J. Roberts and P. Spanos, Random vibration and statistical linearization, 2003.

L. Socha, Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results???Part I: Theory, Applied Mechanics Reviews, vol.58, issue.3, pp.178-205, 2005.
DOI : 10.1115/1.1896368

T. Caughey, Equivalent Linearization Techniques, The Journal of the Acoustical Society of America, vol.35, issue.11, pp.1706-1717, 1963.
DOI : 10.1121/1.1918794

URL : http://authors.library.caltech.edu/4085/1/CAUjasa63b.pdf

I. Kougioumtzoglou and P. Spanos, An approximate approach for nonlinear system response determination under evolutionary stochastic excitation, Current Science, Indian Academy of Sciences, vol.97, pp.1203-1214, 2009.

R. Bouc, The Power Spectral Density Of Response For A Strongly Non-linear Random Oscillator, Journal of Sound and Vibration, vol.175, issue.3, pp.317-348, 1994.
DOI : 10.1006/jsvi.1994.1331

R. Miles, An approximate solution for the spectral response of Duffing's oscillator with random input, Journal of Sound and Vibration, vol.132, issue.1, pp.43-52, 1989.
DOI : 10.1016/0022-460X(89)90869-9

R. Miles, Spectral Response of a Bilinear Oscillator, Journal of Sound and Vibration, vol.163, issue.2, pp.319-345, 1993.
DOI : 10.1006/jsvi.1993.1168

J. Roberts and P. Spanos, Stochastic averaging: An approximate method of solving random vibration problems, International Journal of Non-Linear Mechanics, vol.21, issue.2, pp.111-145, 1986.
DOI : 10.1016/0020-7462(86)90025-9

W. Zhu, Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration, Applied Mechanics Reviews, vol.49, issue.10S, pp.72-80, 1996.
DOI : 10.1115/1.3101980

P. Spanos, P. Cacciola, and G. Muscolino, Stochastic Averaging of Preisach Hysteretic Systems, Journal of Engineering Mechanics, vol.130, issue.11, pp.1257-67, 2004.
DOI : 10.1061/(ASCE)0733-9399(2004)130:11(1257)

S. Bellizzi and M. Defilippi, NON-LINEAR MECHANICAL SYSTEMS IDENTIFICATION USING LINEAR SYSTEMS WITH RANDOM PARAMETERS, Mechanical Systems and Signal Processing, vol.17, issue.1, pp.203-213, 2003.
DOI : 10.1006/mssp.2002.1561

C. Soize, Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: prediction and identification procedures, Probabilistic Engineering Mechanics, vol.10, issue.3, pp.143-52, 1995.
DOI : 10.1016/0266-8920(95)00011-M

URL : https://hal.archives-ouvertes.fr/hal-00770288

S. Krenk and J. Roberts, Local Similarity in Nonlinear Random Vibration, Journal of Applied Mechanics, vol.66, issue.1, pp.225-260, 1999.
DOI : 10.1115/1.2789151

F. Rudinger and S. Krenk, Spectral density of oscillator with bilinear stiffness and white noise excitation, Probabilistic Engineering Mechanics, vol.18, issue.3, pp.215-237, 2003.
DOI : 10.1016/S0266-8920(03)00015-8

F. Rudinger and S. Krenk, Spectral density of an oscillator with power law damping excited by white noise, Journal of Sound and Vibration, vol.261, issue.2, pp.365-71, 2003.
DOI : 10.1016/S0022-460X(02)01183-5

M. Grigoriu, On the spectral representation method in simulation, Probabilistic Engineering Mechanics, vol.8, issue.2, pp.75-90, 1993.
DOI : 10.1016/0266-8920(93)90002-D

M. Shinozuka and G. Deodatis, Simulation of Stochastic Processes by Spectral Representation, Applied Mechanics Reviews, vol.44, issue.4, pp.191-203, 1991.
DOI : 10.1115/1.3119501

H. Goto and H. Iemura, LINEARIZATION TECHNIQUES FOR EARTHQUAKE RESPONSE OF SIMPLE HYSTERETIC STRUCTURES, Proceedings of the Japan Society of Civil Engineers, vol.1973, issue.212, pp.109-128, 1973.
DOI : 10.2208/jscej1969.1973.212_109

J. Bendat and A. Piersol, Random data: analysis and measurement procedures, 1971.
DOI : 10.1002/9781118032428

P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics, vol.15, issue.2, pp.70-73, 1967.
DOI : 10.1109/TAU.1967.1161901

P. Reinhall and R. Miles, Effect of damping and stiffness on the random vibration of non-linear periodic plates, Journal of Sound and Vibration, vol.132, issue.1, pp.33-42, 1989.
DOI : 10.1016/0022-460X(89)90868-7

M. Shinozuka and C. Jan, Digital simulation of random processes and its applications, Journal of Sound and Vibration, vol.25, issue.1, pp.111-139, 1972.
DOI : 10.1016/0022-460X(72)90600-1

M. Shinozuka and G. Deodatis, Simulation of Multi-Dimensional Gaussian Stochastic Fields by Spectral Representation, Applied Mechanics Reviews, vol.49, issue.1, pp.29-53, 1996.
DOI : 10.1115/1.3101883

P. Spanos and B. Zeldin, Monte Carlo Treatment of Random Fields: A Broad Perspective, Applied Mechanics Reviews, vol.51, issue.3, pp.219-256, 1998.
DOI : 10.1115/1.3098999

J. Bendat, Nonlinear systems techniques and applications, 1998.

D. Newland, An introduction to random vibrations, spectral and wavelet analysis, 1993.