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Abstract

We are interested in constructing an uncertain computational model repre-
senting a family of structures and in identifying this model using a small
number of experimental measurements of the first eigenfrequencies. The
prior probability model of uncertainties is constructed using the generalized
probabilistic approach of uncertainties which allows both system-parameters
uncertainties and model uncertainties to be taken into account. The param-
eters of the prior probability model of uncertainties are separately identified
for each type of uncertainties, yielding an optimal prior probability model.
The optimal prior stochastic computational model allows a robust analysis
for the family of structures to be carried out.

Keywords:

1. Introduction

To ensure the security of its installations, EDF (Electricité De France)
regularly and frequently performs a large variety of experimental tests on the
various components of the electric power plants. Among these components,
the Containment Spray System (CSS) motors are structures made up of a
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motor, a holding system (junction), a housing and others structural elements
(described in Fig. 1). A CSS motor is used in case of emergency. It drives
the pump used to spray coolant into the primary containment structure, and
avoids overpressure. Sometimes, vibration of CSS motors can reach the alarm
level. These vibrations mainly occur in the neighborhood of the rotation fre-
quency, where the first three eigenmodes of a CSS motor are located. We are
then interested in the range of variation of the first three eigenfrequencies of
a CSS motor belonging to a family of motors. The rotation frequency of such
a motor is fixed. In this paper, all experimental and numerical frequencies
have been divided by this given rotation frequency and are therefore dimen-
sionless. Consequently, the dimensionless rotation frequency is equal to 1.
The target is such that the first three dimensionless eigenfrequencies have to
be out of the range [0.92, 1.08] in order to avoid a resonance induced by the
rotation of motors. For a given motor belonging to the family, the first eigen-
frequency is generally lower than the rotation frequency, and corresponds to
a rocking motion of the motor, coupled with the first flexural mode of its
concrete slab, in phase with the bending of the housing. The second eigen-
frequency, close to the rotation frequency, involves quite the same shape, in
an orthogonal direction, but without coupling with the concrete slab. The
third eigenfrequency still exhibits a flexural motion of the housing in phase
with the rocking of the motor, but with an out of phase coupling with the
first flexural mode of the concrete slab. Many solutions have been tested to
solve vibration issues, either in stiffening the assembly (stiffeners clamped to
the surrounding walls, modifications of the junction between the motor and
the floor, new piles to support the floor, etc.), or in lowering its eigenfrequen-
cies (using added masses). However, due to the large dispersion exhibited by
the eigenfrequencies of these structures, no generic solution could be found.

To overcome this issue, to better understand the behavior of these motors,
and to help designing a general solution, an unique uncertain computational
dynamical model representing the considered family of structures must be
built.

The dynamical behavior of a nominal CSS motor is described using a
computational dynamical model for which there are two types of uncertain-
ties. The first one, referred as system-parameters uncertainties, is related to
some parameters of the computational dynamical model which are consid-
ered as uncertain. The second one, referred as model uncertainties, is due
to the modeling errors which are due to the simplifications with respect to
the real motors, introduced in the computational dynamical model (see Sec-
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tion 3). One objective is to model uncertainties in the computational model
using a probabilistic approach. The construction of such a stochastic com-
putational model is usually performed in two steps. The first one consists in
constructing a prior probability model of the random variables which mod-
els uncertain quantities of the computational model. If experimental data
are available, the second one consists in constructing a posterior probability
model derived from the prior probability model and from the experimen-
tal data, using the Bayesian method [2]. If there are a lot of experimental
data, the prior probability model can be rough enough, because the Bayesian
approach allows a good probability model to be fitted. If there are no ex-
perimental data, the posterior model can not be constructed. If only few
experimental data are available, and if the prior probability model is too
rough, then the posterior model will stay relatively rough. In these two last
cases, it is necessary to construct the best prior probability model using the
available information. A method consists in constructing the prior probabil-
ity distribution using the maximum entropy principle under the constraints
defined by the available information. We then obtain an algebraic represen-
tation of the probability distribution which depends on unknown parameters.
If there are no experimental data, then these unknown parameters must be
considered as parameters to perform a sensitivity analysis. If there are few
experimental data, these unknown parameters can be estimated using data
and the maximum likelihood method. In this paper, we are in this last sit-
uation. There are only a few experimental data. We then construct a prior

probability model depending on unknown parameters which are estimated
with maximum likelihood method. Such a prior probability model for which
its unknown parameters are estimated with experimental data will be called
below the optimal prior probability model.

Concerning system-parameter uncertainties, the main method is based on
the use of the parametric probabilistic approach which has extensively been
developed in the last three decades, which is still in development and which
allows the uncertain system parameters of the nominal model to be taken
into account through the introduction of a prior probability model of these
system parameters (see for instance [5], [15], [19], [16], [20], [21]). Such an
approach consists (1) either in constructing an adapted representation based
on a polynomial chaos decomposition (see for instance [5], [8], [7], [14], [24],
[6], [19], [4], [3], [9], [1],[28], and see the recent synthesis presented in [13]),
(2) or in directly constructing the probability distribution of the random
quantity using the available information and the Maximum Entropy Principle
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introduced by Jaynes [10] in the context of Information Theory developed by
Shannon [23] (see for instance [12], [11] and for a recent development in this
field [26]).

Concerning model uncertainties induced by modeling errors, it is today
well understood that prior and posterior probabilistic models of the uncertain
model parameter are not sufficient and do not have the capability to take
into account model uncertainties as explained in the context of computational
mechanics (see for instance [2], [25]). Two main methods can be used to take
into account model uncertainties (modeling errors). (1) The first one consists
in introducing a probabilistic model of the output prediction error which is
the difference between the real system output and the model output (note
that such a probabilistic approach of model uncertainties is implemented at
the output level of the nominal model and not implemented at the opera-
tor level of the model). A posterior probabilistic model can be constructed
using, for instance, the Bayesian approach (see for instance [2]). (2) The
second one is based on the nonparametric probabilistic approach of model
uncertainties (modeling errors) which is described in [25] as another possible
way to the use of the output-prediction-error method in order to take into
account modeling errors. The nonparametric probabilistic approach consists
in directly constructing the stochastic modeling of the operators of the nom-
inal computational model instead of introducing a probabilistic model of the
prediction errors.

Since there are two types of uncertainties (system-parameters uncertain-
ties and model uncertainties) and since the two types must be separately
identified using experimental data, we propose to use the generalized proba-
bilistic approach of uncertainties which has recently been proposed (see [27])
to construct a prior probabilistic model of uncertainties. This method allows
both system-parameters uncertainties and model uncertainties to be taken
into account. In this method, the model errors are taken into account using
the nonparametric probabilistic approach. The prior probabilistic model of
each type of uncertainties is constructed and identified in a separate way
using the maximum likelihood method with the experimental data, yielding
an optimal prior probability model. Such a methodology is applied (1) to the
construction of a unique prior stochastic computational dynamical model rep-
resenting all the CSS motors belonging to the considered family and (2) to the
identification of this prior stochastic computational model with experimen-
tal measurements yielding an optimal prior stochastic computational model.
Finally, the optimal prior stochastic computational model allows statistics
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on the first three eigenfrequencies to be constructed and allows a robust
analysis for the family of structures to be carried out. This optimal prior
stochastic computational model could be improved in constructing a poste-

rior stochastic computational model consisting in reusing the experimental
data and the Bayesian method in order to construct a posterior probability
model of uncertainties. Nevertheless, we will see that there are 8 independent
random variables to model uncertain system parameters, and 2 random ma-
trices which are positive-definite symmetric 4× 4 real matrices for which the
random entries are mutually dependent. As it will be shown, each random
matrix will be a nonlinear transformation of 10 independent random germs.
Consequently, the stochastic modeling of uncertainties will introduce 28 in-
dependent random variables. Since only 11 experimental data are available,
it can be thought that such a posterior model of a probability distribution
on a subset of R28 cannot reasonably be improved with respect to the op-
timal prior model using only 11 experimental data. This is the reason why
a posterior model has not be constructed. Finally, it should be noted that
such the presentation of the construction of an optimal prior model using
the generalized approach and experimental data has never been previously
carried out.

Section 2 is devoted to the description of a CSS motor and to the exper-
imental measurements performed on the family of CSS motors. Sections 3
and 4 present the unique nominal computational dynamical model and the
unique stochastic computational dynamical model. Section 5 deals with the
experimental identification of the parameters of the prior probability model
of uncertainties yielding an optimal prior probability model. In the last
Section, statistics on the three first eigenfrequencies are constructed using
the optimal prior stochastic computational dynamical model. Such statistics
allow a robust analysis to be carried out for the family of CSS motors.

2. Dynamical system under consideration and its related experi-

mental measurements

We are interested in the prediction (in a statistical sense) of the first
three eigenfrequencies of a family of CSS motors represented by a unique
computational dynamical model for which there are both system-parameters
uncertainties and model uncertainties. A CSS motor is linked to a flexible
base plate which is bolted on a steel plate. This metallic plate is bonded
to an upper flexible concrete floor, and connected to a pump installed on a
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lower floor using a driving shaft. This driving shaft is protected by a housing
clamped to the base plate, as shown in Fig. 1. The motor is a very rigid

Figure 1: Scheme defining a CSS motor

assembly, while the housing is flexible. The considered family is constituted
of 11 CSS motors. Each motor belonging to this family is experimentally
tested. The first eigenfrequencies are experimentally identified. It should be
noted that the measured frequency response functions are not available. For
the 11 CSS motors of the considered family, the first eigenfrequencies which
are measured are given (in dimensionless form) in Table 1.

i 1 2 3 4 5 6 7 8 9 10 11

f exp,i
1 0.77 0.78 0.77 0.81 0.85 0.97 0.85 0.91 0.96 0.85 0.95

f exp,i
2 0.84 0.86 0.79 0.85 0.90 0.98 0.92 0.92 1.04 0.88 0.98

f exp,i
3 1.01 1.13 0.85 1.02 1.0 − − − − − −

Table 1: Measured eignefrequencies.

It should be noted that the third eigenfrequency is measured only for
5 CSS motors. In addition, Table 1 shows a large dispersion for the first
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three eigenfrequencies with an overlapping between the eigenfrequencies of
the CSS motors.

3. Nominal computational dynamical model

The nominal computational dynamical model is the deterministic de-
signed computational model which is constructed to represent all the CSS
motors belonging to the considered family.

The mesh of the finite element model of this nominal computational dy-
namical model is represented in Fig. 2. The concrete slab, the base plate
and the metallic plate are modeled by volume finite elements. The hous-
ing is modeled by a Timoshenko beam for which the area of the section
is A = 5.4 × 10−3 m2 and the bending inertia coefficients are Iy = Iz =
3.36 × 10−5 m4. The motor is modeled by a rigid body for which the total
mass, the position of the center of mass and the tensor of inertia reduced at
the center of mass are defined. The junction between the motor and the base
plate is modeled by a rotation spring for which the rotation stiffness with
respect to the two directions of bending of the structure are both equal to
kr = 6.8×107 Nm/rad. The characteristics of the materials are summarized
in Tab. 2. The four lateral sides of the concrete slab are fixed. The finite
element model has 40, 866 DOF. The eigenfrequencies f1, f2, . . . are calcu-

Figure 2: FE model

lated by finding the solutions ω = 2πf and ϕ of the generalized eigenvalue
problem,

[K]ϕ = ω2 [M ]ϕ , (1)
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Mass density Young modulus Poisson modulus
Concrete slab 2.4× 103 kg/m3 1.25× 1010 N/mm2 0.17
Base plate 7.8× 103 kg/m3 2.1× 1011 N/mm2 0.3

Metallic plate 7.8× 103 kg/m3 2.1× 1011 N/mm2 0.3
Gimbal housing 7.8× 103 kg/m3 2.1× 1011 N/mm2 0.3

Table 2: Caracteristics of the materials.

in which [M ] and [K] are respectively the positive-definite symmetric real
mass and stiffness matrices (there is no rigid body mode). Let [Φ] = [ϕ1...ϕn]
be the matrix of the n eigenmodes associated with the n eigenfrequencies
ordered by increasing values (f1 ≤ f2 ≤ . . . ≤ fn). Then the gener-

alized mass and stiffness matrices are defined by [M̃ ] = [Φ]T [M ][Φ] and

[K̃] = [Φ]T [K][Φ]. The three eigenmodes associated with the first three
eigenfrequencies (f1 = 0.82, f2 = 0.87, f3 = 1.11) which are computed with
the nominal computational dynamical model, are shown in Figs. 3, 4 and 5.

Figure 3: First eigenmode calculated with the nominal computational dynamical model

4. Stochastic computational dynamical model

As explained in Section 2, the nominal computational model presented
in Section 3 owns two types of uncertainties: system-parameters uncertain-
ties and model uncertainties induced by the modeling errors. The system-
parameters uncertainties are mainly induced by the variability of the eight
parameters x1, . . . , x8 of the nominal computational model: (1) the mass
density ρcs, the two Lame coefficients λcs and µcs of the concrete slab, (2)
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Figure 4: Second eigenmode calculated with the nominal computational dynamical model

Figure 5: Third eigenmode calculated with the nominal computational dynamical model

the mass density ρmp, the two Lame coefficients λmp and µmp of the metallic
plate, (3) the bending inertia coefficient Ih of the housing and the rotation
stiffness ks of the spring. Let x = (x1, . . . , x8) be the vector representing all
the uncertain system parameters (ρcs, λcs, µcs, ρmp, λmp, µmp, Ih, ks). Vector
x belongs to the admissible set denoted by C

x
.

The two types of uncertainties are taken into account using the gener-
alized probabilistic approach of uncertainties introduced in [27] and which
allows an independent modeling of both system-parameters uncertainties and
modeling errors to be separately taken into account and experimentally iden-
tified.

4.1. Construction of the probability model of the uncertain system-parameters

Let E{.} be the mathematical expectation. The eight uncertain parame-
ters (x1, . . . , x8) are modeled by the random vector X = (X1, . . . , X8) defined
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on the probability space (Θ, T ,P). The probability distribution of random
vector X which models the uncertain system-parameters is constructed us-
ing the Maximum Entropy Principle (MaxEnt) from Information Theory
[23], under the constraints defined by the available information [10]. Since,
no information is available concerning the statistical correlation between the
components X1, . . . , X8 of X, the use of the MaxEnt principle yields, as a
result, that the real-valued random variables X1, . . . , X8 are independent.
Consequently, for any fixed i, the probability density function of random
variable Xi is constructed using the MaxEnt principle under the constraints
defined by the following available information: (1) Random variable Xi must
be positive almost surely. (2) The mean value of random variable Xi must
be equal to the value xi of the nominal computational model. (3) Random
variable Xi must verify the inequality E{X−2

i } < +∞ in order that the ran-
dom eigenvalues be second-order random variables. It can be proven that
the third constraint can be replaced by |E{logXi}| < +∞, this last one im-
plying the previous one. It can then be deduced that the probability density
function p

Xi
(xi) with respect to dxi of random variable Xi is written as

p
Xi
(xi; δxi

) = 1l ]0,+∞[ (xi)
1

xi

(
1

δ2xi

) 1

δ2xi 1

Γ(1/δ2xi
)

(
xi

xi

) 1

δ2xi

−1

exp

(
− xi

δ2xi
xi

)
, (2)

where Γ(α) =
∫ +∞

0
tα−1e−t dt is the Gamma function and where 1l ]0,+∞[ (x) =

1 if x > 0 and = 0 if not. The dispersion parameter δxi
is defined as the

coefficient of variation given by δxi
= σ

Xi
/xi where σ

Xi
is the standard de-

viation of random variable Xi, such that 0 ≤ δxi
< 1/

√
2. Therefore, the

probability density function of the random variable Xi is completely defined
by the mean value xi which is given by the nominal computational model and
by the dispersion parameter δxi

which must be identified using the measured
eigenfrequencies. Let F1 ≤ . . . ≤ Fn the order statistics of the real-valued
random variables F1, . . . , Fn modeling the eigenfrequencies f1 ≤ . . . ≤ fn.
For any realization X(θ) of the random variable X with θ in Θ, the real-
izations F1(θ) ≤ . . . ≤ Fn(θ) of the random eigenfrequencies F1, . . . , Fn are
calculated by finding the solutions ω(X(θ)) = 2πf(X(θ)) and ϕ(X(θ)) of
the following random generalized eigenvalue problem,

[K(X(θ))]ϕ(X(θ)) = ω(X(θ))2 [M(X(θ))]ϕ(X(θ)) . (3)
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This random generalized eigenvalue problem is solved using the Monte Carlo
Simulation Method (note that there exist efficient algorithms to solve such
a stochastic generalized eigenvalue problem for large systems such as [17]).
The (n×n) random generalized mass and stiffness matrices are then defined
by

[M̃(X(θ))] = [Φ(X(θ))]T [M(X(θ))] [Φ(X(θ))] , (4)

[K̃(X(θ))] = [Φ(X(θ))]T [K(X(θ))] [Φ(X(θ))] . (5)

Since random matrices [M̃(X(θ))] and [K̃(X(θ))] are positive definite, their
Cholesky decomposition yields

[M̃(X(θ)))] = [LM (X(θ))]T [LM(X(θ))] , (6)

[K̃(X(θ))] = [LK(X(θ)))]T [LK(X(θ))] . (7)

4.2. Construction of the probability model of model uncertainties

The construction of the probability model of model uncertainties is carried
out as explained in [27]. Therefore, the dependent random matrices [M̃(X)]

and [K̃(X)] are replaced by the dependent random matrices [M̃(X)] and

[K̃(X)]. For any fixed value of vector x in admissible set C
x
, the prob-

ability density function of the random matrices [M̃(x)] and [K̃(x)] are
constructed using the MaxEnt principle under the constraints defined by
the following available information: (1) the random matrices [M̃ (x)] and

[K̃(x)] must be positive definite almost surely. (2) The mean value of the

random matrices [M̃(x)] and [K̃(x)] are respectively equal to [M̃(x)] and

[K̃(x)]. (3) The random matrices [M̃(x)] and [K̃(x)] must verify the in-

equalities E{‖[M̃(x)]−1‖2} < +∞ and E{‖[K̃(x)]−1‖2} < +∞ in order that
the random eigenvalues of the stochastic computational dynamical model be
second-order random variables. In addition, it can be proven that the third
constraint can be replaced by the following one: |E{log(det[M̃(x)])}| < +∞
and |E{log(det[K̃(x)])}| < +∞. Taking into account Eqs. (6) and (7), the

random matrices [M̃(x)] and [K̃(x)] are written as,

[M̃(x)] = [LM (x)]T [GM ][LM(x)] , (8)

[K̃(x)] = [LK(x)]
T [GK ][LK(x)] . (9)
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in which the random matrices [GM ] and [GK ] are defined on another prob-
ability space denoted by (Θ′, T ′,P ′). These random matrices are such that

[GM ] ∈ M
+
n (R) a.s. , E{[GM ]} = [In] , |E{log(det[GM ])}| < +∞, (10)

[GK ] ∈ M
+
n (R) a.s. , E{[GK ]} = [In] , |E{log(det[GK ])}| < +∞. (11)

The probability density functions of random matrices [GM ] and [GK ], which
are explicitly defined in [25], depend on the dispersion parameters δM and
δK which have to be identified using the experimental values of the eigenfre-
quencies.

For any realization X(θ) of random variable X with θ in Θ and for any
independent realizations [GM(θ′)] and [GK(θ

′)] of random matrices [GM ]

and [GK ] with θ′ in Θ′, the realizations [M̃(θ′;X(θ))] and [K̃(θ′;X(θ))] of

the random matrices [M̃ (X)] and [K̃(X)] defined on the probability space
(Θ×Θ′, T ′ ⊗ T ′,P ⊗ P ′) are written as

[M̃ (θ′;X(θ))] = [LM (X(θ))]T [GM(θ′)] [LM(X(θ))] , (12)

[K̃(θ′;X(θ))] = [LK(X(θ))]T [GK(θ
′)] [LK(X(θ))] . (13)

The realizations F1(θ, θ
′) ≤ . . . ≤ Fm(θ, θ

′) of the random eigenfrequencies
F1 ≤ . . . ≤ Fm are calculated by finding the solutions Ω(θ, θ′) = 2πF (θ, θ′)
and V (θ, θ′) of the random generalized eigenvalue problem

[K̃(θ′;X(θ))]V (θ, θ′) = Ω(θ, θ′)2 [M̃(θ′;X(θ))]V (θ, θ′) . (14)

5. Estimation of the parameters of the probability models of un-

certainties

This section is devoted to the experimental identification of the parame-
ters introduced in the probabilistic models of uncertainties constructed in the
previous section. These parameters consist of mean value x and dispersion
parameters δX , δM and δK . A first numerical investigation has been done
with the stochastic computational model in order to analyze the sensitivity
of the third eigenfrequency with respect to uncertainties. We have seen, un-
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like the first two eigenfrequencies, that (1) the third eigenfrequency cannot
reasonably be fitted with experiments using only system-parameters uncer-
tainties (δX > 0 and δM = δK = 0) and (2) this third eigenfrequency is very
sensitive to model uncertainties (δX > 0, δM > 0 and δK > 0). Consequently,
only the first two eigenfrequencies will be used to estimate system-parameters
uncertainties (δX > 0 , δM = 0 and δK = 0). This is also the reason why the
first three eigenfrequencies have not been used to simultaneously identify all
the unknown parameters which are x, δX , δM and δK . We have not used a
unique stage to identify the unknown parameters in order to keep the spirit
of the generalized probabilistic approach of uncertainties proposed in [27] for
which the two types of uncertainties are separately identified. In addition,
such a procedure allows the optimization cost to be reduced, above all if the
dimension of the admissible set is large. Therefore, we propose two stages
for identifying the unknown parameters and not a unique stage. The first
one will be devoted to the identification of x and δX using the first two
experimental eigenfrequencies (identification of the probability model of the
uncertain system parameters). The second one deals with the identification
of δM and δK (identification of the probability model of model uncertainties).
For this second stage, several strategies are a priori possible. If the first two
eigenfrequencies were not at all sensitive to model uncertainties, we would
only have chosen the third experimental eigenfrequency for the identification.
However, the sensitivity analysis which has been performed with respect to
model uncertainties, shows that these first two eigenfrequencies are sensitive
to model uncertainties. Consequently, we proposed to identify δM and δK
using the first three experimental eigenfrequencies and in fixing the value of
x and δX at the optimal values estimated in stage 1. It should be noted that
another strategy could lead to another identified stochastic computational
model. Nevertheless, there is no argument to decide what would be the best
stochastic identified stochastic model among all the possibilities, taking into
account the very small amount of available experimental data.

5.1. Estimation of the parameters of the probability models of the uncertain

system-parameters

The parameters of the probability distribution of random variablesX1, . . . ,
X8 are (1) the vector x = (x1, . . . , x8) of the mean values belonging to ad-
missible set C

x
and (2) the vector δX = (δx1

, . . . , δx8
) of the coefficients of

variation belonging to an admissible set denoted by C
δ
. Vector parameters

x and δX must be identified using an observation of the dynamical system
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which is weakly sensitive to model uncertainties. Among all the observations
of the dynamical system for which experimental measurements are avail-
able, the two lowest eigenfrequencies (fundamental eigenfrequency in each
y-direction and z-direction) are the observations which are a priori the less
sensitive to model uncertainties. It should be noted that only the first eigen-
frequency could have been selected but due to the quasi-symmetry of the
mechanical system with respect to y-direction and z-direction, the two first
eigenfrequencies have been selected. The optimal values of these vector pa-
rameters are estimated using the maximum likelihood method [22],[29]. The
optimal value xopt of x and the optimal value δ

opt
X of δX are solution of the

following optimization problem,

(xopt, δopt
X ) = arg max

x∈C
x
,δX∈C

δ

11∑

i=1

log(p
F1,F2

(f exp,i
1 , f exp,i

2 ;x, δX)) , (15)

in which p
F1,F2

(f1, f2;x, δX) is the joint probability density function of ran-
dom variables F1 ≤ F2 calculated using the stochastic computational model
(with δM = δK = 0) and where f exp,1

1 , . . . , f exp,11
1 and f exp,1

2 , . . . , f exp,11
2 are

the 11 experimental values of the first and second eigenfrequencies defined
in Table 1. The estimation of the likelihood function is performed using
the Monte Carlo simulation method (see [18]) with ns = 350 simulations
for which the convergence is achieved. The optimization problem is a non-
convex optimization problem on an admissible set which has a relative high
dimension. Consequently, we cannot prove the existence of a unique global
optimum and even if a unique global optimum existed, it cannot surely be
estimated with a reasonable numerical cost. In such a problem, we can only
improve the solution corresponding to the starting point and the improve-
ment is directly proportional to the numerical cost. In this context, this
optimization problem is solved using a genetic algorithm. The optimal so-
lution is given in Table 3. The results given in Table 3 are coherent with
respect to the sources of uncertainties. The dispersion on steel plate are
relatively small while the dispersion on the concrete slab is larger and the
dispersion of the rotation stiffness is very large, that was expected.

5.2. Estimation of the dispersion parameters of the probability model of model

uncertainties

The dispersion parameter δ
MK

= (δM , δK) which controls the level of
model uncertainties must be identified using all the observations for which
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Nominal value Mean value Coef. var.
ρcs 2.4× 103 kg/m3 2.18× 103 kg/m3 0.3
λcs 2.75× 109 m2/N 3.30× 109 m2/N 0.08
µcs 5.34× 109 m2/N 6.41× 109 m2/N 0.3
ρmp 7.8× 103 kg/m3 8.74× 103 kg/m3 0.001
λmp 1.21× 1011 m2/N 1.07× 1011 m2/N 0.12
µmp 8.08× 1010 m2/N 8.4× 1010 m2/N 0.039
Ih 3.36× 10−5 m4 3.76× 10−5 m4 0.12
ks 6.8× 107 Nm/rad 7.9× 107 Nm/rad 0.42

Table 3: Optimal solution for system-parameters uncertainties identification.

experimental data are available. Consequently, the first three eigenfrequen-
cies are used to perform the identification of δ

MK
. Let C

MK
be the admissible

space of δ
MK

. The optimal value δopt

MK
of δ

MK
is also estimated using the max-

imum likelihood method. As noted in Section 2, the third eigenfrequency has
been measured for only 5 of the 11 motors of the family (see Table 1). Then,
δopt

MK
is solution of the following optimization problem

δopt

MK
= arg max

δ
MK

∈C
MK

L(δ
MK

) , (16)

with

L(δ
MK

) =

5∑

i=1

log(p
F1,F2,F3

(f exp,i
1 , f exp,i

2 , f exp,i
3 ; δ

MK
,xopt, δopt

X ))

+

11∑

i=6

log(p
F1,F2

(f exp,i
1 , f exp,i

2 ; δ
MK

,xopt, δopt

X )) ,

(17)

in which p
F1,F2,F3

(f1, f2, f3; δMK
,xopt, δopt

X ) is the joint probability density func-
tion of random variables F1 ≤ F2 ≤ F3 calculated using the stochastic com-
putational model and where f exp,i

1 , f exp,i
2 , f exp,i

3 are the experimental values
defined in Table 1. The estimation of the likelihood function is performed
using the Monte Carlo simulation method with ns = 350 simulations for
which the convergence is achieved. The graph of (δM , δK) 7→ L(δ

MK
) is

plotted in Fig. 6. The maximum is reached for δopt

MK
= (0.09, 0.04) which

corresponds to a reasonable level of model uncertainties. It should be noted
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that model uncertainties increase with the frequency in such a dynamical
system. Consequently, if experimental data for higher eigenfrequencies or
frequency response functions had been available, the identified level of model
uncertainties would have been greater.
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Figure 6: Graph of the likelihood function (δM , δK) 7→ L(δ
MK

).

6. Statistics for the eigenfrequencies

In this section, we estimate statistics for the first three eigenfrequencies
using the stochastic computational model constructed in Section 4 and iden-
tified in Section 5. The statistics are estimated using the Monte carlo simula-
tion method for two cases: (1) without taking into account model uncertain-
ties, i.e. (x, δX) = (xopt, δopt

X ) and δ
MK

= (0, 0) and (2) taking into account
model uncertainties, i.e. (x, δX) = (xopt, δopt

X ) and δ
MK

= δopt

MK
. The proba-

bility density function of the first three eigenfrequencies estimated using the
stochastic computational model with (x, δX) = (xopt, δopt

X ) and δ
MK

= (0, 0)
are plotted in Figs. 7, 8 and 9. The probability density function of the first
three eigenfrequencies estimated using the stochastic computational model
with (x, δX) = (xopt, δopt

X ) and δ
MK

= δopt

MK
are plotted in Figs. 10, 11 and 12.

We are interested in the probability that each random eigenfrequency belongs
to the [0.92, 1.08] critical range. The results for the two cases (without taking
into account model uncertainties and taking into account model uncertain-
ties) are respectively reported on Table 4 and Table 5. We can remark that
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Figure 7: Probability density function of the first dimensionless eigenfrequency with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= (0, 0). The vertical lines delimit the [0.92, 1.08] crit-
ical range.

Nominal Mean Coeff of var Proba ∈ [0.92, 1.08]
first eigenfreq. 0.82 0.87 7.5 % 0.24

second eigenfreq. 0.87 0.92 6.8 % 0.52
third eigenfreq. 1.11 1.16 6.8 % 0.16

Table 4: Statistics for the three first dimensionless eigenfrequencies with (x, δX) =
(xopt, δ

opt

X ) and δ
MK

= (0, 0).

Nominal Mean Coeff of var Proba ∈ [0.92, 1.08]
first eigenfreq. 0.82 0.87 7.0 % 0.24

second eigenfreq. 0.87 0.93 6.5 % 0.58
third eigenfreq. 1.11 1.16 6.4 % 0.13

Table 5: Statistics for the three first dimensionless eigenfrequencies with (x, δX) =
(xopt, δ

opt

X ) and δ
MK

= δopt

MK
.
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Figure 8: Probability density function of the second dimensionless eigenfrequency with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= (0, 0). The vertical lines delimit the [0.92, 1.08] critical
range.

model uncertainties modify the probability of being in the [0.92, 1.08] critical
range. We can also remark that, when model uncertainties are taken into
account, the coefficient of variation of the first three eigenfrequencies lightly
decreases. It should be noted that, if the random observation (the eigenfre-
quency) was the addition of a random quantity relative to system parameter
uncertainties with another random quantity relative to model uncertainties,
then the variance of the random observation would be an increasing function
of the variance of each random quantity. In the present case, the random
observation is a nonlinear transformation of these two random quantities and
consequently, the above result does not hold in the general case. The joint
probability density functions (f1, f2) 7→ p

F1,F2
(f1, f2), (f1, f3) 7→ p

F1,F3
(f1, f3)

and (f2, f3) 7→ p
F2,F3

(f2, f3) estimated using the stochastic computational

model with (x, δX) = (xopt, δopt

X ) and δ
MK

= (0, 0) are plotted in Figs. 13, 14
and 15. The joint probability density functions (f1, f2) 7→ p

F1,F2
(f1, f2),

(f1, f3) 7→ p
F1,F3

(f1, f3) and (f2, f3) 7→ p
F2,F3

(f2, f3) estimated using the

stochastic computational model with (x, δX) = (xopt, δopt
X ) and δ

MK
= δopt

MK

are plotted in Figs. 16, 17 and 18. We are also interested in the joint prob-
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Figure 9: Probability density function of the third dimensionless eigenfrequency with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= (0, 0). The vertical lines delimit the [0.92, 1.08] critical
range.

ability that the first eigenfrequency belongs to the [0.92, 1.08] critical range.
For the two cases (without taking into account model uncertainties and tak-
ing into account model uncertainties, the results are respectively reported in
Table 6 and Table 7.

Event Probability
{F1 ∈ [0.92, 1.08] ∪ F2 ∈ [0.92, 1.08] ∪ F3 ∈ [0.92, 1.08]} 0.65
{F1 /∈ [0.92, 1.08] ∩ F2 /∈ [0.92, 1.08] ∩ F3 /∈ [0.92, 1.08]} 0.35
{F1 ∈ [0.92, 1.08] ∩ F2 ∈ [0.92, 1.08] ∩ F3 ∈ [0.92, 1.08]} 0.0

Table 6: Statistics for the three first dimensionless eigenfrequencies with (x, δX) =
(xopt, δ

opt

X ) and δ
MK

= (0, 0).

It can be noted that model uncertainties modify the joint probabilities of
being in the [0.92, 1.08] critical range. Model uncertainties could be reduced
by improving the nominal computational model.
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Figure 10: Probability density function of the first dimensionless eigenfrequency: with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= δopt
MK

(thick solid line), with (x, δX) = (xopt, δ
opt

X ) and
δ

MK
= (0, 0) (dashed thin line). The vertical lines delimit the [0.92, 1.08] critical range.

Event Probability
{F1 ∈ [0.92, 1.08] ∪ F2 ∈ [0.92, 1.08] ∪ F3 ∈ [0.92, 1.08]} 0.70
{F1 /∈ [0.92, 1.08] ∩ F2 /∈ [0.92, 1.08] ∩ F3 /∈ [0.92, 1.08]} 0.30
{F1 ∈ [0.92, 1.08] ∩ F2 ∈ [0.92, 1.08] ∩ F3 ∈ [0.92, 1.08]} 0.0

Table 7: Statistics for the three first dimensionless eigenfrequencies with (x, δX) =
(xopt, δ

opt

X ) and δ
MK

= δopt

MK
(0, 0).

7. Conclusions

In this paper, a methodology is proposed to perform the experimental
identification of an uncertain computational dynamical model representing
a family of mechanical systems for which available measurements exist for
the first eigenfrequencies. This methodology is applied and validated in the
context of an important industrial problem related to the dynamical analysis
of the Containment Spray System (CSS) motors. The stochastic computa-
tional model which is developed takes into account both system-parameters
uncertainties and model uncertainties. These two types of uncertainties must
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Figure 11: Probability density function of the second dimensionless eigenfrequency: with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= δopt
MK

(thick solid line), with (x, δX) = (xopt, δ
opt

X ) and
δ

MK
= (0, 0) (dashed thin line). The vertical lines delimit the [0.92, 1.08] critical range.

be taken into account because only one computational model must have the
capability to represent all the elements of the family of mechanical systems.
The strategy consists in using a stochastic modeling which allows the two
types of uncertainties to be separated and consequently, to be separately
identified with measurements. For that, a generalized probabilistic approach
of uncertainties recently introduced is used for the first time with exper-
imental data. Such a method which requires available experimental data
allows the identification of each type of uncertainties to be identified. The
methodology which is presented is applied to the above difficult problem
for which only limited experimental data are available. The available data
consist of a few measurements of the first three eigenfrequencies of the dy-
namical system and are not sufficient to perform a complete estimation of
model uncertainties induced by modeling errors. A better estimation, that is
to say, a better separation between the system-parameters uncertainties and
the model uncertainties, would require additional experimental data (such as
experimental frequency response functions) on the dynamical responses in a
frequency band larger than the third eigenfrequency. The results presented
validate the approach taking into account the difficulties of the problem under
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Figure 12: Probability density function of the third dimensionless eigenfrequency: with
(x, δX) = (xopt, δ

opt

X ) and δ
MK

= δopt
MK

(thick solid line), with (x, δX) = (xopt, δ
opt

X ) and
δ

MK
= (0, 0) (dashed thin line). The vertical lines delimit the [0.92, 1.08] critical range.

consideration. This identification has successfully been carried out despite
the lack of experimental data thanks to the quality of the prior stochastic
model which is constructed with Information Theory. The identified model
allows a robust analysis of the dynamical system to be performed in the low-
frequency range. Finally, the methodology proposed could be used for any
others dynamical systems that the presented one.
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