equation in Eq. (3) does not hold. For all α, the statistical fluctuations of
Y α around the mean value yα is controlled by a dimensionless positive number
denoted by σα. We then introduced the following simple model for the covariance
matrix [CY α ] of random vector Y α,

[CY α] = σ2
α yα yαT , for α = 1, . . . , N . (11)

The probability distribution of the random vectors {Y 1, . . . , Y N} is constructed
using the maximum entropy principle [49, 25, 26] under the constraints defined
by the available information given by Eqs. (10) and (11). Consequently this prob-
ability distribution depends on unknown parameters y1, . . . , yN and σ1, . . . , σN

which can be identified using the maximum likelihood method with the experi-
mental data uexp,� for � = 1, . . . , νexp for the posterior model U post = h(Vpost) of
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the observation vector (thus requiring to solve the stochastic boundary value prob-
lem). The corresponding optimization problem is then solved with an adapted al-
gorithm for which the optimal solution is searched in the neighborhood of the op-
timal deterministic coefficients (y1,opt, . . . , yN,opt) identified in Step 4 and yields
the optimal value (y1,opt, . . . , yN,opt) of (y1, . . . , yN) and the optimal value σ

opt
1 ,

. . . , σ
opt
N of σ1, . . . , σN .

2.2. Developing the methodology

Step 1. Introduction of a family of prior probability models of random vector
V. As we have explained in Section 1, the available experimental data are assumed
to be not sufficient to perform a direct statistical estimation of the covariance ma-
trix [CV] that is necessary to construct the decomposition defined by Eq. (2). In
addition, as we have also explained, this decomposition must have the capabil-
ity to represent the required mathematical properties of {[A(x1)], . . . , [A(xNp)]}.
To circumvent these two major difficulties, we propose to introduce a family of
prior probabilistic models {[Aprior(x; w)] , x ∈ Ω} of the matrix-valued random
field {[A(x)] , x ∈ Ω}. We can then deduce a family of prior probability mod-
els V

prior(w) of random vector V. This family of prior probability models is
defined on a probability space (Θ, T ,P) and depends on the vector-valued pa-
rameter w belonging to an admissible set Cad. The knowledge of such a fam-
ily of prior probability models means that the family of probability distributions
{P prior

V
(dv; w) , w ∈ Cad} on R

mV of the family of random vectors {V
prior(w) , w ∈

Cad} is known. In addition, it is assumed that a generator of independent realiza-
tions V

prior(θ1; w), . . . , Vprior(θνKL; w) for θ1, . . . , θνKL belonging to Θ is available.

Step 2. Identification with the experimental data of an optimal prior model
in the constructed family. Using the computational model (see Eq. (2)) and the
family of prior probability models V

prior(w) of V, we can construct the family
{U prior(w) , w ∈ Cad} of random observation vectors such that

U prior(w) = h(Vprior(w)) , w ∈ Cad . (12)

The optimal prior model is then obtained in finding the optimal value wopt of w
which minimizes an adapted ”distance” between the family {U prior(w) , w ∈ Cad}
of random observation vectors and the family of experimental data {uexp,1, . . . ,
uexp,νexp}. Several methods can be used such as the moment method, the least
square method, the maximum likelihood method, etc (see [48, 57, 60]). It is
assumed that the dimension of vector w is much less than νexp × m. With such
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a hypothesis, a method such as the maximum likelihood is not really necessary
and a method in the class of the least square method is generally sufficient and
efficient. The optimal prior model is then constructed in solving the following
optimization problem,

wopt = arg min
w∈Cad

Jprior(w) , (13)

in which the cost function J prior(w) can then be written, for instance, as

Jprior(w) = α ‖U prior(w) − U exp‖2 + (1 − α) ‖σprior(w) − σexp‖2 , (14)

in which U prior(w) = (U prior
1 (w), . . . , Uprior

m (w)) and σprior(w) = (σprior
1 (w), . . . ,

σprior
m (w)) are the mean value and the standard deviation of random vector U prior(w) =

(Uprior
1 (w), . . . , Uprior

m (w)) = h(Vprior(w)) with σprior
k (w) the standard deviation of

the real-valued random variable U prior
k (w) and where U exp = (U exp

1 , . . . , U exp
m ) and

σexp = (σexp
1 , . . . , σexp

m ) are such that

U exp
k =

1

νexp

νexp∑
�=1

uexp,�
k , σexp

k =

{
1

νexp

νexp∑
�=1

(uexp,�
k )2 − (U exp

k )2

}1/2

. (15)

In Eq. (14)), α is chosen in [0 , 1] and can be taken, for instance, as α = 0.5.

Step 3. Construction of the statistical reduced-order optimal prior model. As
it is explained in Section 1, a statistical reduced-order optimal prior model must
be constructed using the KL expansion in order to be able to construct an ef-
ficient polynomial chaos expansion of the optimal prior model. This step then
consists in constructing a reduced-order representation of the type defined by
Eq. (2)) for the optimal prior model V

prior(wopt) that we will simply denote by
V

prior The mean value of V
prior(wopt) is V = E{V

prior(wopt)} and its symmetric
positive-definite (mV×mV) real covariance matrix is [CVprior ] = E{(Vprior(wopt)−
V) (Vprior(wopt) − V)T}. These second-order moments are estimated using νKL

independent realizations V
prior(wopt, θ�) for � = 1, . . . νKL generated with the opti-

mal prior probabilistic model. The dominant eigenspace of the eigenvalue prob-
lem [CVprior ] Wj = λjW

j is then constructed. Let [W] = [W1 . . . Wn] be the
(mV × n) real matrix of the n eigenvectors associated with the n largest eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λn > 0 such that [W]T [W] = [In]. The statistical
reduced-order optimal prior model is then written as

V
prior � V +

n∑
j=1

√
λj ηprior

j W
j , (16)
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in which the optimal prior model ηprior = (ηprior
1 , . . . , ηprior

n ) is a second-order cen-
tered random variable with values in R

n such that

E{ηprior} = 0 , E{ηprior (ηprior)T} = [In] . (17)

The mean-square convergence of the right-hand side in Eq. (16)) with respect to
the reduced order n is studied in constructing the error function

n �→ err(n) = 1 −
∑n

j=1 λj

tr[CVprior ]
, (18)

which is a monotonic decreasing function from {1, . . . , mV} into [0 , 1] and such
that err(mV) = 0. The νKL independent realizations ηprior(θ1), . . . , η

prior(θνKL) are
deduced from the realizations V

prior(wopt, θ1), . . . , V
prior(wopt, θνKL) using, for j =

1, . . . , n and for � = 1, . . . νKL, the equation

ηprior
j (θ�) =

1√
λj

(Vprior(wopt, θ�) − V)T
W

j . (19)

Step 4. Construction of the polynomial chaos expansion with deterministic
vector-valued coefficients of the reduced-order optimal prior model. This step
consists in constructing an approximation of the reduced optimal prior model η prior

by a polynomial chaos expansion ηchaos(N) = (ηchaos
1 (N), . . . , ηchaos

n (N)) such
that

ηprior � ηchaos(N) , ηchaos(N) =

N∑
α=1

yα Ψα(Ξ) , (20)

for which νKL independent realizations ηprior(θ1), . . . , η
prior(θνKL) of ηprior are known

from Eq. (19) of Step 3. In Eq. (20)), the symbol ”�” means that the mean-square
convergence is reached for N sufficiently large and the deterministic vector-valued
coefficients which have to be identified are the N vectors y1, . . . , yN in R

n. The
random variables Ψα(Ξ) (the polynomial chaos) are defined in Section 1-(4). Tak-
ing into account Eqs. (6) and (17), it can be deduced that vectors y1, . . . , yN must
verify the following equation,

N∑
α=1

yα yαT = [In] . (21)
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For all j = 1, . . . , n, let e �→ pηprior
j

(e) be the probability density function of

the random variable ηprior
j estimated with the optimal prior model constructed in

Step 3. For all y1, . . . , yN fixed in R
n and satisfying Eq. (21)) and for all j =

1, . . . , n, let e �→ pηchaos
j (N)(e ; y1, . . . , yN) be the probability density function of

random variable ηchaos
j (N) estimated with the polynomial chaos expansion defined

by Eq. (20). The convergence of the sequence of random vectors {ηchaos(N)}N

towards ηprior can be controlled as follows. Since N depends on Ng and Nd, N
is also rewritten as N = h(Ng, Nd). For each component ηchaos

j (N), we introduce
the L1-log error function defined by

errj(Ng, Nd) =

∫
BIj

| log10 pηprior
j

(e) − log10 pηchaos
j (N)(e ; y1, . . . , yN)| de , (22)

in which BIj is a bounded interval of the real line which is adapted to the prob-
lem. Let p̂η

prior
j

(e) be the estimation of the probability density function pη
prior
j

(e)

carried out using the kernel density estimation method [4] with the independent
realizations ηprior

j (θ1), . . . , η
prior

j (θνKL). Let [âprior

j , b̂prior

j ] be the support of e �→ p̂η
prior
j

(e).

Similarly, for a given value of y1, . . . , yN , let p̂ηchaos
j (N)(e ; y1, . . . , yN) be the es-

timation of the probability density function pηchaos
j (N)(e ; y1, . . . , yN) carried out

using νchaos independent realizations of the normalized Gaussian vector Ξ and
Eq. (20). Let [âchaos

j (N), b̂chaos
j (N)] be the support of e �→ p̂ηchaos

j (N)(e ; y1, . . . , yN).

The bounded interval BIj = [âj, b̂j ] is defined by âj = max{âprior

j , âchaos
j (N)} and

b̂j = min{b̂prior

j , b̂chaos
j (N)}. For the random vector ηchaos(N), the L1-log error func-

tion is denoted as err(Ng, Nd) and is defined by

err(Ng, Nd) =
1

n

n∑
j=1

errj(Ng, Nd) . (23)

The unusual L1-log error function defined by Eq. (22) has been introduced in order
to measure the errors of the very small values of the probability density function
(the tails of the probability density function).

A natural way to solve such a problem is to use the maximum likelihood
method [48, 57, 60] as done in [9, 10, 7, 1]. Taking into account that the dependent
random variables ηprior

1 , . . . , ηprior
n are not correlated, the following approximation

L(y1, . . . , yN ) of the log-likelihood function is introduced

L(y1, . . . , yN) =

n∑
j=1

νKL∑
�=1

log10 pηchaos
j (N)(η

prior
j (θ�) ; y1, . . . , yN ) . (24)
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The optimal value (y1,opt, . . . , yN,opt) of (y1, . . . , yN) is then given by

(y1,opt, . . . , yN,opt) = arg max
(y1,...,yN )∈CN

ad

L(y1, . . . , yN ) , (25)

in which CN
ad is such that

CN
ad = {(y1, . . . , yN) ∈ (Rn)N ,

N∑
α=1

yα yαT = [In]} . (26)

For the high-dimension case, that is to say for n and N very large, solving the op-
timization problem defined by Eqs. (25) and (26) is a challenging problem which
has been solved in the last decade only for small values of n and N . There are
two major difficulties.

(a) The first one is related to the construction of the log-likelihood function
which requires to generate νchaos independent realizations Ψα(Ξ(θ′�)) for α =
1, . . . , N and � = 1, . . . , νchaos of Ψα(Ξ) for α = 1, . . . , N with high degree
Nd of the polynomials Ψα. We then introduce the (νchaos × N) real matrix [Ψ]
such that [Ψ]�α = Ψα(Ξ(θ′�)). When the recurrence algebraic formula is used to
compute matrix [Ψ], the numerical noise increases with the degree Nd of the poly-
nomials and the fundamental orthogonality condition defined by Eq. (6) is lost.
To circumvent this major difficulty, we use a novel method (see [54]) to compute
matrix [Ψ] which allows the orthogonality conditions defined by Eq. (6) to be kept
for any values of Ng and Nd. This novel method consists (1) in constructing the
realizations of the multivariate monomials using a generator of independent real-
izations of the germs whose probability distribution is the given arbitrary measure
and (2) in performing an orthogonalization of the realizations of the multivariate
monomials with an algorithm different from the Gram-Schmidt orthogonalization
algorithm which is not stable in high dimension.

(b) The second major difficulty is related to the choice of the optimization
algorithm which allows the problem defined by Eq. (25) to be solved with a rea-
sonable CPU time for high dimension, the constraint

∑N
α=1 yα yαT = [In] having

to be exactly verified. We then propose a new random search algorithm adapted
to this problem which is very efficient and which is detailed in Section 3.

Step 5. Construction of the probability distribution of random coefficients of
the polynomial chaos expansion and identification of the parameters using exper-
imental data. The probability density function pY 1...Y N (y1, . . . , yN) with respect

14



to the Lebesgue measure dy1 . . . dyN on R
n × . . . × R

n (N times) of the R
n-

valued random variables Y 1, . . . , Y N is constructed using the maximum entropy
principle under the constraints defined by Eqs. (10) and (11). For α = 1, . . . , N ,
let μα in R

n and [Λα] in the set of all the positive-definite symmetric (n × n)
real matrices be the Lagrange multipliers associated with the constraints defined
by Eq. (10) and (11) respectively. Then the probability density function which
maximizes the entropy is written as

pY 1...Y N (y1, . . . , yN) = c0 ΠN
α=1 exp{− < μα, yα > − < [Λα]yα, yα >} ,

(27)
in which c0 is the constant of normalization and where the brackets denote the Eu-
clidean inner product in R

n. From Eq. (27), it can be deduced that Y 1, . . . , Y N

are independent Gaussian random variables with values in R
n. For all α =

1, . . . , N , the mean value of random vector Y α is E{Y α} = yα (see Eq. (10))
and its covariance matrix [CY α ] = E{(Y α − yα)(Y α − yα)T} is given by
Eq. (11). It can easily be verified that for all α, the Gaussian random vector
Y α = (Y α

1 , . . . , Y α
n ) can be written as

Y α
j = yα

j
(1 + σαN α

j ) , (28)

in which {N α
j , α = 1, . . . , N ; j = 1, . . . , n} is a family of independent centered

Gaussian random variables with unit standard deviation. From Eqs. (9), (6) and
(28), it can be deduced that

[E{ηpost(ηpost)T}]jk =
N∑

α=1

(1 + σ2
α δjk) yα

j
yα

k
. (29)

The family {y1, . . . , yN} of vectors and the family {σ1, . . . , σN} of real numbers
could be chosen such that E{ηpost(ηpost)T}] = [In] but, with such a choice, the
posterior model would be very close to the prior model without the possibility to
update the prior model to get a better representation of the experimental observa-
tions. Consequently, this condition will not be kept and for the posterior model
we will have E{ηpost(ηpost)T}] 
= [In]. In order to simplify notation, we intro-
duce the vector Y belonging to (Rn)N = R

n × . . . × R
n (N times) such that

Y = (y1, . . . , yN) and the vector σ belonging to R
N such that σ = (σ1, . . . , σN ).

Comparing this probabilistic model with the general method of reduced chaos
decompositions with random coefficients of vector-valued random variables pre-
sented in [56], it can be seen that this probabilistic model corresponds to the chaos
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expansion of the random coefficients limited to the first-order expansion (Gaus-
sian approximation).

As previously explained, an optimal value Y opt = (y1,opt, . . . , yN,opt) of Y =

(y1, . . . , yN) and the optimal value σopt = (σ
opt
1 , . . . , σ

opt
N ) of σ = (σ1, . . . , σN )

are calculated in order to minimize an adapted ”distance” between the experi-
mental data {uexp,1, . . . , uexp,νexp} and the posterior model U post = h(Vpost) of the
observation vector. Since low-probability levels must be correctly identified, we
propose to use a cost function based on an L1-log error function of the probability
density functions and then, the optimal posterior model is constructed in solving
the following optimization problem,

(Yopt, σopt) = arg min
(Y,σ)

J post(Y , σ) , (30)

J post(Y , σ) =
1

m

m∑
k=1

∫
BIk

| log10 pUpost
k

(u;Y, σ) − log10 p̂U
exp
k

(u; νexp)| du .

(31)
In Eq. (31)), p̂U

exp
k

(u; νexp) denotes an estimation of the probability density func-

tion of U exp
k carried out using the kernel density estimation method [4] with the

experimental data uexp,�
k for � = 1, . . . , νexp. Let [âk , b̂k] be the support of u �→

p̂U
exp
k

(u; νexp). Then the bounded interval BIk = [ak , bk] of the real line is chosen

such that ak = max{min�(u
exp,�
k ) , âk} and bk = min{max�(u

exp,�
k ) , b̂k}. It should

be noted that the estimation p̂U
exp
k

(u; νexp) of pU
exp
k

(u) is generally not converged
because νexp is not sufficiently large. Nevertheless, this estimator ”summarizes”
the experimental data and is an experimental quantity that we propose to use for
constructing the cost function.

The probability density function u �→ pU
post
k

(u ;Y, σ) of the real-valued ran-

dom variable U post
k (Y , σ) = {h(Vpost(Y , σ))}k of the posterior model is calcu-

lated solving the stochastic boundary value problem for which the random vector
V

post(Y, σ)) is defined by Eqs. (8) and (9) and using the kernel density estimation
method. The optimization problem defined by Eq. (30) is then solved with an
adapted algorithm for which the optimal solution is searched in the neighborhood
of the optimal deterministic coefficients (y1,opt, . . . , yN,opt) identified in Step 4
and yields the optimal value Y opt = (y1,opt, . . . , yN,opt) of Y = (y1, . . . , yN).
The algorithm adapted to this optimization problem is detailed in Section 3.
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2.3. Remarks concerning the proposed methodology

2.3.1. Remark concerning the prior and the posterior stochastic models
For a given set of available experimental data, the best construction which can

be made is the construction (1) which takes into account all the available theo-
retical information related to the tensor-valued random field and (2) which repro-
duces the set of the available experimental data in a statistical sense. The family
of prior models which depends on a vector-valued parameter with a very low di-
mension must span the larger possible subset of all the admissible tensor-valued
random fields. The construction of such a family must then take into account all
the available theoretical information such as the ellipticity condition. Neverthe-
less, since the optimal prior model is constructed in identifying a family which has
only a few free parameters, this optimal prior model belongs to a subset which is
generally not enough big to perfectly represent the available experimental data.
Consequently, it is necessary to construct a posterior model to better represent the
experimental data, that is to say, it is necessary to construct a representation of the
optimal prior model which is capable to span a larger subset containing the avail-
able data. The proposed solution consists in constructing the polynomial chaos
representation of the optimal prior model. Such a polynomial chaos expansion is
capable to represent any tensor-valued random field in modifying its coefficients
and then has the capability to fit all the experimental data in a statistical sense.
Nevertheless, a direct construction of such polynomial chaos expansion would
not be realistic. This is the reason why, in Step 4, the polynomial chaos expansion
of the optimal prior model is constructed and then, in Step 5, the posterior model
is constructed in replacing the deterministic coefficients of the polynomial chaos
expansion by random coefficients. Clearly, better will be the optimal prior model,
less will be the numerical cost required to fit the probability distributions of the
random coefficients in Step 5.

2.3.2. Remark concerning the choice of the length Ng of the germ
Let us consider an uncertain computational model for which the stochastic

modeling of uncertain parameters is performed by introducing Ng independent
random variables (after having applied a KL statistical reduction and a nonlinear
transformation of independent random variables for which the probability mea-
sures are known). Clearly, for the direct problem consisting in analyzing the
propagation of uncertainties through the computational model, the length of the
germ of the polynomial chaos expansion of the random response of this stochastic
computational model, must be chosen as Ng.
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In this paper, the stochastic inverse problem is considered. The uncertain pa-
rameter is a random field for which the probabilistic model is unknown and must
be identified. Using the KL statistical reduction and then the polynomial chaos
expansion of the R

n-valued random variable ηprior, there are three unknown pa-
rameters n, Ng and Nd, which must be selected to get a good convergence of the
representation. The value of parameter n is defined in studying the error function
n �→ err(n) defined by Eq. (18) which is based on a mean-square convergence.
The value of n is then independent from the value of Ng and Nd. Now, the value of
Ng and Nd must be defined in order that the convergence of the polynomial chaos
expansion of the R

n-valued random variable ηprior be reached. Such a conver-
gence is studied using the unusual L1-log error function (Ng, Nd) �→ err(Ng, Nd)
defined by Eqs. (22) and (23). It should be noted that this error function is bet-
ter than the mean-square error function and allows the convergence of the prob-
ability function to be controlled over all the range of the large values and the
very small values of the probability levels (this means that this error function
allows the tail of the probability density functions to be correctly fitted). Con-
sequently, the maximum degree Nd of the polynomial chaos must be sufficiently
high to get the convergence of the representation when the random field is any
non-Gaussian random field (a random field which is unknown and which must be
identified without any information about the tails of the system of marginal prob-
ability distributions which define the probability law of the non-Gaussian random
field). In addition, the introduction of a very large number N of polynomial chaos
{Ψα(Ξ), α = 1, . . . , N} induced by the use of a high value of Nd coupled with
the use of a significant value of Ng, is equivalent to the introduction of a very large
number of uncorrelated random variables due to the orthogonal property defined
by Eq. (6).

For the stochastic inverse problem under consideration, this analysis shows
that, there is no reason to set a priori a value for Ng or a value for Nd which
are strongly dependent. The optimal values of Ng and Nd must be determined
using the L1-log error function and there is no reason to set the value of Ng to the
value n.

3. Algorithms

3.1. Algorithm for the identification of the deterministic coefficients of the poly-
nomial chaos expansion (Step4)

In a first stage, we show that the initial optimization problem defined by
Eqs. (25) and (26) can be reformulated as a set of recurrent optimization prob-
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lems relative to each coordinate and depending only on the chaos coefficients for
each coordinate. In a second stage, we give some details concerning the random
search algorithm applied to the reformulated optimization problem.

3.1.1. Reformulation of the initial optimization problem as a set of recurrent op-
timization problems for each coordinate

In this subsection, we present a reformulation of the optimization problem
defined by Eqs. (25) for which the admissible set CN

ad is defined by Eq. (26). Let
z1, . . . , zn be n vectors in R

N such that zj = (zj
1, . . . , z

j
N) ∈ R

N with zj
α = yα

j

for all j = 1, . . . , n and for all α = 1, . . . , N . It is assumed that N ≥ n. From
Eq. (21), it can be deduced that

< zj , zk >= δjk for all j and k in {1, . . . n} . (32)

The optimization problem defined by Eqs. (25) and (26) can then be rewritten as
follows. The optimal value (y1,opt, . . . , yN,opt) is such that y

α,opt
j = zj,opt

α in which
(z1,opt, . . . , zn,opt) is given by

(z1,opt, . . . , zn,opt) = arg max
(z1,...,zn)∈Cn

ad

L(z1, . . . , zn) , (33)

in which Cn
ad is such that

Cn
ad = {(z1, . . . , zn) ∈ (RN)n , < zj , zk >= δjk} , (34)

and where L(z1, . . . , zn) is defined by

L(z1, . . . , zn) =

n∑
j=1

νKL∑
�=1

log10 pηchaos
j (N)(η

prior
j (θ�) ; zj) . (35)

It should be noted that the probability density function pηchaos
j (N)(η

prior
j (θ�) ; zj) de-

pends only on zj because equation ηchaos(N) =
∑N

α=1 yα Ψα(Ξ) can be rewritten
as ηchaos

j (N) =
∑N

α=1 zj
α Ψα(Ξ) and can then directly be estimated. Let J be the

set of all the permutations of the first n positive integers {1, . . . , n}. A generic
point in J is then denoted by {j1, . . . , jn}. For a fixed point {j1, . . . , jn} in J ,
the following recurrent optimization problems Pj1 , . . . ,Pjn are introduced,

Pj1 : zj1,opt = arg max
zj1∈Cj1

ad

Lj1(z
j1) , (36)
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Cj1
ad = {zj1 ∈ R

N , ‖zj1‖ = 1} , (37)

and for k = 2, . . . , n,

Pjk
: zjk,opt = arg max

zjk∈Cjk
ad

Ljk
(zjk) , (38)

Cjk
ad ={zjk ∈ R

N , < zj1,opt, zjk >= . . . =< zjk−1,opt, zjk >= 0 , ‖zjk‖ = 1} ,
(39)

in which, for k = 1, . . . , n, the log-likelihood function Ljk
(zjk) is defined by

Ljk
(zjk) =

νKL∑
�=1

log10 pηchaos
jk

(N)(η
prior
jk

(θ�) ; zjk) . (40)

For given {j1, . . . , jn} in J , the optimal solution (zj1,opt, . . . , zjn,opt) yields the
value Lopt(j1, . . . , jn) =

∑n
k=1 Ljk

(zjk,opt) of the log-likelihood function. There-
fore, the solution of the optimization problem defined by Eqs. (33) to (35) is
given by (zj

opt
1 ,opt, . . . , zj

opt
n ,opt) corresponding to the permutation {j opt

1 , . . . , jopt
n } =

arg max{j1,...,jn}∈J Lopt(j1, . . . , jn).

3.1.2. Random search algorithm for the reformulated optimization problem
The optimization problems which are to be solved are not convex problems.

Consequently, there is no algorithm allowing to surely reach the global optimum
for an a priori given CPU time. Therefore, for a given CPU time, all the possible
algorithms only allow the cost function value to be improved from its initial value
(the value for the initial point). For each fixed permutation {j1, . . . , jn} in J , the
n recurrent optimization problems Pj1 , . . . ,Pjn are then solved with an adapted
random search algorithm which allows the initial value to be improved. The qual-
ity of the approximation constructed is proportional to the CPU time used. Larger
is the CPU time used, better is the approximation constructed.

• Optimization problem Pj1 defined by Eqs. (36) to (37)
Let Zj1

0 = (Zj1
0,1, . . . , Z

j1
0,N) be a R

N -valued random variable for which the com-

ponents are mutually independent. Let Z j1 = Zj1
0 /‖Zj1

0 ‖. Consequently, any
realization zj1 = (zj1

1 , . . . , zj1
N ) of Zj1 belongs to the admissible set C j1

ad de-
fined by Eq. (37). For computing Lj1(z

j1) defined by Eq. (40), the values of
the probability density function pηchaos

j1
(N)(η

prior
j1

(θ�) ; zj1) of the random variable

ηchaos
j1

(N) =
∑N

α=1 zj1
α Ψα(Ξ) is calculated using the Monte Carlo simulation and
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the kernel density estimation method [4] with νchaos independent realizations of nor-
malized Gaussian vector Ξ and with the νKL independent realizations of the prior
model ηprior

j1
(θ�). A random search algorithm (Latin hypercube sampling type) is

performed in two steps. For the first step, each component Z j1
0,α of random vector

Zj1
0 is uniformly distributed on [−1 , 1]. The first step consists in νj1 realizations of

Zj1
0 allowing a first approximation zj1,opt0 of Eq. (36) to be carried out and corre-

sponding to the optimal value z
j1,opt0
0 of zj1

0 . For the second step, each component
Zj1

0,α of random vector Zj1
0 is uniformly distributed on [z

j1,opt0
0,α − δα , z

j1,opt0
0,α + δα]

with δα = (1 − z
j1,opt0
0,α )/10. The second step consists in νj1 realizations of Zj1

0

allowing a final approximation zj1,opt of Eq. (36) to be carried out.

• Optimization problem Pjk
for k = 2, . . . , n defined by Eqs. (38) to (39)

For fixed k, the optimal vectors zj1,opt, . . . , zjk−1,opt in R
N are known from Pj1 ,

. . . ,Pjk−1
. Let [H ] be the (N × (k − 1)) real matrix whose columns are the vec-

tors zj1,opt, . . . , zjk−1,opt. Let b1, . . . , bd with d = N − k + 1 be an orthonormal
basis of the null space of [H ]T . Let q0 = (q0,1, . . . , q0,d) be any vector in R

d

and let q = q0/‖q0‖ be the corresponding vector in R
d for which the Euclidean

norm equal to 1. Then, the vector zjk = q1 b1 + . . . + qd bd in R
N has an Eu-

clidean norm equal to 1 and is orthogonal to the vectors zj1,opt, . . . , zjk−1,opt. We
then conclude that such a vector zjk belongs to the admissible set C jk

ad defined by
Eq. (39). Let Q0 = (Q0,1, . . . , Q0,d) be a R

d-valued random variable for which
the components are mutually independent. Let Q = Q0/‖Q0‖. Consequently,
any realization zjk = (zjk

1 , . . . , zjk

N ) of Zjk = Q1 b1 + . . . + Qd bd belongs to
the admissible set Cjk

ad . For computing Ljk
(zjk) defined by Eq. (40), the values

of the probability density function pηchaos
jk

(N)(η
prior
jk

(θ�) ; zjk) of the random vari-

able ηchaos
jk

(N) =
∑N

α=1 zjk
α Ψα(Ξ) is calculated using Monte Carlo simulation

and the kernel density estimation method with νchaos independent realizations of
normalized Gaussian vector Ξ and with the νKL independent realizations of the
prior model ηprior

jk
(θ�). As for the optimization problem Pj1 , a similar random

search algorithm is performed in two steps. For the first step, each component
Q0,i of random vector Q0 is uniformly distributed on [−1 , 1]. The first step con-
sists in νjk

realizations of Q0 allowing a first approximation zjk,opt0 of Eq. (38)
to be carried out and corresponding to the optimal value q

opt0
0 of q0. For the sec-

ond step, each component Q0,i of random vector Q0 is uniformly distributed on
[q

opt0
0,i − δi , q

opt0
0,i + δi] with δi = (1 − q

opt0
0,i )/10. The second step consists in νjk

realizations of Q0 allowing a final approximation zjk,opt of Eq. (38) to be carried
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out.

3.2. Algorithm for identification of the random coefficients of the polynomial
chaos expansion (Step5)

An adapted algorithm is proposed to construct Y opt = (y1,opt, . . . , yN,opt) and

σopt = (σ
opt
1 , . . . , σ

opt
N ) from the optimization problem defined by Eq. (30) with

Eq. (31). This algorithm is based on a trial search method with a very low number
of unknown parameters (two scalar parameters).

Firstly, the solution Y opt in Y is searched in a neighborhood of the optimal
deterministic coefficients Yopt = (y1,opt, . . . , yN,opt) of the polynomial expansion
of the prior model, computed in Step 4. The diameter is defined by a given param-
eter ε1 such that 0 < ε1 and we choose Y = ε1 Yopt (if ε1 = 1 then Yopt = Yopt).
Consequently, the optimal solution can be written as Y opt = ε

opt
1 Yopt in which ε

opt
1

is the optimal value of the scalar parameter ε1.
Secondly, σ = (σ1, . . . , σN ) is replaced by σ = ε2 1 in which 1 = (1, . . . , 1)

that is to say σ1 = . . . = σN = ε2. This means that the N parameters σ1, . . . , σN

are replaced by only one parameter ε2 ≥ 0 in which the parameter ε2 allows the
variance to be controlled. If ε2 = 0, then Y α = yα.

We then conclude that the optimization problem defined by Eq. (30) can be
rewritten as

(ε
opt
1 , ε

opt
2 ) = arg min

ε1>0 , ε2≥0
J post(ε1Yopt, ε2 1) . (41)

The optimization problem defined by Eq. (41) can be solved, for instance, using
the trial method.

4. Application

(1) Definition of the stochastic boundary value problem at the meso-scale. We
consider a microstructure represented by an open bounded domain Ω = (]0 , 1[)3

of R
3 with generic point x = (x1, x2, x3) for which the origine (0, 0, 0) is located

at a corner of the cube (see Fig. 1 left). Domain Ω is occupied by a heterogeneous
complex material modeled by a statistically homogeneous and anisotropic elas-
tic random medium at the meso-scale. For this meso-scale modeling, the elastic
properties of the microstructure are then defined by the non-Gaussian fourth-order
tensor-valued random field {C(x), x ∈ Ω} in which C(x) = {C ijk�(x)}ijk�. Let
{u(x) = (u1(x), u2(x), u3(x)), x ∈ Ω} be the displacement random field at
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the meso-scale. The random constitutive equation is then written as sjk(x) =
Cjk�m(x) ε�m(x), in which s is the stress tensor and ε is the strain tensor such
that ε�m(u(x)) = 1

2
(∂u�(x)/∂xm + ∂um(x)/∂x�). The boundary ∂Ω is written

as Γ0 ∪ Γobs ∪ Γ. A Dirichlet condition u = 0 is given on Γ0 while a Neumann
condition is given on Γ corresponding to the application of a given deterministic
surface force field gΓ(x) = (gΓ

1 (x), gΓ
2 (x), gΓ

3 (x)). There is no surface force field
applied to Γobs which is the part of the boundary for which field u is observed
(this corresponds to the hypothesis for which only partial experimental data are
observed and then are available). The stochastic boundary value problem consists
in finding the second-order random field {u(x), x ∈ Ω} such that

−div s = 0 in Ω ,

u(x) = 0 on Γ0 , (42)

s(x) n(x) = gΓ(x) on Γ and s(x) n(x) = 0 on Γobs ,

in which n(x) = (n1(x), n2(x), n3(x)) is the outward unit normal to ∂Ω, where
{divs(x)}j = ∂sjk(x)/∂xk and where the random constitutive equation is de-
fined above.

(2) Family of prior probability models for the random field {C(x), x ∈ Ω}.
The stochastic boundary value problem defined by Eq. (42) is elliptic. The fam-
ily {Cprior(x ; w), x ∈ Ω} of the prior probability models for the fourth-order
tensor-valued random field{C(x), x ∈ Ω} could arbitrarily be chosen (see for
instance [2, 3, 63] for the scalar case). In this application, we are interested
in the anisotropic case that is to say to the tensor case. We then choose the
probabilistic model constructed in [50, 51]) using the Maximum Entropy Prin-
ciple under the constraints defined by the available information and yielding a
stochastic non-uniform ellipticity condition. All the details concerning the con-
struction and the generation of independent realizations for such a non-Gaussian
fourth-order tensor-valued random field can be found in [50, 51]). For all x in
Ω, the fourth-order tensor-valued random field Cprior(x ; w) is represented by the
symmetric positive-definite (6 × 6) real random matrix [Aprior(x ; w)] such that
[Aprior(x ; w)]IJ = Cprior

ijk�(x ; w). This family of prior models {[Aprior(x , w)], x ∈
Ω} depends on the vector valued parameters w = (δ, L, {[A]ij , 1 ≤ i ≤ j ≤ 6})
belonging to an admissible subset of R

23 for which δ > 0 is a real parame-
ter controlling the level of statistical fluctuations of the field, L is a correlation
length (with respect to the general model presented in [50, 51], it is assumed
that the three spatial correlation lengths L1, L2 and L3 are equal; we then have
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L = L1 = L2 = L3). The mean value E{[Aprior(x ; w)]} = [A] (which is
independent of x because {[Aprior(x ; w)], x ∈ Ω} is the restriction to Ω of a ho-
mogeneous random field) is a symmetric positive-definite (6 × 6) real matrix for
which 21 parameters must be identified for an anisotropic material.

(3) Stochastic finite element approximation of the stochastic boundary value
problem. The cube (]0 , 1[)3 is meshed with 6× 6× 6 = 216 finite elements using
8-nodes finite elements (see Fig. 1 left). There are 8 integration points in each
finite element. Since there are 216 finite elements, we have Np = 1 728 integra-
tion points. The dimension of vector V discretizing [A(.)] (or vector V

prior(w)
discretizing [Aprior(. ; w)]) is then mV = 21 × Np = 36 288. It should be noted
that the number of independent Gaussian germs used to generate such a stochastic
model is then 36 288. Concerning the boundary conditions, the displacements are
locked at points (1, 0, 0), (1, 1, 0), (1, 1, 1) and (1, 0, 1) corresponding to the 4 cor-
ners of the face of the cube in the plane x1 = 1. An external point load (0, 1, 0) is
applied to the node of coordinates (0, 0, 1). The observed degrees of freedom are
the x2- and x3-displacements of the nodes located inside the face x1 = 0. Since
there are 49 nodes on each face of the cube whose 25 nodes inside the face, there
are m = 2 × 25 = 50 observed degrees of freedom.
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Figure 1: (Left figure): Finite element mesh of the domain. (Right figure): Cost function (δ, L) �→
J(δ, L, {[A]ij , 1 ≤ i ≤ j ≤ 6}) for the identification of the optimal prior probability model using
the experimental data sets.

(4) Experimental data sets. The objective of this application is to validate the
methodology proposed for partial experimental data (in this application, the ob-
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servation vector is only made of 50 degrees of freedom among a total of 1017
degrees of freedom). The experimental data are then synthetically generated us-
ing the stochastic boundary value problem with a perturbed version of the prior
model. We then consider νexp = 110 experimental data sets uexp,1, . . . , uexp,νexp .
Each experimental data set is defined as the observation vector uexp,� in R

m corre-
sponding to an independent realization of the response of the stochastic boundary
value problem that is to say, is such that uexp,� = h(Vexp(θ�)). The random vector
V

exp = V
prior
pert(w

exp) is a perturbation of the probabilistic model of the prior model
V

prior(w). For this perturbation of the probabilistic model, the mean matrix [Aexp ]
is not modified. The parameter w = wexp = (δexp, Lexp, {[Aexp]ij, 1 ≤ i ≤ j ≤
6}) with δexp = 0.37, Lexp = 0.33 and where the (6 × 6) real matrix [Aexp] of the
mean model for the anisotropic material is such that

[Aexp] = 1010×

⎡⎢⎢⎢⎢⎢⎢⎣
3.3617 1.7027 1.3637 −0.1049 −0.2278 2.1013
1.7027 1.6092 0.7262 0.0437 −0.1197 0.8612
1.3637 0.7262 1.4653 −0.1174 −0.1506 1.0587
−0.1049 0.0437 −0.1174 0.1319 0.0093 −0.1574
−0.2278 −0.1197 −0.1506 0.0093 0.1530 −0.1303
2.1013 0.8612 1.0587 −0.1574 −0.1303 1.7446

⎤⎥⎥⎥⎥⎥⎥⎦ .

(43)
The matrix defined by Eq. (43) corresponds to the mean value of the elasticity
tensor of the anisotropic random microstructure presented in [51].

(5) Identification with experimental data of an optimal prior model in the con-
structed family. The optimization problem defined by Eq. (13) related to the iden-
tification of the optimal prior probability model using the experimental data is
solved by the trial method. For the parameter w = (δ, L, {[A]ij , 1 ≤ i ≤ j ≤
6}), only the two parameters δ and L are free in the admissible set and [A] is
fixed to the value [Aexp]. For the trial method, the cost function w �→ J(w)
is computed for δ ∈ {0.3, 0.35, 0.38, 0.39, 0.4, 0.41, 0.42, 0.45, 0.5}, for L ∈
{0.2, 0.25, 0.28, 0.29, 0.3, 0.31, 0.32, 0.35, 0.4}and for [A] = [Aexp]. For each trial
point w, the value of the cost function J prior(w) is estimated using the stochastic
numerical model U prior(w) = h(Vprior(w)) which is solved by the Monte Carlo
method with 500 independent realizations of random vector V

prior(w). The opti-
mal value wopt = (δopt, Lopt, {[A]ij, 1 ≤ i ≤ j ≤ 6}) corresponding to the min-
imum of the cost function is obtained for δopt = 0.4 and Lopt = 0.3. Fig. 1 right
displays the graph of the cost function (δ, L) �→ J(δ, L, {[A]ij , 1 ≤ i ≤ j ≤ 6}).
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(6) Construction of the statistical reduced order optimal prior model. The
optimal prior model V

prior(wopt) is simply denoted by V
prior. Its mean value

V = E{V
prior(wopt)} is a vector in R

36 288 and its covariance matrix [CVprior ] is
a (36 288× 36 288) real symmetric matrix. These two second-order moments are
estimated with the optimal prior model using νKL = 1 000 independent realiza-
tions. The dominant eigenspace of the eigenvalue problem [CVprior ] Wj = λjW

j

is solved by using the usual subspace iteration method without assembling matrix
[CVprior ]. The (36 288 × n) real matrix [W] = [W1 . . . Wn] of the n eigenvectors
associated with the n largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn > 0 is such
that [W]T [W] = [In]. Fig. 2 left displays the graph of the relative error function

n �→ err(n) = 1 −
Pn

j=1 λj

tr[C
Vprior ]

related to the convergence (with respect to n) of the

expansion of random vector V
prior corresponding to the optimal prior model. The

left figure shows that a reasonable convergence is reached for n = 550. Fig. 2
right displays the distribution of the values of the first 550 largest eigenvalues of
covariance matrix [CVprior ].
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Figure 2: (Left figure): Graph of the error function n �→ err(n). (Right figure): Distribution of the
first 550 largest eigenvalues of covariance matrix [C

Vprior ].

(7) Construction of the polynomial chaos expansion with deterministic vector-
valued coefficients of the reduced-order optimal prior model. The calculation
of the optimal values of the deterministic vector-valued coefficients y1, . . . , yN

in R
n of the polynomial chaos expansion ηchaos(N) =

∑N
α=1 yα Ψα(Ξ) is per-

formed using the random search algorithm presented in Section 3.1 with n = 550
(which means that each unknown vector yα is in R

550). This calculation is car-
ried out for the optimal prior model and for a germ Ξ = (ξ1, . . . , ξNg) of length
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Ng. In the random search algorithm, only one permutation in I is used and is
{j1 = 1, . . . , jn = n} that is to say {1, . . . , n}. Each recurrent optimization prob-
lem Pj, for j = 1, . . . , 550, is solved using νj independent realizations. Fig. 3 left
displays the graph of function j �→ νj. The total number of independent realiza-
tions performed with the algorithm is then 2 ×

∑550
j=1 νj = 27 372.

For a fixed value of Ng and for a fixed maximum degree Nd of the polyno-
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Figure 3: (Left figure): Graph of function j �→ νj . (Right figure): L1-error function Nd �→
err(Ng, Nd) for random vector ηchaos(N) with N = h(Ng, Nd) and for Ng = 3 (thin line) and
Ng = 4 (thick line).

mial chaos, the polynomial chaos expansion with deterministic vector-valued co-
efficients for the optimal prior model has been carried with N chaos (that is to
say, the number of deterministic vector-valued coefficients y1, . . . , yN in R

550

is N = h(Ng, Nd) = (Nd + Ng)! /(Nd! Ng!) − 1. In order to calculate the log-
likelihood function, the probability density function e �→ pηchaos

j (N)(e ; y1, . . . , yN )

of ηchaos
j (N) such that ηchaos

j (N) =
∑N

α=1 yα
j Ψα(Ξ) is estimated for the νKL =

1 000 independent realizations ηprior
j (θ�) used previously for � = 1, . . . , 1 000. The

values of the probability density function pηchaos
j (N)(η

prior
j (θ�) ; y1, . . . , yN) is esti-

mated using the kernel density estimation method and νchaos independent realiza-
tions of the normalized Gaussian vector Ξ. Let e �→ pηprior

j
(e) be the estimation

of the probability density function of the optimal prior random variable η prior
j also

carried out with the kernel density estimation method. A convergence analysis of
the polynomial chaos expansion has been performed in function of the dimension
Ng of the germ and of the maximum degree Nd of the polynomial chaos. The
polynomial chaos expansion with deterministic vector-valued coefficients of the
optimal prior model has been carried out with Nd = 15, 18, 20, 22 for Ng = 3
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Figure 4: Convergence analysis with respect to the number N of chaos. Comparisons of the graph
of the optimal prior pdf e �→ p

η
prior
j

(e) (thin solid line) with the graph of the pdf e �→ pηj (e)

estimated using the polynomial chaos expansion with N chaos (thick solid line), for different
values of N and for given coordinate j (the values of j and N are indicated at the top of each
figure). Vertical axis: log10 of the pdf. Horizontal axis: value e of ηj .
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and, with Nd = 9, 10, 15, 18, 20, 22 for Ng = 4. The corresponding number
N of chaos (that is to say the number of deterministic vector-valued coefficients
y1, . . . , yN in R

550) is N = 815, 1 329, 1 770, 2 299 for Ng = 3 and, N = 714,
1 000, 3 875, 7 314, 10 625, 14 949 for Ng = 4. The number νchaos of independent
realizations of Ξ used to estimate the probability density functions of η chaos

j (N) is
νchaos = 11 000 except for Ng = 4 and Nd = 22 for which νchaos = 16 000. Fig. 3
right displays the graphs of the L1-error function Nd �→ err(Ng, Nd) defined by
Eq. (23) for Ng = 3 and Ng = 4. It can be seen that a reasonable convergence is
reached for Ng = 4 and Nd = 20, that is to say for N = N conv = 10 625 terms
in the polynomial chaos expansion of ηchaos(N). The number Ng = 4 of indepen-
dent Gaussian germs with the degree Nd = 20 yields N = 10 625 uncorrelated
non-Gaussian (but dependent) random variables used in the polynomial chaos ex-
pansion which has to be compared to the 36 288 independent Gaussian germs used
to generate the non-Gaussian spatially sampled tensor-valued random field.

Fig. 4 is related to the convergence analysis with respect to the number N =
h(Ng, Nd) of chaos. Each figure shows the comparison of the graph of the optimal
prior pdf e �→ log10(pηprior

j
(e)) with the graph of the pdf e �→ log10(pηchaos

j (N)(e ; y1,opt,

. . . , yN,opt)) estimated using the polynomial chaos expansion with N = h(Ng, Nd)
chaos. The figures show the comparisons for the coordinates j = 1, 10, 200, 300
and 550, for Ng = 4 and for Nd = 9 (N = 714), Nd = 20 (N = 10 625) and
for Nd = 22 (N = 14 949). It can be seen again a good convergence of the
probability density function for these five coordinates obtained for Ng = 4 and
Nd = 20 corresponding to the value N conv = 10 625 of N . The quality of the
convergence is similar for the other 447 coordinates. Fig. 5 displays the graph of
function j �→ errj(N

conv) defined by Eq. (22) which shows the error for each coor-
dinate j and for the value of N = N conv for which the convergence is reached. For
the configuration 10 625 (Ng = 4, Nd = 20) with n = 550 and νchaos = 11 000,
the CPU time is 28 hours using one processor with one core (in fact, about 4 hours
with 8 cores).

(8) Construction of the probability distribution of the random coefficients of
the polynomial chaos expansion and identification of the parameters using the ex-
perimental data. The optimization problem defined by Eq. (30) is simplified using
Eq. (41). The two deterministic parameters ε1 > 0 and ε2 ≥ 0 control the proba-
bility distribution of the random vectors Y 1, . . . , Y N . The optimization problem
is solved using the trial method for ε1 belonging to the set E1 = {[1.000 , 0.920]
with a step of −0.005} and for ε2 belonging to the set E2 = {[0.025 , 0.060] with a
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Figure 5: Graph of function j �→ errj(N conv).

step of 0.005}. We then introduce the mapping j �→ (ε1,j, ε2,j) from {1, . . . , 136}
into E1 × E2 For each fixed value of (ε1,j, ε2,j), the stochastic boundary value
problem is solved by the Monte Carlo method with νchaos = 11, 000 independent
realizations. The total CPU time for solving the optimization problem is 14 hours
using 64 processors. Fig. 6 displays the graph of j �→ log10 J post(ε1,jYopt, ε2,j 1)
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Figure 6: Cost function in log10 scale: graph of j �→ log10 J post(ε1,jYopt, ε2,j 1).

and yields the optimal value ε
opt
1 = 0.965 and ε

opt
2 = 0.045. The probability

density function u �→ pUpost
k

(u ;Yopt, σopt) is estimated with the posterior model
U post(Y opt, σopt) = h(Vpost(Yopt, σopt)). In order to validate the method, we compare
pUpost

k
with the experiments. Then an approximation p̂U

exp
k

(u; νexp) of the probabil-

ity density function u �→ pU exp
k

(u) of the experimental random observation vector
U exp

k is estimated with the experimental data {uexp,1, . . . , uexp,νexp}. Fig. 7 shows
the comparison of u �→ log10 pU

post
k

(u ;Yopt, σopt) with u �→ log10 p̂U
exp
k

(u; νexp) and

with u �→ log10 pUprior
k

(u ;Y opt) for two observed DOF k corresponding to the x2-
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displacement of nodes 19 and 27 located inside the face x1 = 0. The probability
density functions are estimated using the kernel density estimation method. The
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Figure 7: For observed DOF k corresponding to the x2-displacement of nodes 19 (top figures) and
27 (down figures), graphs of u �→ log10 p̂

U
exp
k

(u; νexp) (thin solid lines), u �→ log10 p
U

prior
k

(u ;Yopt)

(dashed thick lines), u �→ log10 p
U

post
k

(u ;Yopt, σopt) (thick solid lines).

two figures on left show that the prior probability density functions are already a
good approximation of the experimental probability density functions thanks to
the identification with the experimental data of the optimal prior model which has
been performed in Step 2. The two figures on right show that the posterior proba-
bility density functions are better approximations of the experimental probability
density functions with respect to the prior probability density functions, even if
the improvement stays small, but significant, in this case.

(9) Quality assessment of the posterior stochastic model. In Subsection (8)
above, we have compared the probability density function u �→ pUpost

k
(u ;Yopt, σopt)

with the reference solution represented by the probability density function u �→
pU exp

k
(u) of the experimental random observation vector U exp

k . The comparaisons
shown in Fig. 7 are related to the observed DOF for which experimental data
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were available and have thus been used in the identification procedure. In or-
der to give a quality assessment of the posterior stochastic model, we present a
comparison of these quantities for DOF which have not been used to identify the
posterior stochastic model. We then consider the two additional observed DOF
k′ corresponding to the x2-displacement of the node 76 for which the coordinates
are (0.1667, 0.500, 0.8333) and of the node 170 for which the coordinates are
(0.500, 0.500, 0.1667). These two nodes are located inside the cube. Fig. 8 shows
the comparison of u �→ log10 pU

post
k′

(u ;Yopt, σopt) with u �→ log10 p̂U
exp
k′

(u; νexp)

and with u �→ log10 pU
prior
k′

(u ;Y opt) The probability density functions are estimated

using the kernel density estimation method. The two figures on right validate the
quality of the posterior stochastic model for degrees of freedom which have not
be used to identify it.
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Figure 8: For DOF k′ not used in the identification of the posterior stochastic model and cor-
responding to the x2-displacement of nodes 76 (top figures) and 170 (down figures), graphs
of u �→ log10 p̂

U
exp
k′

(u; νexp) (thin solid lines), u �→ log10 p
U

prior
k′

(u ;Yopt) (dashed thick lines),

u �→ log10 p
U

post
k′

(u ;Yopt, σopt) (thick solid lines).
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5. Conclusions

An approach has been proposed to identify polynomial chaos expansion in
high dimension of tensor-valued random field with partial experimental data through
a stochastic boundary value problem. A complete methodology made up of five
steps and associated algorithms have been proposed. The application presented
shows the effective capability of the approach presented. With such a new method-
ology, the inverse identification and the convergence analysis of the polynomial
chaos expansion with deterministic coefficients has been able to be done for tensor-
valued random field which constitutes a novel result. Concerning the last step
devoted to the construction and the inverse identification of the polynomial chaos
expansion with random coefficients, a constructive approach based on the use of
the log error function of the probability density function has been proposed. The
asymptotic sampling Gaussian distribution constructed with the Fisher informa-
tion matrix recently introduced could also be used as well as the Bayesian pos-
teriors. Finally, if experimental data corresponding to direct field measurements
(in all the domain) by image processing of the random field are available, then the
identification of the polynomial chaos expansion in high dimension can directly
be performed using Step 3 and Step 4.
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