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Abstract. The application of the nonparametric stochastic modeling technique to reduced order models 
of geometrically nonlinear structures recently proposed is here further demonstrated. The complete 
methodology: selection of the basis functions, determination and validation of the mean reduced order 
model, and introduction of uncertainty is first briefly reviewed. Then, it is applied to a cantilevered 
beam to study the effects of uncertainty on its response to a combined loading composed of a static in-
plane load and a stochastic transverse excitation representative of earthquake ground motions. The 
analysis carried out using a 7-mode reduced order model permits the efficient determination of the 
probability density function of the buckling load and of the uncertainty bands on the power spectral 
densities of the stochastic response, transverse and inplane, of the various points of the structure. 

Key words: Uncertainty, reduced order models, random matrices, geometrically nonlinear srructures, 
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1 Introduction 

The sharp increase in computational capabilities of the last 10-15 years has led 
to very satisfactory solutions for many complex structural dynamic problems for 
given values of the structural parameters. Further, these same analyses have also 
demonstrated that these solutions can be very sensitive to small variations of the 
structural parameters, thereby emphasizing the need to consider structural uncer-
tainty. Several approaches have been devised to model this uncertainty and esti-
mate its effects on the structural response; among those are the polynomial chaos 
methodology (e.g. Ghanem and Spanos [1]) and the nonparametric approach ini-
tially proposed by Soize [2,3]. The latter approach is particularly computationally 
attractive as it applies to reduced order models of the structure, seeking the distri-
bution of the uncertain parameters that maximizes their statistical entropy under 
given physical constraints. 
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The nonparametric method has been applied to a broad class of problems in-
cluding a recent extension to nonlinear geometric structural dynamic problems [4] 
by relying on novel developments in the formulation of reduced order models for 
such structures (see Kim et al. [5] and references therein). According to these re-
duced order models, the structural response is expressed in a time-invariant basis 
with time-varying generalized coordinates satisfying coupled Duffing-type differ-
ential equations. Further, the parameters of this reduced order model, i.e. mass and 
linear, quadratic, and cubic stiffness coefficients, are identified directly from a full 
finite element model of the structure rendering the approach applicable to infinite-
dimensional systems. 

The earlier investigation of [4] is here further extended and validated to differ-
ent infinite-dimensional structural models under stochastic excitations. A key ele-
ment of the approach is the existence of a positive definite matrix  that re-
groups the linear, quadratic, and cubic stiffness coefficients. It is that matrix which 
is randomized in the nonparametric formulation while maintaining the positive 
definiteness so that the simulated stiffness properties, linear and nonlinear, are 
rendered uncertain in a physically admissible manner. 

BK

The complete process, reduced order modeling strategy and application of the 
nonparametric methodology, is presented on a cantilevered beam subjected to a 
static compressive load near the buckling limit and a transverse excitation corre-
sponding to ground motions. 

2 Reduced Order Modeling of Geometrically Nonlinear 
Structures 

The formulation of reduced order model of geometrically nonlinear structures in-
volves three specific issues: (i) the selection of the basis functions used to repre-
sent the motion of the structure, (ii) the determination of the form of the equations 
governing the generalized coordinates, and (iii) the determination of the coeffi-
cients of these equations. The resolution of these issues is briefly reviewed below.  

2.1 Basis functions selection 

In parallel with modal analysis of linear systems, the displacement field of the 
structure will be expressed in a modal expansion-type representation, i.e., as  
 ( ) ( ) ( )XX )(, n

ini Utqtu =   i = 1,2,3   (1) 
(summation over repeated indices, n here, is implied). In this representation, 

 denote time-invariant, spatially varying basis functions while  are 
the corresponding time-dependent generalized coordinates. Note that the spatial 

( )X)(n
iU ( )tqn



Uncertain Nonlinear Stochastic Reduced Order Models  3 

domain Ω to which X belongs is the undeformed configuration of the structure, 
see section 2.2. 

In selecting the functions ( )X)(n
iU , it is first expected that the nonlinear re-

duced order model (1) should reduce naturally to a modal model in the limit of 
small motions. Thus, the nonlinear basis should completely include its linear 
counterpart, i.e. the set of linear modes significantly excited. This is however not 
enough and a complete representation of the structural response requires addi-
tional basis functions. As an example, consider the response to transverse loads of 
a flat, symmetric beam or plate subjected to a purely transverse loading. In the lin-
ear, infinitesimal case, the decoupling of the inplane and transverse modes implies 
that only the latter ones are necessary and no inplane motion takes place. How-
ever, finite deformations can only occur with a stretching of the beam or plate and, 
accordingly, with inplane deformations. Thus, the nonlinear basis required for a 
full representation must include both transverse linear modes and functions de-
scribing the inplane motions. 

The basis functions selected here to complement the linear modes are the 
“dual” modes of [5], i.e. a set of static nonlinear displacement fields induced by 
external loads such that the response they would induce in the structure would be 
proportional to either one of the linear modes or a linear combination of two of 
them. Constructed in this manner, the dual modes capture the nonlinear effects 
corresponding to motions that would take place if the structure was behaving line-
arly.  

2.2 Form of the reduced order model equations 

The derivation of the form of the ordinary differential equations governing the 
evolution of the generalized coordinates ( )tqn  is next derived from the equations 
of finite deformation elasticity in a Galerkin procedure. To this end, note first that 
the time-invariance of the functions ( )X)(n

iU  is most easily achieved when the 
spatial domain Ω occupied by the structure is constant. This situation occurs when 
the displacement field u is expressed in the undeformed configuration in which the 
equations of elasticity are (see [6,7]) 

          ( ) iijkij
k

ubSF
X

&&0
0

0 ρ=ρ+
∂
∂  for 0Ω∈X         (2) 

where S denotes the second Piola-Kirchhoff stress tensor, 0ρ  is the density in the 

reference configuration, and 0b  is the vector of body forces. Further, in Eq. (2), 
the deformation gradient tensor F is defined by its components  as ijF

                        
j

i
ijij X

u
F

∂
∂

+δ=        (3) 
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where  denotes the Kronecker symbol. Associated to Equation (2) are appro-

priate boundary conditions, e.g. specification of displacement and/or tractions on 
the boundary  of the reference configuration domain. 

ijδ

0Ω∂
To complete the formulation of the elastodynamic problem, it remains to spec-

ify the constitutive behavior of the material. In this regard, it will be assumed here 
that the second Piola-Kirchhoff stress tensors S is linearly related to the Green 
strain tensor E, i.e.  

        where       klijklij ECS = ( )ijkjkiij FFE δ−=
2
1          (4),(5) 

where  denotes the fourth order elasticity tensor. ijklC

Introducing the assumed displacement field of Equation (1) in Eqs (2)-(5) and 
proceeding with a Galerkin approach leads to the desired governing equations, i.e. 

                   (6) ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1(&&&

in which a damping term  has been included to collectively represent vari-

ous dissipation mechanisms. In Equation (6), , , and  denote the coef-

ficients of the linear mass and stiffness matrices and the modal forces while  

and  are nonlinear stiffness coefficients. 

jij qD &

ijM )1(
ijK iF

)2(
ijlK

)3(
ijlpK

2.3 Identification of the stiffness coefficients 

The form of the reduced order model, derived in the previous section as Equa-
tion (6), involves a series of structure and loading dependent coefficients, i.e. 

, , , , and . While the modal masses ( ) and modal 

forces ( ) can be evaluated as in linear modal models, the stiffness coefficients, 
linear, quadratic, and cubic, necessitate a dedicated identification strategy. The 
specific methodology used here was initially proposed in [8] and further modified 
in [5], it is based on the availability of a series of static nonlinear solutions (usu-
ally from a finite element of the structure) in which the (static) displacement field 
is imposed and the corresponding necessary forces are determined. 

ijM iF )1(
ijK )2(

ijlK )3(
ijlpK ijM

iF

The identification procedure starts with the imposition of static displacement 
fields that are proportional to each of the basis functions ( )X)(n

iU , i.e. 

 ( ) ( )XX )()( n
i

j
i Uqu =   i = 1,2,3 .  (7) 

In fact, three such cases, with different values of the factor  = ,  

(typically - ), and , are considered for each 

)( jq )1(q )2(q
)1(q )3(q ( )X)(n

iU  and the correspond-
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ing necessary forces  are determined from the finite element model and 

projected onto the basis functions

( )XF )( j

( )X)(m
iU  to yield the modal forces . Intro-

ducing this data into the reduced order model equations (6) yields the conditions 

)( j
mF

       [ ] [ ] )(2)()3(2)()2()()1( j
i

j
innn

j
inn

j
in FqKqKqK =++ .                  (8) 

Considering Equation (8) for j = 1, 2, and 3 leads, for each pair of indices i and n, 
to 3 linear algebraic equations in the 3 unknowns , , and   from 
which these coefficients are determined. 

)1(
inK )2(

innK )3(
innnK

The identification of the remaining stiffness coefficients proceed in a similar 
manner by imposing static displacement fields which are linear combinations of 2 
and then 3 of the modal bases, see [4,5,8] for complete details. 

The above identification procedure has successfully been applied to a variety of 
problems (e.g. see [5]) but was found to be too sensitive to small errors in the pre-
dicted modal forces in connection with cantilevered structures (see [10] for dis-
cussion). This difficulty led to a modification of the estimation procedure in which 
the linear and quadratic stiffness coefficients of the final model were indeed esti-
mated as above but with cubic coefficients selected (the decondensation technique 
of [10]) to match the corresponding coefficients of a reduced order model in 
which only the transverse motions are used with the inplane ones condensed. This 
two-step approach was employed here for the cantilevered beam of section 3.  

2.4 Nonparametric uncertainty modeling 

Two different methodologies have been proposed for the consideration of un-
certainty in linear structural dynamic systems. The first one, referred to here as pa-
rametric, introduces the uncertainty at the level of the full computational model 
(e.g. finite element model) through the randomization of some or all of its material 
properties (Young’s modulus, Poisson’s ratio, etc., e.g see [1]). This approach is 
particularly well suited for the consideration of data uncertainty, i.e. lack of 
knowledge or variability in the system properties but not for model uncertainty 
which is associated with deviations of the structure from its computational model. 
As example, for a beam that is nominally straight, such deviations include the 
presence of a curvature, a twist, or any other variation of geometry that would re-
quire a change of mesh in the finite element model. 

A computationally efficient approach for the consideration of data and model 
uncertainty, referred to as the nonparametric method, has been proposed a few 
years ago, e.g. [2,3]. In this approach, the uncertainty is introduced directly at the 
level of the reduced order model by allowing the matrices it involves (e.g. mass, 
stiffness, and/or damping matrices) to be random. Further, the probability density 
functions of these matrices is derived (not chosen) to provide the maximum of its 
statistical entropy under mathematical and physical constraints, i.e. that it leads to 



6 X.Q. Wang, M.P. Mignolet, C. Soize, and V. Khanna 

a total unit probability, that all matrices be positive definite if physically required 
(for the mass, damping, and stiffness matrices), that their means be equal to the 
matrices of the mean reduced order model, and finally that the expected value of 
the square Frobenius norm of their inverse be finite, see [2,3] for complete discus-
sion. 

Key to the implementation of this approach is the simulation of random matri-
ces according to the derived probability density function which is conveniently 
achieved as follows. Denote by A  the mean reduced order matrix considered and 
let L  be any decomposition (e.g. Cholesky) satisfying TLLA = . Then, random 
matrices  may then be simulated as A
 TT LHHLA =  (9) 
where the random matrix H is lower triangular. Further, its elements were shown 
[2,3] to be independent random variables with those located off diagonal being 
normally distributed with zero mean and common variance. Finally, the diagonal 
elements of H are proportional to the square root of Gamma distributed random 
variables [2,3]. A single free parameter exists in this strategy which can be se-
lected to match a particular information on the level of variability, such as coeffi-
cient of variation of natural frequencies or the overall measure of uncertainty δ in-
troduced in [2,3]. 

The above discussion was first carried out in the context of linear structural dy-
namic systems but it was recently extended [4] to reduced order models of nonlin-
ear geometric problems of the form of Eq. (6). Pivotal in this extension is the 
property (e.g. see [4]) that the linear, quadratic, and cubic stiffness coefficients 

, , and  can be combined to form a matrix  which is symmet-

ric and positive definite. Then, random coefficients , , and  can be 

obtained from random matrices  generated from their mean model counterpart 

)1(
ijK )2(

ijlK )3(
ijlpK BK

)1(
ijK )2(

ijlK )3(
ijlpK

BK

BK  according to Eq. (6). 

3 Effects of Uncertainty on a Cantilevered Structure 

The methodology developed in the previous sections was applied to a cantile-
vered beam of length 0.2286m,  width 0.0127m, and thickness 7.75×10-4m which 
was discretized by the finite element method (with MSC NASTRAN) into 40 
CBEAM elements of equal lengths. The beam material was high-carbon steel with 
a Young’s modulus of 205,000 MPa, a shear modulus of 80,000 MPa, and a mass 
density of 7,875 kg/m3 leading to natural frequencies of the first transverse modes 
of 12.4, 77.9, 218, and 427 Hz. A Rayleigh damping model was assumed that 
yielded damping ratios of 1.07%, 0.47%, 0.91%, and 1.69%, respectively. Finally, 
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the beam was subjected to a combined loading: random time-varying transverse 
motions of its support and an inplane compressive static force. 

The development of an accurate reduced order model represented the first step 
of the uncertainty analysis. The ground motions selected here exhibited a Kanai-
Tajimi spectrum (see [10]) of characteristic frequency equal to 5Hz ( =10π) 

and damping ratio of =0.3. Given this low frequency excitation, only the first 

three linear, purely transverse modes were considered for the linear part of the ba-
sis. To these functions, 4 dual modes were added that exhibited only inplane mo-
tions thereby forming a 7 mode reduced order model. 

gω

gζ

The first validation of this reduced order model focused on the power spectral 
densities of the transverse and inplane relative displacements of the beam tip. A 
comparison of the spectra obtained from a full finite element computation 
(Nastran SOL 400) and from the reduced order model equations is presented in 
Figure 1 for two different standard deviations of the ground motions and a com-
mon compressive inplane force equal to 80% of its buckling limit (i.e. 4N). The 
standard deviations of the transverse tip deflections corresponding to this loading 
were found to be 10% and 18% of the beam length. Owing to the long Nastran 
computations, this comparison was achieved with records of 40 seconds from 
which the first 20 were removed as transient. The remaining 20 seconds of data 
may not be sufficient for an accurate capture of the low frequency response but are 
sufficient here for the validation of the reduced order model the response of which 
was similarly treated. 

Clearly, the matching between full finite element and reduced order model pre-
dictions is excellent except at the very low frequencies for the inplane motions at 
the highest loading level. As the response levels increases, the Nastran and re-
duced order models will differ, see [9], because of the difference in the definitions 
of linear elasticity used in these methodologies, in a total Lagrangian in the latter 
while the former is believed to proceed in an updated Lagrangian framework. The 
results of Figure 1 demonstrate the appropriateness of the reduced order model for 
the prediction of the mean and uncertain beam responses. 

The response of the uncertain beam to the specified combined loading was con-
sidered next using the nonparametric methodology of section 2.4. The free pa-
rameter was selected to achieve a coefficient of variation of 2% of the first trans-
verse natural frequencies of the beam. With this level of uncertainty, the response 
of 300 random beams was computed using the stochastic reduced order model for 
90 seconds with the first 20 seconds considered as transient. The uncertainty 
bands corresponding to the 2nd and 98th percentiles of the generated power spec-
tra of the response were then determined and are shown in Figure 2 for the two 
excitation levels and for both transverse and inplane motions. Note that the power 
spectrum of the mean model is within the 2nd-98th percentiles band for the lowest 
excitation levels but it reaches the 98th percentile (for the transverse motions) or 
exceeds it (for the inplane motions) at the highest excitation level. This finding is 
justified by the inclusion in the nonparametric methodology of model uncertainty, 
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i.e. the presence of coupling terms in the stochastic reduced order model which are 
not present for the mean model owing to its symmetry. Thus, the simulated re-
duced order models would be representative of typically curved beams for which 
the response is typically smaller than for the straight beam of the mean reduced 
order model. Uncertainty in the mass matrix was also considered with the non-
parametric method but its effects appear very small and thus are not presented 
here for brevity. 
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Fig. 1 Power spectra of the tip displacements, Nastran vs. reduced order model (ROM) for the  
two loading cases with standard deviation of transverse response = 10% and 18% of span 
(a) Transverse. (b) Inplane.  
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(b) 

Fig. 2 Power spectra of the tip displacements, uncertainty in stiffnesses for the  two loading cases 
with standard deviation of transverse response = 10% and 18% of span. Uncertainty bands 
corresponding to the 2nd and 98th percentiles and mean ROM. (a) Transverse. (b) Inplane.  

4 Summary 

The present paper reported on a continued investigation of the effects of uncer-
tainty on the response of nonlinear geometric structures. Owing to the computa-
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tionally expensive Monte Carlo simulations involved in such investigations, a 
nonlinear reduced order modeling strategy was adopted for the mean model, see 
sections 2.1-2.3 and references therein for details. Next, uncertainty was intro-
duced in this mean model according to the nonparametric methodology (see sec-
tion 2.4) which allows the consideration of uncertainty in both structural proper-
ties (data uncertainty) and geometry (as example of model uncertainty). 

This framework was demonstrated on a cantilevered beam subjected to the 
combined action of a static compressive inplane load and a transverse random ex-
citation typical of ground motions. The mean model was first constructed from a 
full finite element model and its predictive capabilities validated vs. this full 
model at significant displacement levels (tip deflections of up to 18% of beam 
length). Uncertainty was then introduced leading to a stochastic reduced order 
model the stationary response of which was determined. The uncertainty bands as-
sociated with the 2nd and 98th percentiles of the power spectrum of the tip dis-
placements were determined and it was found that the mean model power spec-
trum fits well within these bands at lower response levels but shifts to the 98th 
percentile as the response level increases owing to model uncertainty effects. 
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