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Abstract

The aim of this paper is to provide a general overview on random matrix en-
sembles for modeling stochastic elasticity tensors that exhibit uncertainties
on material symmetries. Such an issue is of primal importance in many prac-
tical situations involving either a computational or experimental analysis
on random heterogeneous materials (such as bones, reinforced composites,
etc.). For this purpose, we first define a stochastic measure of anisotropy,
the definition of which relies on the use of distances in the set of fourth-order
elasticity tensors. We subsequently describe two random matrix ensembles
that have been proposed within the framework of information theory and
making use of a MaxEnt approach. In particular, we discuss the relevance
of each of those with respect to constraints on the proposed anisotropy mea-
sure. It is shown that the capability of prescribing the mean distance to
a given symmetry class depends, in view of the eigensystem-based charac-
terization, on the behavior of the random eigenvalues. Finally, we propose
a procedure allowing for the identification of the stochastic representation,
should a set of experimental data be available. The approach, which is based
on the use of the maximum likelihood principle, is exemplified in the case
of experimental realizations that are almost transversely isotropic.
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Entropy Principle; Uncertainty.

Notations

The notations that will be used throughout the paper are presented in
Table 1. Otherwise stated, the summation over repeated indices is assumed.

Symbol Meaning

a Scalar deterministic variable
α Scalar random variable
x, λ Deterministic vector
X, Λ Random vector

[A], [Λ] Deterministic matrix
[A], [Λ] Random matrix

[[A]], [[Λ]] Deterministic fourth-order tensor
[[A]], [[Λ]] Random fourth-order tensor

Table 1: Nomenclature.

Hereafter, [[A]] is a fourth-order tensor in three dimensions and the same
notation will be used for both second-order tensors in n dimensions and
(n× n) matrix representations.

Let MS
n(R) and M+

n (R) be the sets of all the (n × n) real symmetric
matrices and the (n×n) real symmetric positive-definite matrices (M+

n (R) ⊂
MS
n(R)), respectively. The determinant, trace and transpose of matrix [A] ∈

Mn(R) (Mn(R) being the set of all the square (n × n) real matrices) are
denoted by det([A]), tr([A]) = [A]ii and [A]T, respectively. For [A] and
[B] in Mn(R) , the inner product < ·, · > and the associated Frobenius (or
Hilbert-Schmidt) norm ‖ · ‖F are defined as < [A], [B] >= tr([A]T[B]) and
‖[A]‖2F =< [A], [A] >. All the random variables are defined on a probability
space (Θ,F ,P) and E denotes the mathematical expectation.

1. Introduction

In this paper, we consider the modeling of stochastic elasticity ten-
sors, the parametrization of which has to be defined with respect to some
anisotropy constraints. Such a situation arises in various applications, rang-
ing from the modeling of complex heterogeneous materials (e.g. biological
tissues or fiber-reinforced composite materials) for which no scale separation
holds, to the experimental analysis of materials exhibiting uncertainties on
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macroscale material symmetries. In the former, it is well known that the
so-called apparent elasticity tensor exhibits aleatoric uncertainties (see [21]
[19] [43] [38]), and a fundamental issue, beyond the one related to the prob-
abilistic modeling, is to know whether the material symmetries that can
be expected at the macroscale are preserved at the mesoscopic level. From
a mechanical point of view, it can be clearly inferred that each realiza-
tion of the apparent tensor does not belong to the set of tensors with the
macroscopic material symmetries, but the “distance” between each realiza-
tion and this class of symmetry may be bounded or at least, constrained.
This simple observation can be schematically exemplified in the case of a
two-phase composite material, made up with an isotropic matrix reinforced
by isotropic or transversely isotropic fibers that are all aligned in a given
direction, say e3; see Fig. 1. While such a material is transversely isotropic

Figure 1: Schematic of an unidirectional composite: macroscale transversely isotropic rep-
resentation (left) and 2D mesoscale representations in the transverse plane of macroscopic
isotropy (right).

at the macroscale, it is very likely that the mesoscale realizations in the
transverse plane (e1, e2) are not isotropic anymore, and that the distance
to transverse isotropy is all the more small that the size of the mesoscopic
domain tends to the size of the RVE. Even when the scale separation can
be stated, experimental results often exhibit a large scattering (which may
be due to either uncertainties induced by modeling errors on experimen-
tal setup or microstructure evolution while processing or testing the final
material samples, for instance) that may not be ignored. Such anisotropic
random fluctuations are seldom taken into account in practice and are, in
many situations, either neglected or smoothed through an averaging proce-
dure or having recourse to projection schemes (as will be discussed in Section
2.3). However, such choices do have important consequences for practical
applications where the elastic anisotropy plays a key role in the physics of
the modeled phenomenon (see [29], among others, for a brief discussion in
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a deterministic context) and consequently, the modeling of such “ random
anisotropy” turns out to be of primal importance to ensure the consistency
between the mathematical/mechanical model and the physical information
carried by the realizations of the random microstructure, as well as to ob-
tain more predictive and robust simulations. Three main issues can then be
identified:

(i) How can we model, in a way that is both mathematically and physical-
ly-sounded, such uncertainties on the elasticity tensor?

(ii) Once such a model has been derived, how can we define model param-
eters so that the realizations of the elasticity tensor exhibit a certain
level of material symmetry? Naturally, this question is closely related
to the definition of an anisotropy measure that is suitable for stochastic
analysis.

(iii) Finally, assuming that some data are available, how can we identify
the proposed stochastic representations, such that the probabilistic
models are able to generate realizations that are consistent (in terms
of anisotropy) with the experiments?

This work aims at addressing such issues by providing, in particular, a com-
prehensive overview on random matrix approaches. The paper is organized
as follows. In Section 2, we then discuss the definition of anisotropy mea-
sures for elasticity tensors. The concept of distances in the set of fourth-order
elasticity tensors is recalled and we make use of such derivations to define
a stochastic measure of anisotropy (in connection with point (ii) mentioned
above). In Section 3, we summarize an overall methodology for constructing
probabilistic models in the context of information theory and present two
random matrix ensembles, namely SE+ and SE++.

2. Characterization of anisotropy

2.1. Hooke’s law and second-order tensor representation of the elasticity
tensor

Let Ela be the set of fourth-order elasticity tensors. Therefore, [[A]] ∈
Ela satisfy the usual positive-definiteness and symmetry properties:

• [b] : [[A]] : [b] = [[A]]ijk`[b]ij [b]k` > 0, in which the symbol “:” denotes
the twice contracted tensor product and [b] is any nonzero symmetric
second-order tensor.

• [[A]]ijk` = [[A]]jik` = [[A]]ij`k = [[A]]k`ij .
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The inner product � ·, · � of [[A]] and [[B]] (both in Ela) and the as-
sociated norm |‖ · ‖| are defined as � [[A]], [[B]] �= [[A]]ijk`[[B]]ijk` and
|‖[[A]]‖|2 =� [[A]], [[A]]�.

In this paper, we denote by Csym ⊂ Ela the set of elasticity tensors
with sym material symmetry, e.g. CIso is the subset of all the fourth-order
isotropic elasticity tensors.

In linear elasticity, the strain and stress (second-order symmetric) tensors
[σ] and [ε] are related through the generalized Hooke’s law:

[σ] = [[L]] : [ε], (1)

in which [[L]] ∈ Ela. Alternative matrix forms of Eq. (1) have been proposed
in the literature. One of the most commonly used notation in mechanics
of anisotropic materials is the one introduced by Voigt [53], in which the
components [L]IJ of the matrix representation are related to the components
[[L]]ijk` of [[L]] by the following index mapping: 11 → 1, 22 → 2, 33 → 3,
23→ 4, 13→ 5 and 12→ 6. Vectorial representation of [σ] and [ε] are then
accordingly considered.

In this paper, we adopt a slightly different notation and rewrite Eq. (1)
as [54]:

σ = [L]ε, (2)

in which,

σ = ([σ]11, [σ]22, [σ]33,
√

2[σ]23,
√

2[σ]13,
√

2[σ]12), (3)

ε = ([ε]11, [ε]22, [ε]33,
√

2[ε]23,
√

2[ε]13,
√

2[ε]12), (4)

and [L] is defined as:

[[L]]11 [[L]]12 [[L]]13
√

2[[L]]14
√

2[[L]]15
√

2[[L]]16
[[L]]22 [[L]]23

√
2[[L]]24

√
2[[L]]25

√
2[[L]]26

[[L]]33
√

2[[L]]34
√

2[[L]]35
√

2[[L]]36
2[[L]]44 2[[L]]45 2[[L]]46

Sym. 2[[L]]55 2[[L]]56
2[[L]]66

 . (5)

in which [[L]]ij is the component (i, j) of the matrix representation of the
elasticity tensor in Voigt’s notation. It can be shown that the matrix form
(5) represents the components of a second-order tensor (which is not the case
for the Voigt notation; see [31] for a discussion) and ensures the preservation
of the norm no matter the representation of the elasticity tensor (that is to
say, |‖[[L]]‖| = ‖[L]‖F).
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2.2. Definition of anisotropy index

The simplest characterization of anisotropy was historically based on the
study of the anisotropy of single crystals and achieved through the definition
of a scalar parameter, written as a function of some specific components of
the elasticity matrix. One of the very first attempt was carried out by Zener
[55], resulting in the definition of the so-called Zener anisotropy index for
cubic crystals:

zZener([L]) =
[L]44

[L]11 − [L]12
. (6)

Note that the definition (6) of the Zener index has been slightly modified in
order to be consistent with Eq. (5). When zZener([L]) = 1, the crystal is
perfectly isotropic. Although the information given by such an index may
appear somewhat limited, it turns out to be very useful in interpreting scale
effects in polycrystalline microstructures for instance (see [40] for numerical
evidences). Definitions of other anisotropy measures have been proposed in
[9] [29] and [41]. However, the first two characterizations undoubtedly lack
universality, since they are generally valid for anisotropic crystals with a
particular class of symmetry (as pointed out in [41]), and all these measures
are defined with respect to the isotropy class. In other words, these indexes
are either such that they do not allow characterizing the “distance” between
an elasticity tensor with arbitrary symmetry to the set of tensors exhibit-
ing a material symmetry different from isotropy, or only provide a rough
information about the anisotropy. Such limitations can be circumvented by
introducing metrics in Ela, as discussed below.

2.3. Definition of distances and projections in Ela
The characterization of anisotropy can be put on a firm footing by intro-

ducing the concept of distances in Ela. Such distances have been introduced
and widely used within the scope of seismology and geophysical applications,
for which the accuracy in both forward simulations and inverse solving de-
pends on whether or not anisotropic behavior can be accounted for by the
retained model [20] [50]. The problem can then be stated as follows: how
can we compute, from anisotropic experimental measurements, the asso-
ciated closest approximations belonging to a given subset Csym? Such an
issue has been addressed by numerous authors. An Euclidean-projection-
based strategy, taking advantage of the mathematical interpretation of the
subsets of elasticity tensors exhibiting given symmetries, has been proposed
in [15]. A more physically-sounded approach was alternately derived in [13],
in which the author states the equivalence between the acoustic properties of
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the anisotropic material and the ones of its closest isotropic approximation,
making use of the slowness surfaces. These two treatments were later unified
and shown to be equivalent in [36], hence providing a valuable and physical
basis for the use of Euclidean projections. Note that the latter also benefit
from their universality, since the projection procedure is not restricted to
CIso.

The first attempts for deriving closest approximations have been for-
malized making use of the Euclidean metric dE , defined for two elasticity
matrices [C1] and [C2] as:

dE([C1], [C2]) = ‖[C1]− [C2]‖F. (7)

However, the Euclidean distance is not invariant by inversion and therefore,
does not provide a unique projection (which should be defined regardless
of whether the stiffness or compliance tensor is considered). Consequently,
alternative distances, which do not suffer from this deficiency, have been
proposed in the literature. In particular, the Log-Euclidean [1] and Rie-
mannian [34] metrics, denoted by dLE and dR respectively, were introduced
and are defined as:

dLE([C1], [C2]) = ‖log ([C2])− log ([C1]) ‖F, (8)

dR([C1], [C2]) = ‖log
(

[C1]
−1/2[C2][C1]

−1/2
)
‖F. (9)

Assuming that the reference frame, defining the desired subset Csym on
which the projection is sought, is known and upon using a tensorial basis
of Csym, straightforward minimization procedures allows for the definition
of the projected tensor (or equivalently, or its matrix representation). Due
to the simple form of Eq. (7), closed-form expressions can be derived in the
case of the Euclidean distance, while the use of either the Log-Euclidean
or the Riemannian metric requires a numerical solving; see [35] for explicit
derivations for all symmetry classes (see [37] for a specific discussion re-
garding the isotropic one), as well as [6] for results expressed in the form
of vectorial representations. It is worthwhile to note that an overall closest
approximation can be defined by minimizing the distance over all orthog-
onal transformations of the reference frame (see [30] for a parametrization
of the orthogonal group SO(6), for instance), thus providing the definition
of what may be referred to as the effective closest approximation and ref-
erence frame; see [7] [26] [27] [28] (and the references therein) for reviews
and applications to effective orthotropic and transversely isotropic tensors.
However, such a consideration is not adapted to the present probabilistic
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analysis, since the stochastic anisotropic fluctuations induced by the model
intrinsically reflect the uncertainties on both the elasticity tensor and its
reference frame.

2.4. Probabilistic analysis of distances in Ela
Let [C] be the M+

n (R)-valued random variable corresponding to the mod-
eling of a random elasticity matrix with arbitrary symmetry. For any ma-
terial symmetry class Csym, let PsymM be the projection operator onto Csym,
defined with respect to metric M (e.g. PsymE is the projection operator de-
fined with respect to the Euclidean distance; see section 2.3). Accordingly,
[Csym

M ] = PsymM {[C]} is the M+
n (R)-valued random variable corresponding to

the associated projection of [C] onto Csym.
A natural stochastic measure of anisotropy can be obtained by consid-

ering the R+-valued random variable µsymM , defined as:

µsymM = dM ([C], [Csym
M ]). (10)

Note that the term “anisotropy” has to be understood here in the sense of the
distance to any given class of material symmetry, and that the usual (but
more restricted) definition of anisotropy is recovered by considering µIsoM .
Consequently, the mean value µsym

M
= E{µsymM } characterizes the mean dis-

tance of the random elasticity matrix to a given material symmetry class,
while for a mean value close to zero, the variance of µsymM reflects how “far”
from Csym the realizations of the stochastic elasticity matrix can be. With
reference to the issue of mesoscale modeling, briefly summarized in the in-
troduction of this paper, these two statistical properties are worth charac-
terizing and may be used as a basis for discussing the relevance of stochastic
representations for the random elasticity tensor.

3. Probabilistic modeling

In this section, we introduce two ensembles of prior nonparametric prob-
abilistic models, denoted respectively by SE+ and SE++, that are adapted
to the representation of random elasticity matrices. Such an issue naturally
involves the use of the random matrix theory, the presentation of which is far
beyond the scope of the present paper, and the interested reader is referred
to the synthesis provided by Mehta [32] for a general review. Furthermore, in
order to avoid too many mathematical derivations and to preserve the overall
readability of this paper, all the theoretical results which have been derived
regarding these ensembles (as well as details about the random generators)
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will not be recalled hereafter and can be found in the given references. For
later convenience, let us introduce the (dispersion) parameter δ[A], allowing
us to characterize the level of statistical fluctuations of an arbitrary random
matrix [A] and defined as:

δ[A] =

√
E{‖[A]− [A]‖2F}

‖[A]‖2F
, (11)

in which [A] = E{[A]}.
In this paper, we denote by [C] 7→ p[C]([C]) the probability density

function (p.d.f.), from M+
n (R) into R+, defining the probability distribution

P[C] = p[C]([C])d[C] of random matrix [C]. The measure (volume element)

d[C] on MS
n(R) is defined as [46]:

d[C] = 2n(n−1)/4
∏

1≤i≤j≤n
d[C]ij . (12)

A fundamental step (together with uncertainty propagation) of any prob-
abilistic modeling is to infer about the form of p.d.f. p[C], and this issue
of constructing suitable stochastic representations will be the main topic
addressed in the following.

The easiest approach consists in performing the analysis on a parametriza-
tion of a given class Csym, modeling all the elastic moduli as statistically in-
dependent random variables with assumed probability distributions (a log-
normal probability distribution being often retained because it ensures the
positiveness of the random moduli). However, such a procedure, which has
been largely followed for the sake of simplicity in the literature, does have
important consequences which are note worthy. First of all, the resulting
model does not allow for the modeling of random elasticity tensors, the real-
izations of which exhibit weaker material symmetries (as it can be expected
in mesoscale modeling of heterogeneous materials): in other words, this
method basically requires the consideration of the largest class, namely the
class of anisotropic elasticity tensors. Secondly, considering a priori choices
for the probability distributions undoubtedly introduces some modeling bias
and therefore, generates additional model uncertainties. Clearly, the as-
sumption of statistical independence between the components is very strong
and questionable from a physical standpoint. Finally, such assumptions
have important consequences on the solution of the associated stochastic
boundary problem (e.g. on the stochastic vector-valued displacement field)
that are often ignored and clearly yield questionable results; see [2] among
others.
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As a consequence, it is highly desirable to derive the most “objective”
probabilistic model, that is to say, a stochastic representation that does
not introduce any modeling bias, while synthesizing as many physical and
mathematical information as possible. The general framework of informa-
tion theory (and more precisely, the Maximum Entropy principle) paves the
way for such models to be derived, and is presented below.

3.1. An overall methodology for constructing probabilistic models: the Max-
Ent principle

The Maximum Entropy (MaxEnt) principle is a general optimization
procedure which has been derived within the framework of information the-
ory, introduced by Shannon [45], and which allows the probability distri-
bution to be explicitly constructed, taking into account a set of constraints
that define the available information [45] [23] [24] [25] [10]. Before stating
the MaxEnt principle, let us first clarify what is precisely meant by available
information.

Since p[C] is a probability density function, it has to satisfy the usual
normalization condition:∫

M+
n (R)

p[C] ([C]) d[C] = 1. (13)

Furthermore, we have to impose, in view of uncertainty propagation, that
the inverse random matrix [C]−1 is a second-order random variable, that is:

E{‖[C]−1‖2F} < +∞. (14)

It can be proved that Eq. (14) holds if the following constraint is satisfied
[46] [47]: ∫

M+
n (R)

ln (det ([C])) p[C] ([C]) d[C] = β, |β| < +∞, (15)

wherein ln is the Neperian logarithm. Clearly, any p.d.f. candidate has
to satisfy Eqs. (13)-(15): these constraints define, therefore, the available
(mathematical) information. Note that the positive-definiteness of the elas-
ticity matrix can be readily ensured by using a particular algebraic con-
struction. Additional constraints, synthesizing some physical information in
particular (e.g. information related to the anisotropy), can be considered
(as will be seen in sections 3.2 and 3.3), hence leading to the definition of
different random matrix ensembles.
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Let Cad be the set of all the probability density functions from M+
n (R)

into R+ such that all the constraints defining the available information are
fulfilled. The MaxEnt principle then states that:

p[C] = arg max
p∈Cad

S(p), (16)

in which the measure of entropy S(p) of p is defined as:

S(p) = −
∫
M+

n (R)
p([C]) ln(p([C]))d[C]. (17)

In other words, the probability density function, estimated by using the
MaxEnt principle, is the function which maximizes the measure of entropy
(that is to say, the uncertainties) over the admissible space Cad.

3.2. Ensemble SE+ of symmetric positive-definite real random matrices

3.2.1. Probabilistic model

Let us now assume that the modeling is performed on an elasticity ma-
trix, whose expected deterministic (nominal) value is denoted by [C]. Such
a value could correspond, within the context of mesoscale modeling, to the
expected macroscopic (homogenized) value, for instance. Consequently, we
may impose that the mean value of the stochastic model under construction
be equal to this nominal value, namely:

E {[C]} =

∫
M+

n (R)
[C] p[C] ([C]) d[C] = [C]. (18)

Eqs. (13), (15) and (18) thus define the admissible space Cad and the opti-
mization problem (16) can easily be solved by introducing a set of Lagrange
multipliers and making use of the Euler-Lagrange equation (calculus of vari-
ation). After some algebra, it can be proven that the p.d.f. p[C], estimated
by the MaxEnt procedure under the constraints (13), (15) and (18), takes
the form [46] [47]:

p[C] ([C]) = IM+
n (R)([C])k det([C])`−1 exp{−n− 1 + 2`

2
tr([C]−1[C])}, (19)

wherein [C] 7→ IM+
n (R)([C]) is the indicator function of M+

n (R), k is a nor-

malization constant (whose expression can be found in [47]) and parameter
` is defined as:

` =
(1− δ[G]

2)

2δ[G]
2 n+

1 + δ[G]
2

2δ[G]
2 , (20)
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in which δ[G] is the dispersion parameter associated with the random matrix

[G] such that [C] = [L]T[G][L] and [C] = [L]T[L] (cholesky decomposition
of the mean matrix [C]); see [46] [47] for mathematical derivations. A closed-
form expression relating parameters δ[C] and δ[G] can be found in [46] and
it can be shown that Eq. (15) holds if parameter δ[G] is such that:

0 < δ[G] <

√
n+ 1

n+ 5
. (21)

Such a boundedness property turns out to be very useful while addressing
the identification of the model from experimental data, as will be seen in
Section 4.1.

The positive-definite ensemble SE+, constructed in [46] [47], is the set
of all M+

n (R)-valued random matrices, defined on (Θ,F ,P), the probabil-
ity density function of which (estimated by the MaxEnt principle under
the information defined by Eqs. (13-15-18)) is given by Eq. (19). From a
practical point of view, it should be emphasized that this ensemble is espe-
cially suitable for inverse (experimental) identification, since it benefits from
a minimal parametrization through parameters δ[C] (or equivalently, δ[G])
and [C]. The objectivity regarding the methodology of construction is also
note worthy, since the probability distribution is not assumed a priori and
is subsequently estimated by considering available information only.

In the next section, we discuss the capability of SE+ of taking into
account constraints on the stochastic anisotropy measure.

3.2.2. Parametric study on stochastic anisotropy measure µ for [C] ∈ SE+

For illustration purpose, let the nominal value [C] be defined as:

[C] =



10.1036 0.5391 2.9625 −0.0040 0.0071 −0.0165
10.1061 2.9782 −0.0041 −0.0070 −0.0036

182.690 0.0197 0.0016 0.0145
14.0339 0.0068 0.0008

Sym. 14.0121 −0.0103
9.5552

 .
(22)

Eq. (22) has been obtained from a random perturbation on the elasticity
matrix (in GPa) of a carbon-epoxy unidirectional composite and can be
interpreted as the mean value of a mesoscale representation for a hetero-
geneous material that is almost transversely isotropic from a macroscopic
point of view. Consequently, let us consider the random variable µTIM , cor-
responding to the stochastic measure of anisotropy (see Eq. (10)) defined
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with respect to the set CTI of transversely isotropic elasticity tensors and
metric M .

Figs. 2 and 3 display the graphs of the p.d.f. of µTI for several values
of dispersion parameter δ[C], considering the Euclidean and Riemannian
distances respectively.
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Figure 2: Plot (in semilog scale) of the p.d.f. of µTI
E for different values of δ[C].
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Figure 3: Plot (in semilog scale) of the p.d.f. of µTI
R for different values of δ[C].

It is readily seen that both the mean distance to CTI and the level of
statistical fluctuations increase together with dispersion parameter δ[C], no
matter the distance that is used. These characteristics can also be deduced
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from Figs. 4 and 5, wherein the functions δ[C] 7→ E{µTI} and δ[C] 7→
Std{µTI} are plotted (Std denoting the standard deviation).
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Figure 4: Evolution of the mean value of the stochastic measure of anisotropy, as a function
of dispersion parameter δ[C].
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Figure 5: Evolution of the standard deviation of the stochastic measure of anisotropy, as
a function of dispersion parameter δ[C].

Consequently, as soon the level of statistical fluctuations of the ran-
dom elasticity tensor (which is an intrinsic property resulting from the ran-
domness in the local topology of the microstructure, as well as from local
stochastic fluctuations in the mechanical properties of the constituents) is
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fixed, there is no way, working in SE+, to specify either the mean value
or the standard deviation of the stochastic anisotropy measure µTI . Before
addressing such an issue further, let us briefly discuss an interpretation of
the above phenomena.

A tremendous amount of work has been devoted to the classification [14]
[8] [22] [51] and characterization (see [11] [3] [31] and the references therein,
for instance) of material symmetries. Among the developed methodologies,
the eigensystem-based characterization [42] [4] turns out to be especially
suitable for the present work, since it allows for an interpretation of the
above properties within the framework of random matrix theory. Such an
approach states necessary and sufficient conditions for an elasticity ten-
sor to belong to a given material symmetry class, in terms of properties
for both the eigenvalues and the related eigenspaces. In particular, it was
shown that the algebraic multiplicities of the eigenvalues provides relevant
information, since any transversely isotropic tensor has two eigenvalues of
multiplicity one and two eigenvalues of multiplicity two for instance. The
nominal matrix [C], whose material symmetry is very close to transverse
isotropy, clearly exemplifies this point, since it has two pairs of very closed
eigenvalues ({9.5498, 9.5709} and {14.0102, 14.0359}) and two eigenvalues
that are separated from the others ({10.5417, 182.7925}). A necessary con-
dition for a random matrix [C] with mean value [C] to stay close to CTI is,
therefore, that its (ordered) random eigenvalues are such that λ1 ' λ2 and
λ4 ' λ5 almost surely, regardless of whether high statistical fluctuations are
considered. However, such a property is impossible, due to the phenomenon
of level repulsion that is well-known from random matrix theory [32] (see
also [46] for a numerical illustration in SE+). This mathematical fact can
be understood more intuitively by characterizing the p.d.f. of the random
eigenvalues, as the overall level of fluctuations of [C] (i.e. δ[C]) increases.
Fig. 6 displays the graph of the p.d.f. of the five first random eigenvalues,
for three different levels of fluctuations. As expected from the discussion
above, the p.d.f. of random eigenvalues λ1 and λ2 (resp. λ4 and λ5) are
pretty close from one another for small levels of fluctuations, but progres-
sively split for increasing values of δ[C]. This fundamental behavior of the
random eigenvalues not only allows for an interpretation of the trends that
are observed in Figs. 2 and 3, but also provides an insight about which
information may be considered in the formulation of the MaxEnt principle
while attempting to constraint the stochastic anisotropy measure µTI . More
specifically, it can be deduced that the latter may be constrained, in a way
to be defined, by tailoring the level of fluctuations of the stochastic eigen-
values that define, according to the eigensystem characterization of material
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symmetries, the considered class of symmetry (here, CTI). Following Section
3.1, the construction of an associated probabilistic model necessitates the
definition of an additional constraint (and hence, leads to the definition of
a new random matrix ensemble), and is presented below in Section 3.3.

3.3. Ensemble SE++ of symmetric positive-definite real random matrices
with constrained eigenvalues

3.3.1. Probabilistic model

Let Isym = {i1, . . . , id} be the index set of positive integers gathering the
ranks of the random eigenvalues defining Csym. For the application retained
in this paper (see Section 3.2.2), we consider ITI = {1, 2, 4, 5} for instance.
In addition to constraints (13), (15) and (18), let us consider, for the MaxEnt
procedure, the d following constraints:

E

{(
ϕikT [C]ϕik

)2}
= s2kλ

2
ik
, k = 1, . . . , d, (23)

wherein {(λik ,ϕ
ik)}dk=1 is the set of eigenpairs (eigenvalues and orthonor-

mal eigenvectors) of the mean matrix [C] corresponding to the constrained
eigenvalues and {sk}dk=1 is a set of scalar parameters allowing, in view of
Eq. (23), the variances of random eigenvalues {λik}dk=1 to be controlled. In-

troducing the Lagrange multipliers m ∈ R, (`− 1) ∈ R, [M̃ ] ∈ MS
d (R) and
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{
t̃k ∈ R+

}d
k=1

associated with constraints (13), (15), (18) and (23), it can
be deduced that the probability density function [C] 7→ p[C] ([C]) (estimated
by the MaxEnt principle) writes:

p[C] ([C]) = k1 (det ([C]))`−1

× exp

(
−tr

(
[M̃ ]

T
[C]
)
−
∑d

k=1 t̃k

(
ϕikT [C]ϕik

)2)
,

(24)

in which k1 = exp{−m} is a normalization constant.
The ensemble SE++ is the set of all M+

n (R)-valued random matrices,
defined on (Θ,F ,P), the probability density function of which is given,
taking into account the information synthesized by Eqs. (13), (15), (18)
and (23), by Eq. (24). The construction of SE++ has been addressed in
[33], while numerical investigations about the use of this ensemble in the
framework of anisotropic linear elasticity have shown that [17]:

• Parameter ` ∈ R+ mainly controls the overall level of statistical fluc-
tuations of random elasticity matrix [C]. More specifically, it can
be shown that the level of statistical fluctuations for random elastic-
ity matrix [C] (as measured by parameter δ[C]) tends to 0 as ` goes
to infinity, while non negligible fluctuations are typically observed for
` ≤ 100 (note that this value may change depending on the application
though).

• Normalized parameters tk = t̃kλik
2 ∈ R+ allows for a reduction of the

variances of the associated random eigenvalues (for sufficiently large
values of ti) and have a negligible effect on δ[C].

• Matrix [M̃ ] can be expressed in terms of ` and {ti}i∈Isym and conse-
quently, may not be considered as a model parameter.

It should be noted that setting all parameters tk to a null value allows us to
recover ensemble SE+ ⊂ SE++. In the next section, we exemplify how the
parametrization offered in SE++ provides some freedom in prescribing the
behavior of the stochastic anisotropy measure introduced previously.

3.3.2. Parametric study on stochastic anisotropy measure µ for [C] ∈ SE++

Let us consider the mean model defined by Eq. (22) and let ` = 20.
Consequently, following Section 3.3, the level of statistical fluctuations of
random elasticity matrix [C] is almost fixed. Since we are interested in
prescribing, in some sense, stochastic anisotropy measure µTIR , the variances
of random eigenvalues 1, 2, 4 and 5 have to be constrained. In order to make
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the interpretation of results easier, we set tk = t for all k in {1, . . . , d}. The
p.d.f. of random variable µTIR is displayed in Fig. 7, for several values of
parameter t.
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Figure 7: Plot (in semilog scale) of the p.d.f. of µTI
R for ` = 20 and different values of

parameter t.

Two conclusions can be drawn from this figure and are note worthy.
First of all, it is readily seen that parameter t allows for the prescription of
the behavior of the stochastic anisotropy measure. More precisely, setting
a large value of t allows us to reduce the mean distance E{µTIR }, while the
level of fluctuations is weakly affected. Secondly, it is seen that t → 0 and
t→ +∞ correspond to two limit behaviors. The former allows us to recover
SE+ (as mentioned above), and the latter yields the smallest mean value of
µTIR that can be reached for given value of ` (or equivalently, of δ[C]). The
limited range over which the behavior can be prescribed is a consequence of
the repulsion phenomena and the fact that the eigenvalues of [C] all remain
stochastic (in other words, we can not prescribed a null variance for a given
eigenvalue). All these facts are illustrated in Figs. 8 and 9, wherein the mean
value and standard deviation of µTIR are plotted as a function of parameter
t, respectively.

3.4. Comments regarding other random matrix ensembles

Two other random matrix ensembles, defined having recourse to the same
methodology (that is to say, within the framework of information theory and
making use of the MaxEnt principle) have been introduced in the literature.
A random matrix ensemble, derived considering a deterministic boundedness
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R } for ` = 20.

10
−1

10
0

10
1

10
2

10
3

10
4

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

t

st
an

da
rd

 d
ev

ia
tio

n 
of

 μ
RT

I

Figure 9: Plot (in semilog scale) of mapping t 7→ Std{µTI
R } for ` = 20.

constraint on [C] (defined using an approximation based on Huet’s partition
theorem [21]), has been proposed in [12] (see [16] for similar considerations
in case of random fields). Since no specific constraint related to anisotropy
is taken into account, random matrices in this ensemble exhibit the same be-
havior as the ones in SE+, so that there would not be any benefit to discuss
this probabilistic model in the context of anisotropy modeling further. Ta
and his coworkers proposed a refinement of the probabilistic model derived
in [46] by introducing, through a modification of the algebraic definition of
[C], a new parameter controlling the anisotropy index apart from the level
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of fluctuations [49]. However, this flexibility is restricted, by construction,
to the prescription of anisotropy with respect to CIso.

4. Application: inverse identification based on stochastic anisotropy
measure

In this final section, we assume that N exp experimental realizations of
[C] are available and address the identification of the probabilistic model
for [C] ∈ SE++ (with n = 6). For this purpose, we first propose a possible
methodology in Section 4.1 and exemplify the approach in Section 4.2.

4.1. Methodology

Without loss of generality, let us consider the Riemannian metric and
let {µexpj }N

exp

j=1 be the independent experimental realizations of µTIR that are

computed from the experimental realizations {[Cexpj ]}Nexp

j=1 of [C] using Eq.
(10):

µexpj = dR

(
[Cexpj ], [Csymj ]

)
, j = 1, . . . , N exp, (25)

wherein the projection [Csymj ] = PsymE {[Cexpj ]} (see Section 2.4) is computed
using the Euclidean projection technique introduced in Section 2.3 (see [35]
for details).

Let w be a structure gathering all the parameters of [C] ∈ SE++,
such that w(1) = [C], w(2) = ` and w(3) = {t1, t2, t3, t4, t5, t6}. Let
µ 7→ pµTI

R
(µ;w) be the p.d.f. of µTIR , defined by Eq. (10) and estimated

using the kernel density estimation method [5] with N sim independent real-
izations {[Csimj ]}Nsim

j=1 of [C] in SE++ (with parameters w) provided by the
random generator:

pµTI
R

(µ;w) ' 1

hN sim

Nsim∑
i=1

K

(
µ− µsimj (w)

h

)
, (26)

wherein h is the bandwidth, u 7→ K(u) is the kernel function (which is sym-
metric and whose integral over its support is equal to 1) and µsimj (w) is the

realization of µTIR estimated (as mentioned above) from realization [Csimj ]
and which depends, therefore, on structure w. In this study, a Gaussian
kernel is used and smoothing parameter h is then chosen following the so-

called Silverman’s rule of thumb, h ' 1.06 Std(µTIR ) N sim−1/5 (Std(µTIR )
being the usual statistical estimator for the standard deviation of random
variable µTIR ). Note that for notational convenience, we did not explicitly
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distinguish the probability density function pµTI
R

from its kernel density es-
timate.

A natural and probabilistically sound method to estimate an optimal set
wopt of parameters for the stochastic model (constructed having recourse to
the MaxEnt procedure) is the maximum likelihood method (see [39] for
instance), according to which wopt is defined as:

wopt = arg max
Clikelihoodad

L(µexp1 , . . . , µexpNexp ;w), (27)

in which the likelihood function is given by:

L(µexp1 , . . . , µexpNexp ;w) =
Nexp∏
j=1

pµTI
R

(µexpj ;w), (28)

and the admissible space Clikelihoodad is written, by an abuse of notation, as:

Clikelihoodad = M+
6 (R)× R+ × R+6

. (29)

Note that for numerical stability, we may alternately consider maximizing
the log-likelihood function L∗ = log10(L). Clearly, solving such an optimiza-
tion problem over Clikelihoodad is a very challenging task and consequently, we
propose tackling this difficulty in three steps.

In a first step, we may identify prior estimates for parameters [C] and `,
setting arbitrary small values for {ti}6i=1. In others words, the identification
may be initiated by working in SE+ only, allowing for a prior calibration of
the mean model and dispersion parameter. Two cases may then be distin-
guished. If the number of experimental realizations N exp is large enough,
a prior value [Cprior] of [C] can be obtained from the usual mathematical
statistics [44], while `prior may be determined, either from the maximum
likelihood principle (using, for instance, a random search over the range de-
fined by Eq. (21)) or using a statistical estimate (see Eq. (20)). However,
such a database is seldom available in practice, so that the convergence for
the statistical estimate [Ĉ] of [C] may not be reached. Subsequently, we may
identify both [Cprior] and `prior solving Eq. (27). In this case, a random
search strategy can still be retained, searching in the neighborhood of [Ĉ] for
[Cprior] and having recourse to the boundedness constraint (21) for `prior. It
is worth pointing out at this stage that the positive-definiteness of [Cprior]
must be preserved, which can be achieved at least in three ways. A first
method consists in assuming that [Cprior] belongs to a given subset Csym
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and performing the random search on the constants (e.g. engineering con-
stants) parametrizing Csym, so that the algebraic definition of the elasticity
tensor readily ensures that [Cprior] ∈ M+

6 (R). Another strategy is to have
recourse to specific semidefinite algorithms that are tailored to perform on
M+

6 (R) [52]. Finally, we may proceed as follows. Let [Ctrial] be a candidate

for [Cprior], the definition of which is sought in M+
6 (R). Let [L̂] be the upper

triangular matrix such that [Ĉ] = [L̂]T[L̂] (Cholesky decomposition), and let
[Ltrial] be an upper triangular matrix defined for i ≤ j as:

[Ltrial]ij = (1 + ν(εij))[L̂]ij , (30)

in which ν(εij) is a scalar random variable that is uniformly distributed
over [−εij , εij ]. In practice, the value of parameter εij (which controls the
size of the hypercube over which the random search is performed) must be
sufficiently (but not too) large for the solving algorithm to move from initial
guess [Ĉ] (typical values may range from 0.1 to 0.3). The candidate [Ctrial]
for [Cprior] can then be defined as [Ctrial] = [Ltrial]T[Ltrial] and belongs to
M+

6 (R) almost surely.
In the second step, we fix the values of w(1) and w(2) to the prior esti-

mates identified in step one, and look for a prior estimate of w(3) (search-
ing hence a solution in SE++). Although the identification problem can be
solved in R+6

, it is likely that in most practical situations, some information
about the material symmetries can be inferred from a (partial) knowledge
of the microstructure. In this case, we may take advantage of the definition
of Csym with respect to eigenvalue-based characterization, setting ti = t for
i ∈ Isym and ti = 0 otherwise. Consequently, the dimension of the opti-
mization problem may be significantly reduced and a prior value tprior of
parameter t may be obtained as:

tprior = arg max
R+

L∗(µexp1 , . . . , µexpNexp ; [Cprior], `prior, t). (31)

Eq. (31) can be solved in a trivial manner, characterizing the function
t 7→ L∗(µexp1 , . . . , µexpNexp ; [Cprior], `prior, t) on R+.

In the last step, an optimal solution is finally identified by the trial
method in the neighborhood of the prior estimates obtained in the previous
steps.

4.2. Example

In order to exemplify the previous methodology, a database has been
generated numerically, considering the mean model [C] defined by Eq. (22),
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` = 50, t1 = t2 = t4 = t5 = 100 and t3 = t6 = 0. From these data, N exp = 20
realizations have been arbitrarily extracted and are used for the calibration
of the probabilistic model (in SE++).

For this purpose, the trial method has been used to solve the maximum
likelihood optimization problem, considering 1000 iterations for step 1 (set-
ting εij = 0.2 for i ≤ j; see Eq. (30)) and 100 iterations for the refinement
around the prior estimates (step 3). Whenever required, the p.d.f. of µTIR
has been estimated using 10 000 realizations of [C]. Step 2 has been per-
formed considering a parametrization of CTI and Fig. 10 displays the graph
of the log-likelihood function t 7→ L∗(µexp1 , . . . , µexpNexp ; [Cprior], `prior, t). It is
seen that L∗ is almost constant for t ≥ 100, which could have been expected
in view of the (limit) behavior exhibited by the p.d.f. of µTIR as t → +∞
(see Section 3.3.2).
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Figure 10: Plot (in semilog scale) of t 7→ L∗(µexp
1 , . . . , µexp

Nexp ; [Cprior], `prior, t).

Consequently, any value t ≥ 100 can be selected as a prior estimate tprior

and we recommend retaining the smallest admissible value in order to en-
sure the numerical stability of the random generator. Finally, a comparison
between the target (black thin line) p.d.f. of µTIR and the one obtained from
simulations (using the identified parameters; red thick line) is depicted, in
semilog scale, in Fig. 11. It is readily seen that the two p.d.f. compare
pretty well and therefore, the maximum likelihood principle, applied to the
stochastic anisotropy measure, allows for an identification of the probabilis-
tic model. The latter can then be used to generate independent realizations
of the random elasticity matrix [C] that are consistent, in the mean sense,
with a certain stochastic level of anisotropy. For the sake of completeness, it
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should be pointed out that random field approaches, the derivation of which
is based on the use of ensembles SE+ and SE++, have been proposed in
[48] and [18], respectively.

5. Conclusion

In this paper, we have investigated the use of random matrix ensembles
for modeling stochastic elasticity tensors exhibiting uncertainties on material
symmetries. Such an issue arises in many practical situations, in which
the physics of the underlying phenomena that is either computationally or
experimentally considered, strongly depends on the elastic anisotropy (e.g.
mesoscale wave propagation in heterogeneous solids, such as bones).

For this purpose, we first recalled the concept of distances in the set of
fourth-order elasticity tensors, and made use of such derivations to define a
stochastic measure of anisotropy µ. The latter can be readily applied to any
material symmetry class and allows for a complete probabilistic characteri-
zation of anisotropy.

Subsequently, we summarized a methodology that allows, working within
the framework of information theory, to derive objective probabilistic models
without assuming the probability distributions a priori. Two random matrix
ensembles (namely SE+ and SE++), the definition of which has been per-
formed having recourse to the MaxEnt principle, are presented and discussed
from a mechanical, rather than mathematical, point of view. In particular,
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numerical investigations based on the proposed stochastic anisotropy mea-
sure show that as soon as the overall level of statistical fluctuations δ[C] is
fixed, ensemble SE+ does not allow for the prescription of a distribution
for µ and therefore, is well adapted to heterogeneous materials that exhibits
fully anisotropic fluctuations. This fundamental property is consistent with
the eigensystem-based characterization of material symmetries and turns
out to be a consequence of the behavior of the random spectrum. The latter
further provides a valuable basis for the use of ensemble SE++ in case the
mean distance to a given material symmetry has to be prescribed.

Finally, we address the identification of the probabilistic model when a
few experimental realizations of the elasticity tensor are available. The pro-
posed procedure (which is by no means the only one that could be retained)
relies on the use the maximum likelihood principle, defined with respect to
the stochastic anisotropy measure, and can be readily implemented, regard-
less of the symmetry class under consideration. A simple application of the
methodology is provided and demonstrate the relevance of the approach.
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