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SUMMARY

A new generalized probabilistic approach of uncertainties is proposed for computational model
in structural linear dynamics and can be extended without difficulty to computational linear
vibroacoustics and to computational nonlinear structural dynamics. This method allows the prior
probability model of each type of uncertainties (model-parameter uncertainties and modeling errors)
to be separately constructed and identified. The modeling errors are not taken into account with
the usual output-prediction-error method but with the nonparametric probabilistic approach of
modeling errors recently introduced and based on the use of the random matrix theory. The theory,
an identification procedure and a numerical validation are presented. Then a chaos decomposition
with random coefficients is proposed to represent the prior probabilistic model of random responses.
The random germ is related to the prior probability model of model-parameter uncertainties. The
random coefficients are related to the prior probability model of modeling errors and then depends
on the random matrices introduced by the nonparametric probabilistic approach of modeling errors.
A validation is presented. Finally, a future perspective is introduced when experimental data are
available. The prior probability model of the random coefficients can be improved in constructing a
posterior probability model using the Bayesian approach.
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1. Introduction

This paper is devoted to the presentation of a generalized probabilistic approach which allows
an independent modeling of both model-parameter uncertainties and modeling errors to be
performed for computational dynamical models in structural dynamics, structural acoustics,
vibration or vibroacoustics, for linear or nonlinear problems. This means that we consider a
computational dynamical model of a real system as a selected class of mathematical models
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2 C. SOIZE

with an input and an output and depending on a model parameter and on a design parameter.
Once the class of computational models has been selected, two types of uncertainties can
be identified. The first type is related to the model-parameter uncertainties which mean
that the model parameter is not exactly known and is uncertain. The second type is due
to modeling errors which are introduced by the mechanical-mathematical process allowing
the computational dynamical model to be constructed. The modeling errors introduce model
uncertainties in the response predictions constructed with any model belonging to the selected
class. This second type of uncertainties will be called model uncertainties. It should be
noted that the robust design optimization consists in finding the optimal value of the design
parameter which maximizes a cost function related to the model output predicted with the
computational dynamical model for which uncertainties are modeled.

Various methods exist for assessing uncertainties in a model. These methods are either
probabilistic or deterministic (see for instance [25], [37]). Today, it is well understood that the
probabilistic approach of uncertainties must be used as soon as the probability theory can be
applied. In this paper, we limit the developments to the cases for which the probability theory
can be used to model uncertainties. The construction of the probabilistic model of uncertainties
is a fundamental problem which must carefully carried out in order to improve the quality of
the predictions of the computational model but also to solve in the best conditions robust
design optimization (see for instance [24], [6], [38]).

A model chosen in the selected class will be called the mean model. For given nominal
values of the model parameter, the mean model is often called the nominal model. The
uncertainties are then related to the mean model. For the construction of the probabilistic
model of uncertainties, two main cases have to be considered. For the first one, no experiment
of the real system is assumed to be available in order to update the model and to identify
the prior probabilistic model of uncertainties. In this case, the prior probabilistic model must
have the capability to take into account model uncertainties because there are no possibilities
to improve the prior probabilistic model using experiments. In opposite, for the second one,
some experiments are assumed to be available to update the mean model [49], [53], to identify
the prior probabilistic model of uncertainties [52], [53], [9], [50] and to construct a posterior
probabilistic model (see for instance [4] [52], [22]). Today, the first case is a frequent situation
encountered for the design and the optimization of complex mechanical systems and has to
be carefully analyzed. This means that no experiment is available and that there is neither
possibility to update the mean model with experiments nor to identify the prior probability
model of uncertainties using mathematical statistics such as the maximum likelihood method
or the Bayesian method. In these two cases, the prior probabilistic approach of uncertainties
which has to be developed must have the capability to represent modeling errors for the family
of models spanned when the design parameter runs through all its admissible set.

Concerning model-parameter uncertainties, the main method is based on the used of the
parametric probabilistic approach which has extensively been developed in the last three
decades, which is still in development and which allows the uncertain model parameters of
the mean model to be taken into account through the introduction of a prior probability
model of these model parameters (see for instance [16], [2], [27], [36], [47], [3], [32]). Such an
approach consists in modeling uncertain model parameters by a vector-valued random variable
(this random vector can correspond to the finite approximation of a random field). The prior
stochastic modeling of model-parameter uncertainties then consists (1) either in constructing
an adapted representation based on a polynomial chaos decomposition (see for instance [16],
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GENERALIZED PROBABILISTIC APPROACH OF UNCERTAINTIES 3

[19], [17], [26], [44], [18], [36], [10], [9], [20]) (2) or in directly constructing the probability
distribution of the random quantity using the available information and the Maximum Entropy
Principle introduced by Jaynes [21] in the context of Information Theory developed by Shannon
[40] (see for instance [23], [22] and for recent developments in this field [48]).

Concerning model uncertainties induced by modeling errors, it is today well understood that
prior and posterior probabilistic models of the uncertain model parameter are not sufficient
and do not have the capability to take into account model uncertainties as explained in the
context of computational mechanics (see for instance [4], [41], [45], [46]). Two main methods
can be used to take into account model uncertainties (modeling errors).

(i) The first one consists in introducing a probabilistic model of the output prediction error
which is the difference between the real system output and the model output (note that such
a probabilistic approach of model uncertainties is implemented at the output level of the
mean model and not implemented at the operator level of the model). When experiments
are available, the observed prediction error is then the difference between the measured real
system output and the model output. A posterior probabilistic model can be constructed using,
for instance, the Bayesian approach (see for instance [4]). With such a method, it is usually
assumed that the measurement noise is negligible compared with the prediction error. The
advantage of such an approach is its simplicity and its efficiency when simultaneously, a lot of
experiments are available and the design parameters are fixed. However, such an approach is
not really adapted if the design parameters are not fixed but have to run through an admissible
set of values in the context of robust design optimization. Another reason is necessity that
modeling errors be taken into account at the operator level of the mean model, for instance to
take into account the mass and stiffness operators in order to analyze the generalized eigenvalue
problem related to a dynamical system. In this case, the output-prediction-error method is not
really adapted to take into account modeling errors.

(ii) The second one is based on the nonparametric probabilistic approach of model uncertain-
ties (modeling errors) which has recently been proposed in [41] as another possible way to the
use of the output-prediction-error method in order to take into account modeling errors. The
nonparametric probabilistic approach consists in directly constructing the stochastic modeling
of the operators of the mean computational model instead of introducing a probabilistic model
of the prediction errors. The random matrix theory (see for instance [1] and [29]) is used to
construct the prior probability distribution of the random matrices modeling the uncertain
operators of the mean model are constructed using again the Maximum Entropy Principle
for which the constraints are defined by the available information [41], [42], [43], [45], [46].
Since the paper [41], many works have been published in order to validate the nonparametric
probabilistic approach of model uncertainties with experimental results (see for instance [7],
[46], [8], [12], [13], [50], [14]) and to extend the theory, in particular, with the introduction
of a new set of positive-definite random matrices yielding a more flexible description of the
dispersion levels [30], with the analysis of complex vibroacoustic systems in the medium-
frequency range [13], [14], with the analysis of nonlinear dynamical systems for local nonlinear
elements [11], [35] and for distributed nonlinear elements or nonlinear geometrical effects [31].

It should be noted that the major difference between the two approaches (i) and (ii)
described above is due to the fact that the statistical fluctuations of responses generated by the
output-prediction-error method are independent of the state variable of the dynamical system
while the statistical fluctuations of responses generated by the nonparametric probabilistic
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4 C. SOIZE

approach depend on it. Approach (ii) has been proposed to avoid the difficulty induced in
(i). As it has been proven in [41], [45] and [46], the nonparametric probabilistic approach
has the capability to simultaneously take into account both model-parameter uncertainties
and modeling errors. With such an approach, for each random matrix of the stochastic
reduced computational model such as the generalized mass matrix for instance, the level
of uncertainties induced by both model-parameter uncertainties and modeling errors are
controlled by only one dispersion parameter. Consequently, with such an approach, the level
of uncertainties for the model parameter cannot be separated from the level of uncertainties
induced by modeling errors. In addition, in the nonparametric probabilistic approach and
by construction, the mean value of each random matrix is chosen as the matrix of the
reduced mean computational model associated with the nominal value. Clearly, this point
could be improved in choosing the mean value of each random matrix as the mean matrix of
the stochastic computational model induced only by the parametric probabilistic approach
of model-parameter uncertainties. Such a method should required again to separate the
probabilistic model of model-parameter uncertainties and of modeling errors. This is the reason
why, we propose a generalized probabilistic approach of uncertainties allowing both the model-
parameter uncertainties and modeling errors to be simultaneously taken into account but in a
separate way. This new method allows the prior probability model of each type of uncertainties
(model-parameter uncertainties and modeling errors) to be separately constructed and to be
separately identified with experiments if experiments are available. In addition, this method
will allow the biais of the mean values of the stochastic responses to be decreased. In a first part
of the paper, we present the theory, an identification procedure of the dispersion parameters
controlling the level of each type of uncertainties when experimental data are available, and
a numerical validation. In a second part, we show how the chaos decomposition with random
coefficients [51] can be used to represent the prior probabilistic model of random responses of
the stochastic computational model. The random germ of the chaos decomposition is related
to the prior probabilistic model of model-parameter uncertainties. The random coefficients
of the decomposition are related to the prior probability model of modeling errors and then
depends on the random matrices introduced by the nonparametric probabilistic approach of
modeling errors. It can then be deduced that the chaos are then statistically independent
of the random coefficients of the chaos decomposition. Finally, when experimental data are
available, a posterior probability model of these random coefficients is proposed using the
Bayesian approach.

In order to simply explain all the aspects of this new method, we have chosen to present
the developments for the most simple context of structural linear dynamics. The extension to
other cases is straightforward in particular:

- for computational vibroacoustics in low- and medium-frequency ranges with modeling
errors in the structure, in the acoustic cavity, for the vibroacoustic coupling operator and for
insulation schemes (see [13], [14])

- for computational nonlinear structural dynamics with local or distributed nonlinear
elements [11], [35] or with nonlinear geometrical effects in the general context of three-
dimensional nonlinear electrodynamics [31].
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2. Formulation of a prior generalized probabilistic approach of uncertainties

2.1. Introduction of the mean computational model

As explained at the end of Section 1, in order to simply explain the method proposed, we have
chosen to limit the developments to computational models of linear dynamical systems made
up of a three-dimensional damped fixed structure around a static equilibrium configuration
considered as a natural state without prestresses and subjected to an external load. For
given nominal values of the parameters of the dynamical system, the basic finite element
model is called the mean computational model. In addition, it is assumed that a set of model
parameters has been identified as uncertain model parameters. These model parameters are
the components of a vector X = (x1,...,2,,) belonging to an admissible set Cpgy which is a
subset of R™». The linear dynamical equation of the mean computational model is then written
as

[MO]Y(E) + (DY () + [KX)y(E) =t %) (1)
in which y = (y1,...,%m) is the unknown time response vector of the m degrees of freedom
(DOF) (displacements and/or rotations); ¥y and y are the velocity and acceleration vectors
respectively; f(t;X) = (f1(¢;X), ..., fm(t;X)) is the known external load vector of the m inputs

(forces and/or moments); [M(x)], [D(x)] and [K(x)] are the mass, damping and stiffness
matrices of the mean computational model, which belong to the set M (R) of all the positive-
definite symmetric (m xm) real matrices.

It should be noted that the corresponding nonlinear dynamical equation of the mean
computational model would have been written as

[MO)]Y(E) + [DOO]Y(E) + [KO)]y(E) + fac(y (), y(8); x) = F(t5%)
in which (y,z) — fnL(Y,2) would have been a nonlinear mapping from R™ x R™ into R™
modeling additional nonlinear damping and restoring forces. As we have explained above, we
consider now the linear case taking fy. = 0 and yielding Eq. (1).

2.2. Introduction of the reduced mean computational model

There are two main possibilities to construct the reduced mean computational model in the
context of the parametric probabilistic approach of model-parameter uncertainties for which
parameter X is modeled by a random variable X. The mean value of X will be the nominal
value X = (24, ... ,znp) of the uncertain model parameter X and the support of its probability
distribution on R™” is Cpar.

(1) The first one consists in solving the generalized eigenvalue problem associated with
the mean mass and stiffness matrices for X fixed to its nominal value X. We then obtain the
elastic modes of the nominal mean computational model which are independent of X and which
depend only on X which is fixed. In this case, when X runs through Cpa, matrices [M(X)] and
[K(X)] have to be projected on the subspace spanned by the elastic modes of the nominal mean
computational model. For very large computational model (m can be several tens of millions)
such an operation is not easy to perform with usual commercial softwares which often are
black boxes.

(2) The second one consists in solving the generalized eigenvalue problem associated with
the mean mass and stiffness matrices for each required X belonging to Cpa. In this case, the
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6 C. SOIZE

elastic modes of the mean computational model depend on X. In the context of the parametric
probabilistic approach of model-parameter uncertainties, we then have to solve a random
generalized eigenvalue problem and such an approach is better adapted to usual commercial
softwares and allows a fast convergence to be obtained with respect to the reduced order
dimension. In addition, some algorithms have been developed in this context for random
eigenvalue problems of large systems [33]. In order to limit the developments, we will focus the
presentation using this second approach. The extension to the first approach is straightforward
from a theoretical point of view (see for instance [41]). Finally, it should be noted that
the random generalized eigenvalue problem can also be considered in a polynomial chaos
decomposition for which an efficient approach has been proposed [19]. Such an ingredient can
be added without difficulty in the developments presented below but would induce an addition
degree of difficulty in the understanding which could mask the ideas of the method proposed.

For each value of X given in Cpa, the generalized eigenvalue problem associated with the
mean mass and stiffness matrices is written as

(KOO p(x) = AX) [MO)] (x) (2)

for which the eigenvalues 0 < A1(X) < A2(X) < ... < A\ (X) and the associated elastic modes
{p1(X), p2(X),...} are such that

<M @a(x), 9s(X) >= a(X) dap . <[KX)]@a(X),@s(X)>= p1a(X) wa(X)*dap , (3)

in which wa(X) = /Ao (X) is the eigenfrequency of elastic mode ¢, (X) whose normalization is
defined by the generalized mass jiq(X) and where <u,v>= } . u;v; is the Euclidean inner
product of the vectors u and v.

For each value of X given in Cpa, the reduced mean computational model of the dynamical
system is obtained in constructing the projection of the mean computational model on the
subspace H,, of R” spanned by {¢1(X),...,@,(X)} with n < m. Let [¢,(X)] be the (m x n)
real matrix whose columns are vectors {¢@i1(X),. .., @,(X)}. The generalized force f™(¢;X) is an
R"-vector such that f™(t;X) = [ ¢, (x)]7 f(¢;X). For all X in Cpar, the generalized mass, damping
and stiffness matrices [M,(X)], [Dr(X)] and [K,(X)] belong to the set M} (R) and are defined
by

(M (X)]ap = pa(X) dag s [Dn(X)]as =<[D(X)] @5(X) s @a(X)>, [Kn(X)]as = pa(X) wa(X)Q 504(5 »)

4
in which, generally, [D,,(X)] is a full matrix. Consequently, for all X in Cpa and for all fixed ¢, the
reduced mean computational model of the dynamical system is written as the projection y™(t)
of y(t) on H,, which can be written as y"(t) = [, (X)] " (¢) in which the vector q™(¢) € R™ of
the generalized coordinates verifies the differential equation,

(M ()] 8" (8) + [Dn ()] G (1) + [Kn(x)] 9" () = f"(t:;%) (5)

2.8. Development of a prior generalized probabilistic approach of uncertainties

The prior generalized probabilistic approach of uncertainties which is proposed consists in
simultaneously used the parametric probabilistic approach of model-parameter uncertainties
and the nonparametric probabilistic approach of model uncertainties (modeling errors). In this
section, the complete methodology is presented.

Copyright (© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-32
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GENERALIZED PROBABILISTIC APPROACH OF UNCERTAINTIES 7

2.8.1. Methodology for the construction of the prior generalized probabilistic approach of
uncertainties. Let (©,7,P) and (©’,7',P’') be two probability spaces. The first one will
be devoted to the probabilistic model of model-parameter uncertainties using the parametric
probabilistic approach and the second one to the probabilistic model of model uncertainties
(modeling errors) using the nonparametric probabilistic approach. Let X = {6 — X(6)} be a
random variable defined on (0,7, P) and let [G] = {#' — [G(#’)]} be another random variable
defined on (©',7',P’). The two random variables X and [G] are then independent and their
mathematical expectations are such that

X} = [ x@)ap@) . B{e) = [ @) @) . (©

If Q = h(X,[G]) is a random variable defined by a given deterministic transformation h of
independent random variables X and [G], then the mathematical expectation of Q is

E{Q}=/@ @/h(X(G),[G(9’)])d7”(9’)d7’(9) : (7)

(1) The first step of the generalized probabilistic approach of uncertainties consists in
constructing the probabilistic model of model-parameter uncertainties for which parameter
X is modeled by a random variable X defined on probability space (©,7,P). Consequently, the
generalized matrices in Eq. (5) become random matrices [M,,(X)], [D,(X)] and [K,,(X)] and,
for all fixed ¢, the generalized external force f™(¢;X) becomes a random vector f™(¢; X). The
mean values of these random matrices are denoted by [M,,], [D,,] and [K,,]. We then have

E{M,(X)I} = [M,] , E{[Dn(X)]} = (D], E{[K.(X)]} = [K,] . (®)

It should be noted that the mean matrices [M,,], [D,,] and [K,,] are different from the matrices
[M,,(X)], [Dn(X)] and [K,(X)] of the nominal mean computational model.

(2) The second step of the generalized probabilistic approach of uncertainties consists
in constructing the probabilistic model of model uncertainties (modeling errors) in using
the nonparametric probabilistic approach [41] (see the additional explanations given in
Section 2.3.4). Therefore, for all X fixed in Cpa, the matrices [M,(X)], [Dn(X)] and [K,(X)]
are replaced by independent random matrices

M ()] ={8" = M (8]}, Dn(X)] = {0" = [Da ()]}, [Kn(¥)] = {8 = [Kn (6 2)]} (9)

defined on probability space (0',7’,P’) and belonging to the set of random matrices
introduced in [41] and [46], or in [30]. In order to simplify the presentation, we will limit
the developments to the case for which these random matrices belong to the set SE™ of
random matrices introduced in [46]. The extension to the use of the set introduced in [30]
is straightforward. The mathematical expectation of these random matrices must be such that
(see the reasons developed in Section 2.3.4),

E{Mn (O]} = [Mn(¥)] , E{[Dn()l} = [Dn(X)] »  E{Ka()I} = [Kn(¥)] . (10)

(3) The last step of the construction of the generalized probabilistic approach of uncertainties
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8 C. SOIZE

then consists in replacing in Eq. (5) X by X and in replacing the dependent random matrices
[M,,(X)], [Drn(X)] and [K,,(X)] by the dependent random matrices

M (X)] = {(6,6") — M (0 X(60))]}

[Dn (X)] = {(6,6) — [Dn (6" X(6))]}

[Kn(X)] = {(0,0") — [Kn(0"; X(0))]} (11)
(

defined on the probability space (@ x©', T T',P®P’). From Egs. (8) and (10), it can easily
be deduced that

E{M.(X)I} = [M,] , E{D.(X)]} =[D,] , E{Ku(X)]}=[EK,] . (12)

2.8.2. Stochastic reduced computation model generated by the prior generalized probabilistic
approach of uncertainties. The generalized probabilistic approach of uncertainties consists in
replacing the mean computational model by the following stochastic reduced computational
model,

Y (t) = [¢n(X)]Q"(1) (13)

Mn(X)] Q™ (1) + [Dn(X)] Q" (%) + [Kn(X)] Q™ (t) = (5 X) (14)

in which for all fixed t, Y™(¢t) = {(0,6") — Y™(0,0';t)} is an R™-valued random vector and

Q" (t) = {(0,0") — Q™(0,0';t)} is an R™-valued random vector defined on (@ x 0", 77", P®

P’). Thus, for any realization X(6) of random variable X with ¢ in ©, and for any realization

M, (67;X)], [Dn(0'5X)], [Kn(0';%)] of independent random matrices [M,,(X)], [Dn(X)], [Kn(X)]

for ¢ in © and X in Cpa, the realization Y™(0,6’;t) of the random variable Y™ (¢) and the
realization Q™(6,6';t) of the random variable Q™ (¢) verify the deterministic problem

Y"(6,6'5t) = [¢n(X(0)] Q" (6,6'5t) (15)
M. (6 X(6))] Q™ (6, 6':£) + [Du (8 X(6))] Q" (6, 65 8) + [Kn (6 X (6))] Q" (6, 6" 1) = f”(t;x((@)j
16

2.8.3. Construction of the prior probability model of model-parameter uncertainties. The
uncertain model parameter X (whose nominal value is X) is modeled by a random variable
X = (Xi,...,Xy,), defined on probability space (©,7,P), with values in R"». The unknown
probability distribution of X which is denoted by Pk is assumed to be defined by a probability
density function X — px (X) from R into R™ = [0, +-00[ with respect to the Lebesgue measure
dX =dzy ...dxy,,. Under the assumption that no experimental data are available to construct
px, the prior model can be constructed using the maximum entropy principle [21] introduced
in the context of Information Theory [40]. For such a construction, the available information
has to be defined. Since X belongs to Cpar, the support of px must be Cpar and the normalization
condition must be verified. We then have,

SUPP px = Cor C R™ / px<x>dx=/ px(X)dx=1 . (17)
R"Pp cpar

Since X € Cpar C R™ of X is a nominal value, an additional available information consists in
writing that the mean value E{X} of X is equal to X which yields the following constraint

equation,
/ X px(X) dx =
R’V}p

Copyright (© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-32
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GENERALIZED PROBABILISTIC APPROACH OF UNCERTAINTIES 9

In general, an additional available information can be deduced from the analysis of the
mathematical properties of the solution of the stochastic computational model under
construction. The random solution Q™ of the stochastic computational model defined by
Eq. (14) must be a second-order vector-valued stochastic process (because the dynamical
system is stable) which means that, for all ¢, we must have E{||Q"(¢)[|?} < +oo. In order
that such a property be verified, it is necessary to introduce a constraint which can always be
written as the equation E{g(X)} =y on R*, in which v = (y1,...,7,) is a given vector in R*
with ¢ > 1 and where X — g(X) = (g1(X), ..., gu(X)) is a given measurable mapping from R"»
into R*. Consequently, the additional available information defined the following constraint
equation,

gxX) px(X)dx =y . (19)

R™P

Let C be the set of all the probability density functions px defined on R™ with values in RT
such that Egs. (17) to (19) hold. The maximum entropy principle consists in constructing
px € C such that

px = argmax S(p) (20)
peC

in which the entropy S(p) of the probability density function p is defined by

S0 == [ 900 loalp00) (21)

where log is the Neperian logarithm. Such an optimization problem can be solved as explained
in [21],[23] if n,, is very small (one or a few units). For high dimension case (for instance, n,, is
several tens or hundreds) advanced methodologies such as the methodology presented in [48]
must be used.

Let [A,(X)] be the random matrix representing any one of the three random matrices
[M,,(X)], [Dn(X)] or [K,(X)] with values in M} (R). In order that E{||Q"(¢)|?} < +oo for
all ¢, we will see below that it is necessary that the probabilistic model of X must be such that,
for all second-order R"-valued random variable Q defined on (0,7, P), we have,

B{<[An(X)]Q.Q>} = o E{|IQI*} (22)

in which ¢, > 0 is a positive finite real constant and where ||u]| =<u,u>'/2 is the Euclidean

norm of vector U. The constraint defined by Eq. (22) allows an equation of the type defined
by Eq. (19) to be constructed in which y is a free parameter. Since Eq. (19) is a vectorial
equation of dimension y, the solution px of Eq. (20) depends on the free R#-valued parameter
v. However, parameter y has generally no physical meaning and it is better to express v in
terms of an R¥-valued parameter 8x which corresponds to a well defined statistical quantity for
random variable X. In general, 8x does not run through R* but must belong to an admissible
set Cx which is a subset of R*. Consequently, px depends on Cpa, X and 8x. Since Cpar and X are
given and since 8x is a free parameter, we will indicate the dependence in 8x of px in writing
this probability density function as

X = px(X; sx) with dx € Cx C R¥* . (23)

Copyright (© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-32
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10 C. SOIZE

2.8.4. Construction of the prior probability model of model uncertainties (modeling errors).
Let A be the letter M, D or K relatively to the generalized mass, damping or stiffness matrix.
In the nonparametric probabilistic approach of both model-parameter uncertainties and model
uncertainties (modeling errors) introduced in [41], the probability model of the statistical
fluctuations of the random matrix [A,] has been constructed around the deterministic nominal
value [Ay, (X)] of the matrix in the nominal computational model. For the generalized approach
of uncertainties which is proposed below, since the model-parameter uncertainties are taken
into account by the parametric probabilistic approach in introducing the random matrix
[A,(X)], only the model uncertainties (modeling errors) must be taken into account by the
nonparametric probabilistic approach of uncertainties. This means that the probability model
of the statistical fluctuations of the random matrix [A,] due to the model uncertainties must
be constructed around the random matrix [A,,(X)] and not around the deterministic nominal
value [Ay(X)]. Such a construction of the probability model of modeling errors is performed
below.

Following the methodology of the construction of the nonparametric probabilistic approach
(see [41], [42], [46]), for all X in Cpa, the construction of the probability model of random
matrices [M,,(X)], [Dn(X)] and [K,,(X)] defined on probability space (0, 7", P’) is based on the
available information deduced from the fundamental properties of the dynamical system and
from additional properties required in order that a second-order stochastic solution exists for
Eq. (14) (see [42], [46]). These random matrices must be such that, for all X in Cpar,

Mn ()], [Pn(X)], Kn(X)] € MI(R) as. (24)
the mean values of these random matrices are defined by Eq. (10) and we must have
E{[Mn()] 717} < 400, E{IDa)]7MlE} < 400, E{I[Ka()]7 7} < +oo ,  (25)

in which ||A| r is the Frobenius norm of [A] such that ||A||%2 = tr{[A]T[A]} in which [A]T
denotes the transpose of [ A] and where tr{[ B]} is the trace of [ B]. Since for all X in Cpar, the
deterministic matrices [M,,(X)], [D,(X)] and [K,,(X)] are in M} (R), there are upper triangular
matrices [Laz, (X)], [Lp, (X)] and [Lg, (X)] in the set M,(R) of all the square (n x n) real
matrices, such that

[M;, ()] = [Lag, ()] [Lar, ()] + [Du(X)]=[Lp, ()] [Lp, (¥)] , [Kn(X)]=[LKH(X)]T[LK”(X()2]6-)
As shown by Eq. (4), matrices [M,,(x)] and [K,(X)] are diagonal but if another projection basis
had been chosen these matrices would have been full. Following the construction proposed in
Section 2.3.1-(2) and the available information being defined by Eqgs. (24), (10) and (25), for
all X in Cpar, the random matrices [M,,(X)], [Dn(X)] and [K,(X)] defined on probability space
(©',T',P') are statistically independent and each random matrix belongs to the set SE*
defined in [46]. Consequently, for all X in Cpar, these random matrices are written as

M, (%)= [Las, ()] (G, ] [Lar, (X)]
[Dn(X)]=[Lp, ()" [Gp,][Lp,(X)]
[Kn ()] =L, (] G, ] [Lrc, (¥)] (27)

in which the random matrices [Gas, ], [Gp,]| and [Gg,] are the random germs which are
defined on probability space (@', 7', P’), which are statistically independent and which belong

Copyright (© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-32
Prepared using nmeauth.cls



GENERALIZED PROBABILISTIC APPROACH OF UNCERTAINTIES 11

to the set SG defined in [46] and consequently, are random matrices with values in M} (R).
Since the available information defined by Eq. (25) are inequations, the maximum entropy
principle which has been used to construct the probability distribution of the random germs
n [41], [42] and [46], introduces one free parameter for each random germ which can be
expressed as a function of a dispersion parameter § denoting either §y;, dp or dx for each
one of the three random matrices. Consequently, the probability distributions depend on these
dispersion parameters which allow the level of the statistical fluctuations to be controlled.
Let 8¢ = (0p,0p,dk) be the vector of the dispersion parameters belonging to an admissible
set Cg C R3. The joint probability density function PG, 1[G, 1.[Gx,,] Of the random matrices
[Gu, ], [Gp,], [Gk, ] is written as
p[GI\/InL[GDn],[GK”]([GMW,]’ [GDnL [GKn]; SG)

= P61, 1[G, )5 001) X oy, 1[G, 6D) % Pow, ) ([Gk, 5 k) - (28)
The probability distribution of each random matrix [Gays,], [Gp,,] or [Gk, ] and their algebraic
representations useful for generating independent realizations are defined in [46]. Nevertheless,

in order that this paper be sufficiently self-contained and in order to simplify its reading, we
briefly summarize in the next section the main properties of set SG*.

2.3.5. Ensemble SG' of random matrices. This ensemble is defined as the second-order
random matrices [G,,], defined on the probability space (©’, 7', P’), with values in M, (R), such
that E{[G,]} = [I,,] where [1,] is the (nxn) unity matrix and such that E{||[G,]'[|%} < +oc.
The level of statistical fluctuations of such a random matrix is controlled by the dispersion
parameter § > 0 defined by

6 = {E{I[Gn] = (L] IF}/ I L) 1332 = {E{ [Gu] — L] I3} /n}'2 (29)
which must be such that § € [0, dg[ with g = (n+1)"/2(n+45)~'/2. The probability distribution
Py, of random matrix [G,] is completely defined in [46].

The following algebraic representation of the random matrix [G,,] allows a procedure for
the Monte Carlo numerical simulation of random matrix [G,] to be defined. The random
matrix [G,] for which the probability distribution is P, can be written as [Gy] = [L,]” [L,]
in which [L,] is an upper triangular random matrix with values in M, (R) such that: (1)
the random variables {[L,];;,7 < j'} are independent; (2) for j < j’, the real-valued
random variable [L,];;» can be written as [L,];;; = o0,Uj; in which o, = &(n + 1)71/2
and where Uj; is a real-valued Gaussian random variable with zero mean and variance
equal to 1; (3) for j = j', the positive-valued random variable [L,];; can be written as
[La]j; = 0n+/2V; in which o, is defined above and where V; is a positive-valued gamma

random variable whose probability density function py,(v) with respect to dv is written as
ntl_ 144

s (0) = B (01T (5 + 52)) 0 05 e

Let ||[A]]l be the operator norm of any matrix [A] belonging to M,(R) and defined by
[ All = supyy <1 [[[A]ul| for uin R"™. We have [[[A]ul| < [[A]|[[u]| for all u in R". An important

mathematical property of ensemble SG™ is the following one. For all n > 2, we have
E{[[[Gn] 7'} < C5 < 400, (30)

in which Cj is a positive finite constant that is independent of n but that depends on §. This
inequation means that n — E{||[G,] 7|} is a bounded function from {n > 2} into R™.
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12 C. SOIZE

2.8.6. Generalized probabilistic model for the random matrices of the stochastic computational
model. Taking into account Sections 2.3.1 to 2.3.4, and in particular Eq. (27), the dependent
random matrices [M,,(X)], [D,(X)] and [K,(X)] introduced in Eq. (14) are written as

M (X)) =[Lar, X)) [Gar,] [Lar, (X)]

[Dn(X)]=[Lp,(X)]" [Gp,][Lp,(X)]

[Kn(X)] =Lk, (X)]" Gk, [Lx,(X)] . (31)
These random matrices which are defined on the probability space (© x ©',7 ® T/, P ® P’)
are second-order random variables and their mean values are given by Eq. (12). For all 6 in
© and for all #" in ©', the realization [M,(6"; X(0))], [D,(6';X(0))] and [K,,(8";X(0))] of the
random matrices [M,,(X)], [Dn(X)] and [K,,(X)] are such that

M (0" X (0))] = [Lar,, (X(O)]T (G, (6] [Lar, (X(0))]
D (6" X(0)]=[Lp, (X())]" [Gp,. ()] [Lp,.(X(©))]
[Kn (0" X (0)]=[Lx, (X(O))]" [G,, (0] [Lic, (X(O))] (32)

The realization X(6) is constructed with a generator of independent realizations of random
variable X whose probability density function px (., dx) is defined by Eq. (23). The independent
realizations [Gyy, (0')], [Gp, (0")] and [Gk, (0')] are constructed with the generator presented
in Section 2.3.5 of random matrix [G,] whose probability density function pjg |([Gr];0) is
defined in [46].

Let A denoting M, D or K relatively to the generalized mass, damping or stiffness matrix.
For all second-order random variable Q = {(6,6") — Q(6,6")} defined on probability space
(Ox0, TRT', PRP’) with values in R™, it can be proven the following fundamental inequality
(non uniform ellipticity condition),

VE{<[A.(X)]Q.Q>2} > caB{QI} . (33)

in which ¢4 is a positive finite real constant independent of dimension n. The proof of Eq. (33)
is the following. From Egs. (26) and (32), it can be deduced that

<[An(X()]Q(6,6),Q(8,6) > < [[[Ga, (0]l <[An(8';X(6))]Q(6,6"),Q(6,6") >
On the other hand, Eq. (22) yields

/e <[A(X(6)]Q(6.0),Q(6,0)> dP(6) > ¢, /e 1Q(6.6)|PdP(6).
These two last equations yield

o E{QIP} < E{ll[Ga ]Il <[A.(X)]Q.Q>}.
Applying the Schwarz inequality to the right-hand side of the above equation and using Eq. (30)
yields Eq. (33).

2.8.7. Stochastic solution as a second-order stochastic process. In this section we analyse the
time evolution dynamical problem and the associated harmonic problem.
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GENERALIZED PROBABILISTIC APPROACH OF UNCERTAINTIES 13

(i) Stochastic transient solution. Let T be a positive real number. Let us assume that
fOT E{||f"(t;X)||?dt < 4oo. Using a similar demonstration that the one given in [42] and
taking into account the property defined by Eq. (33), it can be proven that, for ¢ in |0, 7] and
for zero initial conditions , the stochastic solution of Egs. (13) and (14) is a unique second-order
stochastic process. This means that for all ¢ fixed in [0, T7], we have

E{IY*()I?} < CL <400, B{IY"(#)|*} < C2 <400, (34)

in which C; and C5 are positive constants that are independent of n and ¢ but which depend
on the dispersion parameters 8x and 8g.

(ii) Stochastic solution in the frequency domain. Let U(w) = [, e~ ™'u(t)dt be the Fourier
transform of the time function ¢ — u(t). The harmonic problem associated with Eq. (1) is, for
all frequency w belonging to the frequency band of analysis is B =]0, wy,], written as

(—w? [M(X)] + iw [DX)] + [KX)]) y(w) = F(w;x) (35)

Consequently, the stochastic time evolution dynamical problem defined by Egs. (13) and (14)
is replaced by the following stochastic harmonic dynamical problem. For all w in B, construct
the C™-valued random variable Y™ (w) such that

Y (w) = [¢n(X)]Q"(w) (36)

(=0 M (X)] + iw [Dn (X)] + [Kn (X)) Q" (w) = f"(wi X) (37)

in which f"(w;X) = [¢,(X)]T f(w; X) and where Y"*(w) = {(0,0') — Y"(0,0';w)} is a C™-
valued random vector and Q"(w) = {(0,6') — Q™(0,6';w)} is an C™-valued random vector
defined on probability space (O x ©', 7 @ T',P® P’). As for the stochastic transient solution,

it can be proven that, for all w in B, the stochastic harmonic problem defined by Egs. (36)
and (37) has a unique second-order stochastic solution such that

E{[Y"(w)|?} <C < +o0 (38)

in which C is a positive constant that is independent of n and w but which depends on the
dispersion parameters 8x and 8g. For the numerical Monte Carlo simulation, Eqs. (15) and
(16) must be replaced by the following one,

Y™(0,0';w) = [¢n(X(0)]Q"(6,60"w) (39)
(=w? M (6':X(6))] + iw[Da (0 X (6))] + [Ka (6 X (0))]) Q" (6, 0" w) = ™ (w; X(B)) . (40)

3. Estimation of the dispersion parameters of the prior probability models of the generalized
probabilistic approach of uncertainties

In Section 2, we have presented a formulation for a prior generalized probabilistic approach
of uncertainties allowing model-parameter uncertainties and model uncertainties (modeling
errors) to be separately taken into account in the computational model. Firstly, this
formulation introduces a prior probability model px(X;8x) of random variable X relative to
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14 C. SOIZE

the model-parameter uncertainties and depending of a free dispersion parameter 8x belonging
to an admissible set Cx which is a subset of R¥. Secondly, this formulation introduces
a prior probability model pig,, 1)([Ga,];0n), Piep,)([Gp,];0p) and pe, 1([Gk,];0K) of
independent random matrices [Gyy, ]], [Gp,]] and [G, ]| relative to the model uncertainties
(modeling errors) and depending on a free dispersion parameter 8g = (dar,0p, dx) belonging
to an admissible set Cg which is a subset of R3.

If no experimental data are available, then the dispersions parameters 8x and 8g must be
considered as parameters to perform a sensitivity analysis of the stochastic solution. Such
a prior generalized probabilistic approach of uncertainties then allows the robustness of the
solution to be analyzed in function of the level of model-parameter uncertainties controlled by
dx and of the level of model uncertainties (modeling errors) controlled by 8¢.

For the particular case for which a few experimental data exist, we propose a methodology
to estimate the dispersion parameters of the prior probability models of uncertainties.

3.1. Estimation of the dispersion parameter of the prior probability model of the uncertain
model parameter

The first step of the method proposed consists in estimating the dispersion parameter
dx € Cx C R* of the prior probability model of the uncertain model parameter in considering
that there is no modeling error and consequently in using the stochastic computational model
with 8¢ = 0 (no modeling errors). The estimation of 8x must then be performed with
observations of the systems which are weakly sensitive to modeling errors and for which
experimental data are available. There are several possibilities in the choice of such observations
satisfying these criteria. Nevertheless, in order to limit the developments, we will propose only
one of the possibilities which is in the framework of experimental modal analysis. Note that
for a complex dynamical system, the first eigenfrequencies and the associated elastic modes
can be experimentally measured. In addition, if the corresponding computational model is
sufficiently large, the first eigenfrequencies predicted with the computational model depend on
the model-parameter uncertainties but must not depend on modeling errors (if the fundamental
eigenfrequency of the mean computational model cannot reasonably be predicted due to the
presence of significant model errors, this means that the mean computational model cannot
be considered as a correct model and must be rebuilt).

ref ref

1

Let us assumed that the first f experimental eigenfrequencies v/ .,V oare measured.

Let M¥ = (2m/®)2 be the corresponding experimental eigenvalues. Let A1,...,Az be the
corresponding eigenvalues of this stochastic computational model. Let DAy, A; (A1, A 8x)
be the joint probability density function of the random variables Ay, ..., Az. The optimal value
SQm of the dispersion parameter 8x can be estimated by maximizing the Neperian logarithm
of the likelihood function (maximum likelihood method [39],[52]),

B = arg max {In(pa,,..a;OVF, . NS 8))} (1)
x €ECx
in which pa, .. A, ()\rff, e /\}ff; dx) is estimated using the stochastic computational model with

8c = 0 and which is solved by the Monte Carlo numerical method.
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3.2. Estimation of the dispersion parameters of the prior probability model of model
uncertainties

The second step of the method proposed consists in estimating the dispersion parameter
8c € Cc C R® of the prior probability model of the model uncertainties (modeling errors)
in presence of the model-parameter uncertainties estimated in the first step that is to say
in using the stochastic computational model with 8x = 8;2"‘. For such an estimation, it
is assumed that one experimental frequency response function is available for one or for a
few observation points. We then consider the stochastic reduced computational model in
the frequency domain defined by Eqs. (36) and (37). It is assumed that neps observations
are introduced and are such that Y°%(w) = (Y7 @)y Y , (w)|) are observed in nyyeq
frequencies wi, ..., wn,,., in the frequency band of analysis B. We then introduce the random
observed vector Y = (YU (wy),..., Y% (wy,,..)) with values in R® with s = nops X nreq. Let
y'® be the deterministic vector in R® made up of the experimental data and corresponding to
Rf-valued random vector Y of the stochastic computational model. The estimation of 8¢ can
be performed by using the maximum likelihood method. Since s can be very high, this method
requires a big computational effort. We then propose to perform a usual statistical reduced
representation (representation similar to the principal component analysis or Karhunen-Loeve
expansion) and then to apply the maximum likelihood method to such a reduced representation
[50].

For 8y = 8)(()pt and for each fixed value of 8¢, let my(8g) be the R°-valued mean vector and let
[Cy(3g)] be the (s x s) covariance matrix of the random vector Y computed with the stochastic
reduced model and defined by

my(3c) = E{Y} , [Cv(8c)] = E{(Y — mv(3c))(Y — my(8¢))"}

For each given value of 8g, my (8g) and [Cy(8g)] can easily be estimated by using the stochastic
computational model with the Monte Carlo method. We introduce the eigenvalue problem

[Cv(36)] %(86) = A(8c) %(8c)

for which the positive eigenvalues are such that A1 (8g) > A2(8g) > .... The corresponding
eigenvectors 21 (3g), #2(8g), . . . belong to R® and constitute an orthonormal family of vectors for
the Euclidean norm. Let p be an integer such that 1 < p/ < s. We introduce the approximation
Y#' of Y defined by

Y =my(36) + Y \/Ai(Be) Z % (Bc) (42)
=1

in which Z = (Z1,...,Z,) is a R¥-valued random variable such that
1 A
Zj=——=<Y—my(8g), % (8c)> . (43)
’ i (8)

It is known that the components of Z are second-order centered random variables which are
uncorrelated, that is to say, are such that

E{zz"} =[1,] . (44)
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16 C. SOIZE

The order y’ of the statistical reduction is calculated in order to get an approximation with a
given accuracy ¢, independent of i/ and 8¢, such that, for all 8g in Cg,

B{Y - Y|} = E{|Y|?}

Consequently, 4/ must be chosen such that

woN (B
critery(1') <e , critery(p) = Iax (1 - %) ) (45)

in which tr is the trace of matrix. In practice, for 8g given in Cg, the dominant subspace
of matrix [Cy(8g)] associated with the p' first largest eigenvalues A;1(8g) > ... > A (3g)
is calculated by using an iteration algorithm such as the subspace iteration method. The
statistical reduction will be efficient if y' < s. Let Z¥(3g) = (2(3c), ..., 2[7(8c) be the

vector in R¥ corresponding to Z for the experimental data such that

1

ref _
z; (8g) = VoW

<y —my(3g), % (8g) >

The estimation of 8g is performed using the maximum likelihood method for the random
vector Z = (Z1,...,2Z,) whose components are centered and uncorrelated (but dependent)
random variables. The Neperian logarithm of the likelihood function is then defined by

’

w

L(8c) =Y _{ln(pz, (= (3c):8¢",86)} (46)

=1

in which, for all j in {1,... '}, the probability density function z — pz,(2; ng, dg) depends
on the known parameter B;(th and on the unknown parameter dg which must be estimated.
This likelihood function is estimated with the stochastic reduced model. The optimal value

BGOpI of 8¢ is then given as the solution of the following optimization problem,

st — 5s) . 4
¢ = arg max L(3c) (47)

4. Validation of the prior generalized probabilistic approach of uncertainties

In this Section, we present a validation of the previous theory for which the real system
corresponds to the linear elastodynamics of a three-dimensional slender elastic bounded
medium for which the mean model is carried out using the Euler beam theory. The question
analyzed in this section is not to decide if this choice is good or bad but, assuming that
the mean model is constructed using the Euler beam theory, to see how model-parameter
uncertainties and modeling errors can separately be identified using a given reference solution
relative to the real system.
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4.1. Designed system

The designed system is a slender cylindrical elastic medium defined in a cartesian co-ordinate
system (Ozyx2z3). The cylinder has length L; = 10 m and has a rectangular section with
height Ly = 1.1 m and width L3 = 1.6 m. The two end sections are located at 1 = 0 and
x1 = 10. The origine O is in the corner of the end section and Oz is parallel to the cylinder axis.
Axis Oz is the transversal axis along the height and Ox3 is the lateral axis along the width.
The neutral line has for equation {0 < z; < 10; zo = 0.550; 23 = 0.800}. The elastic medium
is made of a composite material. Concerning the boundary conditions, the displacement field
is zero on the part of the boundary defined by {(z1,2z2,23) 121 =0;0 <25 <0.11;0< 23 <
1.6} and by {(x1,22,23) : 1 = 10;0 < 29 < 0.11; 0 < 23 < 1.6}. The other parts of the
boundary of the domain are free. This means that the structure is almost simply supported on
the two lines defined by {z1 = 0; 22 =0; 0 < 23 < 1.6} and {22 = 10; 22 =0; 0 < x5 < 1.6}.
The frequency band of analysis is B =]0,1200] Hz. The external load is a point load applied
at the point (z1 = 4.250, 22 = 1.100, 23 = 0.800) and its Fourier transform is the vector-valued
function v — (0, —1p(v),0) in which 15(v) = 1 if frequency v belongs to B and 1p(v) =0 if v
does not belong to B. We are interested in the transversal displacement along Oxs in the plane
Oz1z2 of the neutral line at the six observation points P, Ps, P35, Py, Ps and Py belonging to
the neutral line for which z; are 1.875, 3.125, 4.250, 5.000, 6.375 and 9.250 m respectively.

4.2. Real system and generation of a reference response by numerical simulation

In this application, no experimental results are available. Consequently, a reference solution
of the real system has been constructed (1) in developing a 3D elastic model of the real
system defined in Section 4.1, (2) in discretizing this model by the finite element method
and (3) in solving the equation in the frequency domain with a frequency resolution of
1 Hz. In the model, the material is taken as homogeneous and isotropic with a Young
modulus 1.1 x 10° N/m?2, a Poisson coefficient 0.17 and a mass density 1600 K g/m?>. The
damping rate is 0.01. The finite element mesh is made up of 80 x 10 x 14 = 11,200 three-
dimensional 8-nodes solid elements. There are 13,365 nodes and a total of 39,915 degrees
of freedom (due to the boundary conditions, the displacement is zero for 2 x 30 nodes).
There are 144 eigenfrequencies in band ]0,1200] Hz and 39 eigenfrequencies in frequency
band ]1200,1300] Hz. The fundamental eigenfrequency is /¥ = 18.8 Hz. There are 13
eigenfrequencies in frequency band ]0,200] Hz. The eigenfrequencies of the first 4 bending
modes corresponding to the first 4 elastic modes having respectively 2 to 5 nodes (zero Oxa-
displacement) on the neutral line are Z/J“ff =18.8, l/jrgf =454, I/Jr»f =103.8, I/Jr»if =170.5 Hz with
1=17J2=3,J3=7,ja=10.

4.83. Mean model prediction and comparison with the reference response

The mean model, as the predictive model of the real system defined in Section 4.2, is
constructed from the designed system defined in Section 4.1. This mean model is made up
of a damped homogeneous Euler elastic beam with length L; = 10 m, simply supported at
1 = 0 and x; = 10. The material is taken as homogeneous. The bending stiffness is then
k = 3.68953 x 10° N x m? and the linear mass density is p, = 2816 Kg/m. We then have
k/p, = 1.3102 x 10°m*/s%. Let z be such that klp, = xL3/12 = 0.10083 z which yields
x = 1.299375 x 107 m?/s2. The damping rate is 0.01. This mean model is used to predict the
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transversal displacement (following Ox2) corresponding to the bending vibrations in the plane
(Ox122). Observation point P corresponds to the driven point (excitation point). There are
8 eigenfrequencies in band B and 0 eigenfrequency in frequency band [1200,1300] Hz. The
fundamental eigenfrequency is v; = 17.98 Hz. The eigenfrequencies of the first 4 bending
modes corresponding to the first 4 elastic modes having respectively 2 to 5 nodes (zero Oxs-
displacement) on the neutral line are vy = 17.98, vy =71.9, v3 =161.8, vy =287.7 Hz. The
frequency response functions at the 6 observation points are calculated using modal analysis
with the first 80 elastic modes over the frequency band B with a frequency resolution of 1 Hz.

FRF of the mean model FRF of the mean model

Disp in log scale at observation point P2

Disp in log scale at observation point P3

. . . . . _13 . . . . .
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Frequency (Hz) Frequency (Hz)

Figure 1. Frequency response function for transversal displacement of the neutral line: reference
response (thin solid line), mean model (thick solid line). Observations P> (left) and Ps (right).

FRF of the mean model FRF of the mean model

-7

Disp in log scale at observation point P4
Disp in log scale at observation point P6

. . . . . _12 . | . . .
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Frequency (Hz) Frequency (Hz)

Figure 2. Frequency response function for transversal displacement of the neutral line: reference
response (thin solid line), mean model (thick solid line). Observations P, (left) and Ps (right).

Figure 1 (left and right) and Figure 2 (left and right) display the frequency response functions
for the transversal displacements at observation points P, P3, P4 and Ps of the neutral line.
The mean model prediction is compared to the reference solution. It can be seen, that there
are significant differences which are due to the boundary conditions which are not correctly
modeled by a simply supported beam but above all, which are due to the presence of elastic
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modes in the real system (induced by the lateral dimension) which cannot be predicted with
the Euler beam theory. This means that there are model-parameter uncertainties but above
all there are modeling errors.

4.4. Estimation of the dispersion parameter of the prior probability model of the uncertain
model parameter

As we have explained in Sections 3 and 4.3, there are two types of uncertainties. In this
section, the model-parameter uncertainties of the mean model are taken into account using
the parametric probabilistic approach. We used the method presented in Section 3.1. From
Sections 4.3 and 4.2, it can be seen that the fundamental eigenfrequency of the mean model is
vy, = 17.98 Hz which must be compared to the reference fundamental frequency Vief = 18.8 Hz.
The difference between these two frequencies is then due to model-parameter uncertainties.
Let A\ = (2m11)? = 12,762 be the lowest eigenvalue associated with the fundamental
eigenfrequency of the mean model. From the Euler beam theory, we can write Ay = a1z
with a; = 9.8216 x 10~*. Therefore, z is modeled by a random variable X and consequently,
A1 becomes a random variable A; such that Ay = a1 X. The corresponding lowest eigenvalue
of the real system is then A} = 13,953.

In order to construct the prior probability model of random variable X using Information
Theory (see Section 2.3.3, we need to identify the available information of X which is the
following: (i) X is a random variable with values in RT™ =]0 + oo[. (ii) The mean value of
X is z which means that E{X} = z. (iii) X! must be a second-order random variable, i.e.
E{X ™2} < +00 which is satisfied if F{In(X)} = v with |v| < +oc0 imposed.

The unknown prior probability density function x +— px(x) on R with support R™ of random
variable X (prior probability density function) is then constructed by using the maximum
entropy principle under the constraints defined by the available information (i), (ii) and (iii).
This probability density function depends on the arbitrary constant v which does not have
any physical meaning. In this condition, constant v is expressed in function of the dispersion
parameter dx = ox/x (coefficient of variation of X in which ox is the standard deviation
of X) which allows the level of statistical fluctuations of X to be controlled and yields [46] a
Gamma density probability density function which can be written for 0 < §x < 1/4/2 as

o <2 x/x
px(z) = Ljg ool (2) il(i)(((SQ) (2/2)0x" D exp <_(5/§(_)> ’
Z1(ox

where D(@) = [,"° t*~Te~! dt is the Gamma function.

The identification of parameter dx is performed as explained in Section 3.1 using the
maximum likelihood method for the lowest random eigenvalue A; for which its probability
density function A — pa, (A;dx) depends on parameter dx and which can be constructed
with the stochastic model. There is only one known ”experimental value” with is the reference
value AI¥. The optimal value § )O(pt is then given by maximizing the Neperian logarithm of the
likelihood function (see Eq. (41)),

5}':2!31 = arg r%aux{ln(p/\1 ()\rff 10x))}
X
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Figure 3 displays the graph of function dx + In(pa, (A ;dx)) and the optimal value is
S =0.093.
We consider the stochastic reduced model constructed with the parametric probabilistic

-8.4

1 1
1 o ©

©o @ [=2)
T

log of the likelihood function (Sx)

I
©
)

Ofoa 006 008 01 012 014 016 018 02
X

Figure 3. Graph of the Neperian logarithm of likelihood function as a function of the dispersion
parameter 0x for the identification of the probabilistic model of the uncertain parameter X.

approach of uncertain parameter X for which the probabilistic model is defined above with
ox = 0. This stochastic reduced model is constructed with 80 elastic modes of the mean
model and is solved by the Monte Carlo method with 1,000 independent realizations and with
a frequency resolution of 1 Hz. The confidence region of the modulus of the random FRF
(frequency response function) at each observation point defined in Section 4.1 is calculated by
using the sample quantiles [39] with a probability level P, = 0.98. Figure 4 (left and right) and
Figure 5 (left and right) display the comparisons between the mean model response predictions,
the reference responses of the real system and the confidence region predictions calculated with
the stochastic reduced model constructed with the parametric probabilistic approach of model-
parameter uncertainties. Figures 4 and 5 show that the confidence region is centered around the
resonances of the mean model. This kind of result is general with the parametric probabilistic
approach. The confidence region is spanned by the movements of the resonances of the mean
model around the nominal values. This is the reason why the parametric probabilistic approach
of model-parameter uncertainties does not allow modeling errors to be taken into account. For
instance, it can be seen in Figure 4 right that the mean model does not have resonance between
700 Hz and 1,000 Hz while the real system as many resonances. It can then be seen that the
responses of the real system do not belong to the confidence region spanned by the parametric
probabilistic approach in this frequency band [700,1000] H z and for the observation point Ps.
The introduction of the nonparametric probabilistic approach of modeling errors coupled with
the present probabilistic parametric approach of model-parameter uncertainties will allow the
predictions to be improved.

4.5. Estimation of the dispersion parameters of the prior probability model of model
uncertainties
We consider the stochastic reduced model constructed (1) with the parametric probabilistic

approach of uncertain parameter X for which the probabilistic model has been defined
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Random FRF for uncertain parameter Random FRF for uncertain parameter

Disp in log scale at observation point P2
Disp in log scale at observation point P3
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Figure 4. Confidence region calculated with the stochastic reduced model due to uncertain parameter
X for 0x = 0.093 and probability level P. = 0.98 (yellow or grey region), reference response (thin
solid line), mean model (thick solid line). Observation points P> (left) and Ps (right).

Random FRF for uncertain parameter
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Disp in log scale at observation point P4

Disp in log scale at observation point P6
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Figure 5. Confidence region calculated with the stochastic reduced model due to uncertain parameter
X for 6x = 0.093 and probability level P, = 0.98 (yellow or grey region), reference response (thin
solid line), mean model (thick solid line). Observation point Py (left) and Ps (right).

in Section 4.4 with §x = 5§pt and (2) with the nonparametric probabilistic approach of
modeling errors for the mass and stiffness operators. Consequently, the dispersion parameters
describing the statistical fluctuations induced by modeling errors (see Sections 2.3.4 and 3)
are 8¢ = (0, 0K ).

The method used for the identification of dispersion parameters dy; and dx is presented
in Section 3.2 for the random vector Z = (Z1,...,Z,,) whose components are the random
coordinates in the statistical reduction of the random frequency response functions sampled
with the frequency resolution of 4 Hz and for the 6 observation points P, to FPs. The
corresponding value for the reference solution (the real system) is ' = (21 ... 2™¥). For
fixed values of dx, dps and dg, the stochastic reduced model is constructed with 80 elastic
modes of the mean model and is solved by the Monte Carlo method with 300 independent
realizations and with a frequency resolution of 4 Hz. For dx = § )O(pt and for all the trial values
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of dpr and dx belonging to the admissible set, Figure 6 left shows the convergence of the
statistical reduction in function of reduced order p’ (see Eq. (45)). This figure shows that
a reasonable value for convergence is reached for p/ = 15. The Neperian logarithm of the
likelihood function is defined (see Eq. (46)) by

ul
LG, 0r) =Y {In(pz, (263,60, 05))}
j=1

in which, for all j in {1,...4'}, the probability density function z — pz, (z;5§pt,5M,5K)
depends on the known parameter § )O(pt and on the unknown parameters d; and §x which have to
be identified. This likelihood function is estimated with the stochastic reduced computational
model and with the numerical parameters defined above. The optimization problem (see
Eq. (47))
(518?, 510{“) =arg max L(0pm,0r)
(0n,0K)

is solved by the trial method. Figure 6 right shows for d§j; belonging to the set
{0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.97} the graphs of functions dx — L(dprr,0k). The optimal
values are then d;F = 0.9 and 67" = 0.15.

Convergence of the statistical reduction Likelihood funct vs SM
0 0
-05 -5
<9
[+]
e 1 g -10
[+ o
o —
o, -15 g
> e 15
o =
e -2 g
g b -20
£ 25 3
= =
5 T 25
-3 £
-35 -30
-4 -35
0 4 6 8 10 12 14 0 0.1 0.2 0.3 0.4 0.5 0.6
Order u of the reduction SK

Figure 6. Left Figure: Convergence of the statistical reduction as a function of reduced order u’ and
for all the trial values of as and dx. Right Figure: Graph of 6k — L(dam, k) for dar varying from 0.2
to 0.97 (thin solid lines) and for das = 0.90 (thick solid line).

We now consider the stochastic reduced model constructed with 80 elastic modes of the mean
model and for dx = ¢ )O(pt, oy =90 f\’ft and 0 = ¢ I()(pt. The stochastic equation is solved by the
Monte Carlo method with 1,000 independent realizations and with a frequency resolution
of 1 Hz. The confidence region of the modulus of the random FRF (frequency response
function) at each observation point defined in Section 4.1 is calculated as previously by using
the sample quantiles with a probability level P. = 0.98. Figure 7 (left and right) and Figure 8
(left and right) display the comparisons between the mean model response predictions, the

reference responses of the real system and the confidence region predictions calculated with
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the stochastic reduced model constructed with the parametric probabilistic approach of model-
parameter uncertainties for dx = 0.093 and with the nonparametric probabilistic approach of
modeling errors for §p; = 0.9 and dx = 0.15. These figures show that the coupling of the
two probabilistic approaches for model-parameter uncertainties and modeling errors allow the
quality of the prediction to be considerably improved. The method proposed allows the role
played by each type of uncertainties to be separately quantified.

Random FRF for uncertain parameter and model uncertainties Random FRF for uncertain parameter and model uncertainties

Disp in log scale at observation point P2
Disp in log scale at observation point P3

800 1000 1200 _130 200 400

-13
0

200 400 800 1000 1200

600 600
Frequency (Hz) Frequency (Hz)
Figure 7. Confidence region with a probability level P. = 0.98, calculated with the stochastic reduced
model including uncertain model parameter for x = 0.093 and modeling errors for §p; = 0.9 and
dx = 0.15 (yellow or grey region), reference response (thin solid line), mean model (thick solid line).
Observation points P> (left) and Ps (right).

Random FRF for uncertain parameter and model uncertainties Random FRF for uncertain parameter and model uncertainties

Disp in log scale at observation point P4

Disp in log scale at observation point P6

_130 200 400 600 800 1000 1200 _130 200 400 600 800 1000 1200

Frequency (Hz) Frequency (Hz)

Figure 8. Confidence region with a probability level P. = 0.98, calculated with the stochastic reduced

model including uncertain model parameter for éx = 0.093 and modeling errors for dps = 0.9 and

dx = 0.15 (yellow or grey region), reference response (thin solid line), mean model (thick solid line).
Observation points Py (left) and Ps (right).
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5. Representation of propagation of uncertainties using polynomial chaos decomposition with
random coefficients

In this section the random response of the uncertain dynamical system is represented using
the polynomial chaos decomposition with random coefficients [51]. It should be noted that the
decomposition proposed is not usual. With the usual decomposition [16], the coefficients are
deterministic. Presently, we propose to develop the random response in polynomial chaos only
with respect to the random variable X relative to model-parameter uncertainties. Consequently,
if there were no model uncertainties, the coefficients of such a decomposition would be
deterministic. Since there are model uncertainties, these coefficients become random vectors
which are statistically independent of X. Consequently, the polynomial chaos decomposition
with random coefficients which is proposed allows the propagation of uncertainties to be
analyzed in separating the propagation of model-parameter uncertainties from the propagation
of model uncertainties (modeling errors).

5.1. Polynomial chaos decomposition with random coefficients

Let us consider the random variable X relative to model-parameter uncertainties and
introduced in Sections 2.3.1 and 2.3.3. This R"»-valued random variable defined on probability
space (©,7,P) has a probability distribution defined by the probability density function
px(X;8x) whose support is Cpa. It is assumed that there exists a mapping § — X = h(¢)
from R*" on Cpar C R™ such that random variable X can be written as

X =h(E) with " <pu |, (48)

in which & = (Z4,...,E,») is a R*¥ -valued normalized Gaussian random variable defined
on (0,7,P) (the components are independent and each component is a centered Gaussian
random variable with a standard deviation equal to one).

Let us assume that 8x and 8¢ are given (for instance are equal to the optimal values 5;’("‘
and 8F"). For # in © and for ¢ in ©’, let E(6) be the realization of Z and let X(§) = h(E(6))
be the corresponding realization of X. Let Y(6,6’) be the realization of the R*-valued random
variable Y defined in Section 3.2 and computed in using Egs. (39) and §40). From Egs. (42)
and (43), it can be deduced that the realization of the approximation Y# of Y is written as

/U'/
YE(0,0) =my + Y /A Z;(0,0) 2 (49)
j=1

in which the components of the realization Z(6,0") = (Z1(0,¢’),...,2Z,/(0,0")) of Z are such

that
1

VA
For ¢’ fixed in ©’, the polynomial chaos decomposition of the R* -valued random variable

Z(.,0") = {6 — Z(0,0')) defined on (©,7,P) with respect to the R* -valued normalized
Gaussian random variable E defined on (0,7, P) is such that

z(0.60)= Y  A*O)UHEO) . (51)

aa|=1,...,pz

Z;(0,0') = <Y(0,0) -y, H > . (50)
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in which the vector A*(¢) in R is given by
A*(0) = E{Z(.,0")¢*(8)} = /92(979')1#“(5(9)”7’(9) : (52)

In Egs. (51) and (52), @ = (aq,..., ) is the multi-index of length |a| = a1 + ... +
and Y*(&) = (&) x ... x Y (§,») is the normalized Hermite polynomial in which
&= (&,...,&). Since Z is a centered random variable, the polynomial chaos decomposition
starts with |a| = 1. Finally, Eq. (51) yields the polynomial chaos decomposition with random
coefficients,

z= >  AWE) (53)

U.,‘U.‘:l,...,p,z
in which the family of random variables {A* a,|a| = 1,...,uz} is independent of the family
of random variables {¢*(E),a, |a| = 1,...,uz}. We now construct a reduced-order model to

deduce a polynomial decomposition with orthogonal random coefficients.

Let B = {#' — B(#)} be the random variable defined on (6, 7", P’) with values in R such
that B(6') = {A*(0'),a: |a| = 1,..., pz}. The usual statistical reduction of B is introduced as
in Section 3.2 for Y. Let mg be the mean value and let [Cg] be the covariance matrix of the
random vector B such that

mg = E{B} , [Cs]=FE{(B—-mg)(B—-mg)'} . (54)
We then introduce the eigenvalue problem
[Celb/ =APb7 | (55)

for which the positive eigenvalues are such that AB > ... > A8 The corresponding eigenvectors
bt,...,bY in RY are rewritten, for all j, asb/ = {a® & : |a| = 1,...,uz}. Let ug be an integer
such that pug < N. For all fixed multi-index a, the following approximation A**8 of A* can be
deduced,

1B
AT = B{AT} 4+ (/A Hjat (56)
j=1
in which H = (Hy,..., H,,) is a R#*®-valued random variable such that
1 A
Hj:—B<B—E{B},bJ> . (57)

Ve
Similarly to Eq. (45), the criterium used for analyzing the convergence of the statistical
reduction of B (as a function of the order pg of the reduction) is written as
KB \B
criterg (ug) = 1 — miTIE;]j : (58)

The components of H are second-order random variables which are centered and uncorrelated,
that is to say, are such that

E{H}=0 , E{HHT}=[I,] . (59)
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Substituting Eq. (56) into Eq. (53) yields the following decomposition

z=93)+ iHj /(=) (60)

Jj=1

in which the vector-valued polynomials ®7(Z) of the normalized Gaussian vector Z are such

that
=)= > E{AYYE) (61)

eiE) =8 S ay*E) , j=1,...m . (62)

ala|=1,...,uz

Note that Eq. (60) corresponds to the polynomial Chaos decomposition with random
coefficients representing the propagation of model-parameter uncertainties (polynomial chaos
&7 (=)) and the propagation of modeling errors (random coefficients H; which verify Eq. (59)).
It should be noted that, for all § in © and 6’ in ©’, the realization of Z given by Eq. (60) is
such that

Z2(0,0') = ®°(2(0)) + ZHJ(Q’) ®(2(0)) . (63)

Finally, substituting Eq. (60) into Eq. (42) or Eq. (49) yields the polynomial Chaos
decomposition with random coefficients of the approximation Y# of stochastic response Y

which is written as
H“B

Y =my + WO(E) + > H; W (E)
j=1

in which the vector-valued polynomials W/ (Z) of the normalized Gaussian vector E are such
that, for all j =0,1,..., ug, we have

ul
Wi(E) = 3 V8 (E)
=1

5.2. Validation

The configuration, data and results of the example presented in Section 4 are reused below. We
then have n = 80 elastic modes for the reduced mean model. The dispersion parameters are
dx = 0.093 for the random variable X (model-parameter uncertainties) and dp; = 0.9, ép =0
and dx = 0.15 for the dispersion parameter of the random matrices (modeling errors). The
observation points are Py, P5, P, and Ps. The frequency band of analysis is |0, 1200] H z and
the frequency resolution is 4 Hz (thus, there are 300 frequency sampling points). Consequently,
the dimension s of the observation vector Y is s = 300 x 4 = 1200.

The Monte Carlo numerical simulation is used to solve the stochastic computational model
with 20,000 independent realizations in (6,6’) corresponding to ns = 100 realizations in 6
and nl, = 200 realizations in €. The theory presented in Section 5.1 is then applied with
n, = p’ = 1, with ¢/ = 15 for the reduction order of Y defined by Eq. (49), with pyz = 8
for the maximum order of the polynomial chaos decomposition defined by Eq. (51) and with
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Convergence of the statistical reduction of B
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Figure 9. Convergence of the statistical reduction of B as a function of reduced order ug.
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Figure 10. Probability density functions of random coeflicients Hi (left) and H» (right).
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Figure 11. Probability density functions of random coeflicients Hs (left) and Ha4 (right).

N = 8 x 15 = 120 for the dimension of B. Figure 9 displays the graph of ug +— criterg(us)
defined by Eq. (58) relative to the convergence of the statistical reduction of B defined by
Eq. (56) as a function of reduced order ug. Convergence is reasonably reached for ug = 30.
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Figure 12. Probability density functions of random coeflicients Hio (left) and Hazo (right).

The probability density functions of random variables Hy, ..., H,, are estimated using the
independent realizations of Eq. (57) constructed with the Monte Carlo simulation and a normal
kernel function [5] as a smoothing technique. As an illustration, Figures 10, 11 and 12 (left
and right) display the graphs of the probability density functions for random variables Hq,
Hy, Hs, Hy, Hyo and Hao.

6. Future perspective for the construction of a posterior probability model of the polynomial
chaos decomposition with random coefficients
Let Y* be the approximation defined by Eq. (49) of the R®-valued random variable Y
defined in Section 3.2. The random vector Y* is expressed in terms of the polynomial
chaos decomposition with random coefficients defined by Eq. (60) of the random variable
Z = (Zi,...,Zy) as a function of the normalized Gaussian random vector & and of the
random vector H = (Hy, ..., H,;). The probability density function of E with respect to d€ is
p=(&) = (2m)7"/2 exp(—||€||?/2). The conditional probability density function pzjn(zn) of Z
for given H = n and the prior probability density function pf'” (n) of H can be estimated using
Eq. (60) and the prior stochastic computational model presented in Section 2.3.7 as explained
in Section 5.1. It should be noted that for the construction of pz14(z|n), the stochastic solver
can be either the Galerkin method with the polynomial chaos [16] or the Monte Carlo method.

In addition, as soon as the prior probability density function pﬂrior('r]) has been estimated,

then any probabilistic quantities related to Y*' can be estimated using Egs. (49) and (60)
and using a random generator of independent realizations for H and E as shown by Eq. (63).
For instance, the probabilistic quantity of interest is written J = E{g(Y*)} in which § is
a given vector-valued function defined on R®. Using Egs. (49) and (60), this quantity can
be rewritten as J = E{g(H, =)} in which (,&) — d(n,&) is a given vector-valued function
defined on R*® x R*". Consequently, the value of J calculated with the prior probability model
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of uncertainties and denoted by JP1 can be written as

gpror J/ o, ) 2 () p=(E) dm dE. . (64)
ReB J RE”

Let us assumed that one experimental data YOV of the R*-valued random variable Y defined
in Section 3.2 is available. Taking into account Eq. (50), the corresponding experimental value

of Z is denoted by ZoP%ved — (zZobserved | Zﬁk?se“’ed) and can be estimated by

1 .
gobsaved — _—_ cyobseved i > (65)
J /Aj
The objective is to propose an approach based on the use of the Bayes method (see for
instance [22],[52]) to construct a posterior probability density function p¥(n) of H using
the information defined by Z%°%Ve in order to improve the value JP' denoted JP°% and such
that

o [ =@ indg (66)
R~B R~”
Using the Bayes formula yields

prior

PR (m) = copf () pzjn(
in which ¢ is a constant of normalization. Substituting Eq. (67) into Eq. (66)yields

_%/ 9, &) I () prz it (2= ) p= (8) dn dE (68)
R#B JRH”

Denoting by E= the mathematical expectation corresponding to the integration with respect
to the random variable E for which the probability distribution is pz()d& and EJ'" the
mathematical expectation corresponding to the integration with respect to the random variable
H for which the probability distribution is pf} Or('n) dr, Eq. (68) can be rewritten as

IPS — ¢y Bz EN' {g(H, E) pzju (ZP=V€|H)} . (69)

ZoVely) (67)

Taking g(H,E) = 1 in Eq. (69) yields 1 = ¢o Eﬂr " {pzjn(Z*=v¥|H)} and consequently,
Eq. (69) can be rewritten as
EzE prlor {g pZ|H(Zobserved‘H)}

Jpost
Eﬂm {pZ|H (zopseved|H) |

(70)

Concerning the calculation of Eq. (70), the Monte Carlo numerical simulation can be used.
Let E(61),...,2(0,,) be ng independent realizations of the random variable Z following the
probability distribution p=(§) d& . Let H(60}),...,H (6}, ) be n independent realizations of the
random variable H following the probability dlstrlbutlon pp 'Or(

large, an approximation of Eq. (70) is given by

o S S H ), E(0)) Pz ZPVEIH ()
~ n% Zj":l ple(Zobserved|H(0;,)

The estimation of pzjp (ZPV®[H(6/,) is performed using again Monte Carlo simulation with
a double loops on j an j' and using Eq. (63).

) dn. For ny and n, sufficiently

Jpost — (71)
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7. Conclusions

We have presented a new generalized probabilistic approach to take into account model-
parameter uncertainties and modeling errors in computational model for structural linear
dynamics. This approach can easily be extended to computational linear vibroacoustics and to
computational nonlinear structural dynamics. This method allows a prior probability model
of model-parameter uncertainties and a prior probability model of modeling errors to be
separately constructed. When a few experimental data are available, a procedure for the
identification of the dispersion parameters of the prior probability models of uncertainties is
proposed. A complete validation has been given and clearly show the advantage of the method
proposed with respect to the usual output-prediction-error method. A chaos decomposition
with random coefficients has also been proposed to represent the prior probabilistic model
of random responses in separating the propagation of model-parameter uncertainties and the
propagation of modeling errors in the computational model. Such a construction gives future
perspectives to improve the prior probability model of uncertainties in constructing a posterior
probability model as soon as experimental data are available.
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