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Abstract

Linear stability analysis of a fully developed mixed convection �ow of air in an annular
horizontal duct is numerically investigated for the radius ratio R = 1.2, a Péclet and a
Rayleigh number less than 200 and 6000, respectively. An iterative method is developed
to enable the convergence of the dimensionless parameters to their marginal values at the
transition. New mixed convection �ows are highlighted that are highly correlated with
those obtained in natural convection problems under the assumption of two dimensionality.
The synthesis of our results on the transitions permits us to build the map of stability
for the steady and established mixed convection �ows and clearly shows the occurrence of
multiplicity of solutions for some couples of Rayleigh and Péclet numbers.
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Nomenclature

e3 vertical unit vector pointing upwards
f = ηr + 1
g gravity acceleration, m/s2

i pure imaginary number
k real wavenumber
p pressure

Pe Péclet number, =
w̄∗(r?o−r?i )

α

Pr Prandtl number, = ν
α

r reduced radial coordinate, =
r?−r?i
r?o−r?i

(r, θ, z) cylindrical coordinates
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R radius ratio, = r?o/r
?
i

Ra Rayleigh number, =
gβ(T ∗(r?i )−T ∗(r?o))(r?o−r?i )3

να

R̂a(k) critical Rayleigh number function of the k
r?i inner radius, m
r?o outer radius, m
T temperature
v velocity vector, = uer + veθ + wez
w̄ mean axial velocity

Subscripts

0 steady basic solution
c threshold value
k component in the Fourier space
k, λ component in the Fourier and Laplace spaces

Superscripts

1st �rst branch of solutions
2nd second branch of solutions
∗ dimensional variable

Greek symbols

α thermal di�usivity, m2/s
β expansion coe�cient, K−1

δv velocity vector for the perturbation, = δuer + δveθ + δwez
∆P constant axial pressure gradient
η relative annular gap, = R− 1
λ complex eigenvalue, = λr + iλi
λr growth rate
λMr maximum growth rate
λi pulsation
λMi pulsation of the complex eigenvalue having λMr as real part
ν kinematic viscosity, m2/s
ρ density, kg/m3

1. Introduction

Natural, forced and mixed convection in horizontal annuli is a fundamental issue of in-
terest and has been extensively studied. This interest stems from the wide range of related
engineering applications such as thermal energy storage systems, heat exchangers, transmis-
sion cables, solar collectors, etc.

Natural convection in di�erentially heated horizontal annuli inspired numerous studies
because of the role of curvature on the birth of thermal instabilities. Although early ex-
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perimental work dates from 1931 (Beckmann [1]), it took forty years to have a qualitative
description of �ows depending on the Grashof number and radius ratio (Grigull and Hauf [2],
Powe et al. [3]). With the increase in computational resources, numerous numerical simula-
tions were carried out, but mainly under the assumption of two-dimensional �ows, invariant
in the axial direction. These studies show that two-dimensional �ow, which develops in the
form of two large symmetrical and crescent-shaped cells, undergoes a Rayleigh-Bénard in-
stability with the increase in the Rayleigh number, for radius ratio in the range 1.2 ≤ R ≤ 2
(see Petrone et al. [4] for example). The supercritical �ow pattern is then made of one or
two pairs of additional convection rolls located at the top of the annulus, thereby enhancing
heat transfer rate between the cylinder walls. However, these two-dimensional �ows turn
out to be unstable with respect to three-dimensional perturbations [5�8]. A critical review
of buoyancy-induced �ow transitions in horizontal annuli can be found in a recent paper by
Angeli et al. [9].

Forced convection, and to a lesser extent mixed convection, have been the subject of
many analytical, experimental and numerical investigations, concerning both the entrance
regions (dynamical and thermal) and the heat transfer for fully developed �ows [10]. Graetz
[11] (1883), Nusselt [12] (1910) and later on Lévêque [13] (1928) were interested in the issue
of the developing thermal regime for a �uid �owing in the laminar established regime in a
pipe whose walls were maintained at uniform temperature. In this model, the axial di�usion
is neglected, such an assumption is justi�ed when the Péclet number is su�ciently high
(Pe > 100). Based on similar assumptions, the works of Lundberg et al. [14] and Shah
and London [15] provided a comprehensive study on the establishment of thermal regime
in an annular duct for several combinations of �ow conditions and temperature applied at
pipe walls. With similar assumptions, Kakaç and Yücel [16] studied the laminar �ow heat
transfer in annuli with simultaneous development of velocity and temperature �elds. For
low values of Péclet number, both axial di�usion [17, 18] and free convection [19, 20] become
not negligible in respect of the establishment length value, which is also strongly a�ected
by thermal conditions applied at the walls. Amongst the papers dealing with the entrance
regions, a few are devoted to experimental investigations (see for example the recent paper of
Mohammed et al. [21] and references herein). Finally, to our best knowledge, few numerical
studies were focused on the in�uence of natural convection in dynamically and thermally
fully developed �ows in annular ducts for very low Reynolds number values, and only for
large radii ratios [22].

Despite these numerous studies, there are still many aspects that need to be explored or
thorough, especially concerning the e�ects of an axial �ow on the multicellular secondary
�ows induced by the buoyancy force in narrow annular spaces. To this aim, a linear stability
analysis of the fully developed �ow is performed for air �owing in an annular pipe of �xed
radius ratio R = 1.2. The rest of the paper is structured as follows. Section 2 is devoted to
the presentation of the governing equations for the basic �ow and the perturbed states. A
numerical method, suitable for calculating the transition thresholds in a plane of Rayleigh
number and Péclet number, is presented. It is built around an iterative method, coupling
the calculation of the basic steady �ow and determination of the dominant spectrum of the
linearized problem. The iterative process, involving the wavenumber and Rayleigh number,
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is based on approximate Newton methods for which the derivatives are substituted by simple
algebraic relations. Section 3 emphasizes the close link between our previous works about
pure free convection and the nature of the �ow that develops in the cross sections of �uid
�ow in mixed convection. The sensitivity of the critical Rayleigh number is studied as a
function of the Péclet number, and it is shown that topologies which are linearly unstable
in natural convection turn out to be stable in mixed convection. In particular we show that
multiple solutions are simultaneously stable for certain ranges of the couple(Pe,Ra). Finally,
a conclusion is drawn that highlights the main issues of this work.

2. Equations

2.1. Physical model

The horizontal annular pipe is con�ned by two co-axial and in�nite cylinders of radii
r?i and r?o > r?i (Fig.1). The temperature of the inner and outer cylinders is kept constant

θ
−ge3

r?i

r?o

Figure 1: Geometry

such that T ?(r?o) < T ?(r?i ). The �uid �ow is assumed incompressible with constant physical
properties except the density in the buoyancy term. The axial coordinate is scaled by the
annulus gap r?o − r?i , the velocity components by the mean axial velocity w̄∗, the dynamical
pressure by ρ(w̄∗)2 and the time by (r?o − r?i )/w̄

∗. We also introduce the dimensionless
temperature di�erence T = (T ?−T ?r )/(T ?(r?i )−T ?(r?o)) with T ?r = (T ?(r?i ) +T ?(r?o))/2, and
the reduced radial coordinate r = (r? − r?i )/(r?o − r?i ).

To shorten the writing of equations presented in this article, and to emphasize the role
of two-dimensional �ows that develop in planes transverse to the axis of the cylinders, the
partial derivative operators have been split into an implicit part coupling the radial and
azimuthal directions, and symbolically represented by "∇2d·", "∇2d·", "∇2

2d", "∇2
2d" and

"∇2d", and an explicit part that deals only with the axial derivatives. Thus, by combining
the radial and azimuthal components of the momentum equation into a single vectorial
relation (see Eq.(1b)), we obtain the three-dimensional Navier-Stokes and energy equations
as follows:

∇2d · v +
∂(fw)

∂z
= 0 (1a)
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∂

∂t
(fu) er +

∂

∂t
(fv) eθ + ∇2d · (v ⊗ v) +

∂(fwu)

∂z
er +

∂(fwv)

∂z
eθ = −∇2dp+

RaPr

Pe2 fTe3

+
Pr

Pe

(
∇2

2dv +
∂

∂z

(
f
∂u

∂z

)
er +

∂

∂z

(
f
∂v

∂z

)
eθ

)
(1b)

∂

∂t
(fw) + ∇2d · (wv) +

∂(fw2)

∂z
= −f ∂p

∂z
+

Pr

Pe

(
∇2

2d +
∂

∂z

(
f
∂

∂z

))
w (1c)

∂

∂t
(fT ) + ∇2d · (Tv) +

∂(fTw)

∂z
=

1

Pe

(
∇2

2d +
∂

∂z

(
f
∂

∂z

))
T (1d)

with the following de�nitions for the two-dimensional operators:

• divergence of the vector �eld Xv

∇2d · (Xv) =
∂(fXu)

∂r
+
∂(ηXv)

∂θ
(2a)

• divergence of the tensorial �eld v ⊗ v

∇2d · (v ⊗ v) =
(
∇2d · (uv)− ηv2

)
er + (∇2d · (vv) + ηuv) eθ (2b)

• Laplacian of the scalar variable X

∇2
2dX =

∂

∂r

(
f
∂X

∂r

)
+

∂

∂θ

(
η2

f

∂X

∂θ

)
(2c)

• Laplacian of the vector �eld v

∇2
2dv =

(
∇2

2du−
2η2

f

∂v

∂θ
− η2u

f

)
er +

(
∇2

2dv +
2η2

f

∂u

∂θ
− η2v

f

)
eθ (2d)

• gradient of the pressure p

∇2dp = f
∂p

∂r
er + η

∂p

∂θ
eθ (2e)

where η = R − 1, with R = r?o/r
?
i , and f = ηr + 1 are geometric parameters while v =

uer + veθ +wez and p represent the dimensionless velocity and pressure. The dimensionless
parameters Ra = gβ(T ?(r?i ) − T ?(r?o))(r

?
o − r?i )

3/(να), Pr = ν/α and Pe = w̄∗(r?o − r?i )/α
stand for the Rayleigh, Prandtl and Péclet numbers, with g, β, ν and α the gravitational
acceleration, the thermal expansion coe�cient, the kinematic viscosity and the thermal
di�usivity, respectively. The set of equations (1) is solved with the dimensionless boundary
conditions at the solid walls: {

v = 0, T = +0.5 at r = 0

v = 0, T = −0.5 at r = 1
(3)

with in�ow and out�ow boundary conditions and some prescribed initial conditions.
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2.1.1. Fully developed �ow - Basic solution

The linear stability analysis is performed for a steady and fully developed �uid �ow:
under this assumption the time and axial derivatives for velocity and temperature cancel
in Eqs (1). Because the �ow is considered totally established, the pressure gradient in any
transversal section of the pipe does not depend on the axial coordinate, and furthermore
the axial pressure gradient along the pipe is constant. Thus, the dimensionless pressure
term is rewritten as p(r, θ, z) = ∆P × z + p0(r, θ) where ∆P is the constant dimensionless
axial pressure gradient and p0(r, θ) represents the �uctuation pressure in any transversal
section of the duct. By indexing the basic �ow by "0", equations (1a)-(1d) are reduced to
the (r, θ)-equations:

∇2d · v0 = 0 (4a)

∇2d · (v0 ⊗ v0) = −∇2dp0 +
RaPr

Pe2 fT0e3 +
Pr

Pe
∇2

2dv0 (4b)

∇2d · (w0v0) = −f ∆P +
Pr

Pe
∇2

2dw0 (4c)

∇2d · (T0v0) =
1

Pe
∇2

2dT0 (4d)

with v0 = u0(r, θ)er + v0(r, θ)eθ + w0(r, θ)ez, T0(r, θ) and p0(r, θ), and partial di�erential
operators de�ned by (2a)-(2e). The boundary conditions are identical to relations (3);
in�ow and out�ow boundary conditions and initial conditions are disregarded. At this
stage, the axial pressure gradient ∆P , which is a priori unknown, must be set so that the
dimensionless axial velocity w̄ equals to one, as prescribed by our velocity scaling. Notice
that, with the decrease in Ra, one can expect that ∆P becomes closer to the analytical value
−8η2Pr/Pe/(R2 + 1 − (R2 − 1)/ lnR) obtained for fully developed forced convection �ows
(see Rohsenow et al. [10]). The next paragraph is devoted to the determination of ∆P for
mixed �ow con�gurations.

The calculation of the axial pressure gradient ∆P is based on two fundamental remarks.

1. The mass conservation (4a) as well as the momentum (4b) and the energy (4d) equa-
tions do not depend on either the axial velocity w0 or the axial pressure gradient.
Therefore, any change in ∆P or w0 will not a�ect the temperature �eld, the radial
and axial components of the velocity or the �uctuation pressure p0.

2. In Eq. (4c), there exists a linear relation between ∆P and w0, that is between ∆P and
w̄.

Thus, from a single computation performed choosing an arbitrary axial pressure gradient
∆P1 6= 0 and giving rise to a mean �ow velocity w̄1, the correct axial pressure gradient
providing the mean velocity value equal to 1, as requested by the adopted procedure for
scaling the velocity components, is simply ∆P = ∆P1/w̄1. The axial velocity component
needs also to be rescaled by w̄1, and no additional computation is required.
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2.1.2. Perturbed state equations

The �ow consisting in the sum of the two-dimensional basic solution (v0, p0, T0) and a
small three-dimensional perturbation δv = δuer + δveθ + δwez, δp and δT is also solution of
equations (1a)-(1d). Taking into account the order of magnitude of disturbances, the non-
linear contributions are linearized with respect to perturbations. The Fourier transform in
the axial direction (F : Y (z)→ Yk = Fk(Y )) is then applied to the linear equations where k
stands for a real wavenumber. Let us now de�ne the transforms of the velocity, temperature
and pressure perturbations in complex form as: δvk(r, θ, t) = F(δv(r, θ, z, t)), δTk(r, θ, t) =
F(δT (r, θ, z, t)) and δpk(r, θ, t) = F(δp(r, θ, z, t)). The resulting complex equations for the
perturbations are written as follows:

0 = ∇2d · δvk + ikfδwk (5a)

∂

∂t
(fδuk) er +

∂

∂t
(fδvk) eθ = RHS(1)(δvk, δpk, δTk) (5b)

∂

∂t
(fδwk) = RHS(2)(δvk, δpk) (5c)

∂

∂t
(fδTk) = RHS(3)(δvk, δTk) (5d)

The right-hand sides of Eqs. (5b)-(5d) are de�ned as follows:

RHS(1)(δvk, δpk, δTk) = −∇2d · (v0 ⊗ δvk)−∇2d · (δvk ⊗ v0)

−ikf(w0δuk + δwku0)er − ikf(w0δvk + δwkv0)eθ

−∇2dδpk +
RaPr

Pe2 fδTke3 +
Pr

Pe

(
∇2

2dδvk − k
2fδuker − k2fδvkeθ

)
(6a)

RHS(2)(δvk, δpk) = −∇2d · (w0δvk)−∇2d · (δwkv0)− 2ikfδwkw0 − ikfδpk

+
Pr

Pe

(
∇2

2d − k2f
)
δwk (6b)

RHS(3)(δvk, δTk) = −∇2d · (δTkv0)−∇2d · (T0δvk)− ikf(δTkw0 + T0δwk)

+
1

Pe

(
∇2

2d − k2f
)
δTk (6c)

The boundary conditions at the solid walls and the initial values write

δvk = 0, δTk = 0 at r = 0 and r = 1 (7a)
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and

δvk = δvk(t = 0+), δTk = δTk(t = 0+) (7b)

The evolution problem (5) associated with boundary and initial conditions, relations (7a)
and (7b) respectively, can also be expressed by using a Laplace transform for time (L :
X(t) → Xλ = Lλ(X)) with λ = λr + iλi, λr, λi being real values and i2 = −1. In that
case the variables δvk, δTk and δpk located in the right-hand sides of equations (5a)-(5d)
write δvk,λ = Lλ(δvk), δTk,λ = Lλ(δTk) and δpk,λ = Lλ(δpk) and the temporal derivatives
de�ned in the left-hand sides of equations (5b)-(5d) give (λδvk,λ − δvk(t = 0+))f and
(λδTk,λ− δTk(t = 0+))f . Therefore, the growth or reduction of the perturbation magnitude
is provided by the algebraic sign of the largest real eigenvalue of the eigenproblem obtained
by setting the initial disturbances δvk(t = 0+) and δTk(t = 0+) to zero (namely the general
solution of the problem):

0 = ∇2d · δvk,λ + ikfδwk,λ (8a)

λ (fδuk,λer + fδvk,λeθ) = RHS(1)(δvk,λ, δpk,λ, δTk,λ) (8b)

λfδwk,λ = RHS(2)(δvk,λ, δpk,λ) (8c)

λfδTk,λ = RHS(3)(δvk,λ, δTk,λ) (8d)

provided with homogeneous boundary conditions on solid walls and with relations (6a)-(6c)
for the right-hand side terms. Note that the eigenvalue problem (8) is generally determined
by assuming a particular form for the perturbations of velocity (δvk,λ(r, θ) exp(ikz + λt)),
temperature (δTk,λ(r, θ) exp(ikz+λt)) and pressure (δpk,λ(r, θ) exp(ikz+λt)) in the equations
linearized around the basic �ow. This choice results therefore only from a resolution of the
perturbed equations in Fourier and Laplace spaces, as shown above.

2.2. Numerical methods

2.2.1. Discretization scheme

Continuous equations are discretized on a structured and staggered grid by a �nite volume
method. The spatial derivatives are approximated by a second-order centered scheme. The
control volume [ri; ri+1]× [θj; θj+1] with (i, j) ∈ (N+)2 for the pressure and the temperature
is de�ned by

ri =
i− 1

Nr

, 1 ≤ i ≤ Nr + 1

θj =

 π
exp

(
2πcθ

j−1
Nθ

)
− 1

exp (πcθ)− 1
, 1 ≤ j ≤ Nθ

2
+ 1

2π − θNθ+2−j,
Nθ
2

+ 1 ≤ j ≤ Nθ + 1

(9)
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where Nr, Nθ/2 are strictly positive integers and cθ is a strictly negative real value used
to adjust the mesh size in the upper part of the annulus where small convective cells may
develop. A time splitting method is adopted to uncouple the velocity and pressure �elds
[23]. Time evolution is achieved by a �rst-order Euler scheme, by an implicit treatment of
the di�usion terms, except those involving the coupling of velocity components (Eq. (2d))
that are explicitly approximated, as well as all nonlinear terms.

2.2.2. Steady state and eigenvalue problems

The steady �ow, solution of the non-linear system (4) with boundary conditions (3), is
computed by the iterative Newton algorithm. The resulting tangent linear problem is also
solved with an iterative technique, namely the Bi-Conjugate Gradient Stabilized method.
The use of an iterative process for solving linear systems avoids the explicit construction of
tangent matrices. Indeed, only the product of this matrix with a vector is required. That is
easily performed by the method proposed by Mamun and Tuckerman [24]. The left-hand side
(matrix-vector product) and the right-hand side (vector) of each linear system are evaluated
in a similar manner, by using speci�cally modi�ed time-marching codes which are derived
from the governing equations. Details concerning the implementation can be found in a
previous paper dealing with the stability of natural convection �ows in horizontal annuli [4].

In order to characterize the stability of the basic �ow, a search for in�nitesimal distur-
bances having the largest growth rate is carried out. In what follows, we denote the largest
growth rate by λMr = maxλr∈spr(λr) where spr denotes the set of the real parts of the eigen-
values for problem (8); the pulsation λMi is the imaginary part of the complex eigenvalue
whose real part is λMr . Two cases must be considered according to the sign of λMr : the
inequality λMr > 0 guarantees an instability condition for the basic �ow, whereas λMr < 0
ensures stability with respect to small disturbances only (while it tells nothing about �nite
amplitude perturbations).

For a given set of the dimensionless parameters Pr, Ra and Pe and for a �xed dimensionless
wavenumber k, computation of the largest growth rate λMr with its associated pulsation λMi
is achieved by solving the eigenvalue problem (8) with the free software ARPACK [25] which
is based upon an algorithmic variant of the Arnoldi process [26]. This software is designed to
compute some eigenvalues of largest real part or largest magnitude and the corresponding
eigenvectors of a generic n by n matrix A. In our case, A is a complex matrix and the
dimension of the Krylov subspace used by the Arnoldi method is typically 40. The iterative
process then provides between 30 and 40 converged eigenvalues with largest real part. Let a
complex variable x(0) = (δvk,λ, δTk,λ)

(0) provided by ARPACK [25], we have to compute the
product between the discrete tangent operator A and x(0). This computation is achieved
with a �rst order time approximation of equations (5), supplied with boundary conditions
(7a): the di�erence between two successive iterations x(1) − x(0) provides a good guess of
exp(Aδt)x(0) − x(0) which in turn is a good estimate of Ax(0)δt for small δt (further details
can be found in Petrone et al. [4]).
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2.2.3. Critical values - Algorithm

The estimate of the threshold Rayleigh number value Rac is achieved by an iterative
procedure where the Péclet and Prandtl numbers are assumed to be given. For a wavenumber
k, we �rst search R̂a such that λMr (R̂a, k) = 0. Afterwards, the threshold Rayleigh number

value Rac is de�ned by Rac = mink(R̂a(k)) or Rac = maxk(R̂a(k)) depending on whether the
basic �ow is destabilized or stabilized when increasing Ra. As it is customary, the critical
wavenumber kc is de�ned by k(Rac). In practice, this optimization problem is substituted by

the calculation of the local optimum [dR̂a/dk]|kc = 0. To compute Rac and kc, the following
iterative algorithm is applied.

Let k̃0 and R̂a be some approximations of the critical wavenumber kc and Rayleigh number
Rac(kc), and εk̃, ελMr and εR̂a three small positive real values used as stopping criteria such

that εk̃ > εR̂a. Set n = 0, R̂a
i

0 = R̂a for i = −1, 0, 1 and do

1. Solve six steady state problems (4) de�ned by Ra = R̂a
i

n and Ra = R̂a
i

n + δRai

(δRai/R̂a
i

n � 1) with i = −1, 0, 1;
2. Let us consider a set of three dimensionless wavenumbers kin = k̃n + iδk for i =

−1, 0, 1 (δk/k̃n � 1) and compute six eigenvalue problems de�ned by λMr (R̂a
i

n, k
i
n) and

λMr (R̂a
i

n + δRai, kin), with i = −1, 0, 1, by solving equation (8);

3. For each wavenumber kin, i = −1, 0, 1, compute the new approximation R̂a
i

n+1 of the
critical Rayleigh number through the relation

For i = −1, 0, 1 do


λMr (R̂a

i

n + δRai)− λMr (R̂a
i

n)

δRai
∆Rai = −λMr (R̂a

i

n)

R̂a
i

n+1 = R̂a
i

n + ∆Rai
(10)

4. if λMr (R̂a
i

n) > ελMr or ∆Rai/R̂a
i

n+1 > εR̂a go to step 1, otherwise go to step 5;

5. Correct the wavenumber k̃ by solving
R̂a

1

n+1 − 2R̂a
0

n+1 + R̂a
−1

n+1

δk2
∆k = −

R̂a
1

n+1 − R̂a
−1

n+1

2δk
k̃n+1 = k̃n + ∆k

(11)

6. if ∆k/k̃n+1 > εk̃ go to step 1, otherwise Rac = R̂a
0

n+1 and kc = k̃n+1; stop.

It should be noted that the systems of linear equations (10) and (11) result from applications

of the Newton method to solve λMr (R̂a) = 0, for a given k-value, and [dR̂a/dk]|kc = 0
where derivatives were approximated by algebraic relations resulting from Taylor expansions.
A necessary condition for convergence of the iterative algorithm is that δk � ∆k and
δRai � ∆Rai, otherwise it may fail. Note also that steady state and eigenvalue computations
have to be accurate enough in order to avoid troubles in convergence of the approximated
Newton methods (10)-(11). At last, one further information can be added: computations
of the six steady �ows (step 1) and solution of the six eigenvalue problems (step 2) can be
performed simultaneously on di�erent computers or processors.
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3. Results

The results were obtained for a �xed radius ratio, R = 1.2, and for air, Pr = 0.7. The
mesh is similar to that used in natural convection problems [4], namely 60 regular cells in
the radial direction and 240 cells in the azimuthal direction, with a �ner mesh at the top of
the annular space (cθ = −0.75 in Eq. (9)). Preliminary numerical tests indicated that the
chosen grid enables to achieve solutions almost insensitive to extra mesh re�nements. The
critical Rayleigh number was computed as a function of the Péclet number, starting from
the natural convection problem.

For the linear stability analysis, we �rst need the calculation of the steady �ows. They
consist of the superimposition of two motion �elds: the �rst one corresponds to the main
�ow which is mainly driven by the axial pressure gradient (see Eq. (4c)), the secondary
�ow, so-called because it develops in any transverse section of the annular duct, is due
to the buoyancy e�ect induced by the temperature di�erence imposed between the solid
boundaries (see Eqs. (4b), and (4d) and boundary conditions (3)). Thus, except the axial
component of the velocity, these secondary �ows are identical to those obtained in free
convection, namely for Pe = 0. The third velocity component, w0, is simply the solution of
a transport equation wherein the source term is provided by the axial pressure gradient.

As for the natural convection problem [4], the steady �ows are shared out on two di�erent
branches of solutions. Figure 2 illustrates the bifurcation diagram for the free convection
problem: the dimensional radial velocity component of the basic �ow at r = 0.5 and θ = π
is rescaled with respect to the thermal di�usion velocity (u0(0.5, π)×Pe), and then drawn as
a function of Ra. While this velocity scaling aims to provide curves insensitive to the Péclet
number, it should be emphasized that the stability property of the solution depends on Pe, as
it will be shown in sections 3.1 and 3.2. To easily distinguish the two branches, the Rayleigh
number is labeled either by 1st or by 2nd depending on whether the corresponding �ow can
be computed or not by means of continuous increasing of the Rayleigh number from zero.
Thus, the �rst branch starts from Ra1st = 0 and it is characterized by a secondary �ow which
�rstly consists of two crescent shaped cells (labeled C2, Fig. 3(a)) for Ra1st . Ra1st

f1
= 2068,

and then of a hexa-cellular motion �eld, made of two additional couples of convective rolls
located above the crescent shaped ones (labeled C6, Fig. 3(b)) for Ra1st & Ra1st

f2
= 2456. The

secondary tetra-cellular �ow (labeled C4, Fig. 3(c)) belongs to the second branch of solutions
which emerges from Ra2nd & Ra2nd

s = 1911 through a saddle-node bifurcation. It may be
noted that the �uid �ow with two transverse cells, C2, is consistent with what Mojtabi and
Caltagirone [22] have presented for larger radius ratios.

For the sake of clarity, the presentation of the stability results for the two branches of
solutions is divided into two sections. A third section is then devoted to present the stability
diagram for the di�erent established mixed convection �ows in the Rayleigh-Péclet plane and
to illustrate the characteristics of the marginal perturbations.

3.1. First branch of basic solutions

In natural convection, the two-crescent shaped �ow pattern (Fig. 3(a)) and the hexa-
cellular one (Fig. 3(b)) are found stable for two-dimensional perturbations [4] when Ra is
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Figure 2: Bifurcation diagram for natural convection. Dimensional radial velocity component rescaled with
respect to the thermal di�usion velocity, u0(0.5, π) × Pe, as a function of Ra. Ra1stc = 1734, Ra1stf1 = 2068,

Ra1stf2 = 2456, Ra2nds = 1911, Ra2ndf = 2000.

(a) Two crescent shaped �ow la-
beled C2 (Ra1st = 1700).

(b) Hexa-cellular �ow C6,
(Ra1st = 5000).

(c) Tetra-cellular �ow labeled
C4, (Ra2nd = 5000).

Figure 3: Representative examples of steady and fully developed �ows which occur for (a) Ra1st . Ra1stf1 =

2068, (b) Ra1st & Ra1stf2 = 2456 and (c) Ra2nd & Ra2nds = 1911. Streamlines and axial velocity �eld.

respectively lower and higher than two thresholds, identifying a supercritical (Ra1st
f1

= 2068)
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and a sub-critical (Ra1st
f2

= 2456) pitchfork bifurcation; in-between, the steady �ows exhibit
intermediate unstable patterns. Because the stability problem (5), with k = 0, is identical
to the one obtained for free convection problem, the range Ra1st

f1
< Ra1st < Ra1st

f2
is then

also unstable for any established axial �ow. Now, by considering any three-dimensional
perturbation, the natural convection is linearly stable only for Ra1st < Ra1st

c (Pe = 0) = 1734,
with a non-oscillatory marginal mode characterized by a wavenumber kc(Pe = 0) = 3.04
[5, 6].

Figure 4 shows di�erent schematic continuation curves obtained by increasing the Péclet

1734 2068 2456

Ra1st
f1

Ra1st
f2

Ra1st
c (Pe = 0)

(a) Pe = 0

2068 2456

Ra1st
f1

Ra1st
f2

Ra1st
c (Pe ≈ 30)

(b) Pe ≈ 30

2068 2456

Ra1st
f1

Ra1st
f2

Ra1st
c (Pe ≈ 65)

(c) Pe ≈ 65

2068 2456

Ra1st
f1

Ra1st
f2

Ra1st
c (Pe > 65)

(d) Pe > 65

Figure 4: Schematic continuation curves for the �rst branch of steady solutions as a function of Ra, for (a)
Pe = 0, (b) Pe ≈ 30, (c) Pe ≈ 65 and (d) Pe > 65. Continuous lines stand for linearly stable solutions, dashed
lines indicate unstable solutions with respect to three-dimensional perturbations and dotted lines specify
instabilities also obtained for two-dimensional perturbations.

number: continuous lines stand for linearly stable solutions, dotted lines indicate unstable
solutions with respect to uniform axial disturbances (k = 0), and dashed lines illustrate
instabilities to three-dimensional perturbations. By increasing the Péclet number from Pe =
0 (Fig. 4(a) and the bifurcation diagram in Fig. 2) to about Pe = 30 (Fig. 4(b)), Ra1st

c moves
from 1734 to Ra1st

f1
= 2068. Then, the critical Rayleigh number value remains unchanged

as long as Pe . 65 (Fig. 4(c)). For 30 . Pe . 65, the transition threshold is given
by the unstable perturbations which are uniform in the axial direction (see the dotted
lines on the continuation curve in Fig. 4). Once Pe > 65, a new stable region appears for

Ra1st
f2
< Ra1st < Ra1st

c = mink(R̂a
1st

(k,Pe > 65)) (Fig. 4(d)).
For a better understanding of the relation between the critical Rayleigh and Péclet num-

ber values, we also present the qualitative evolution of R̂a
1st

(k), which corresponds to a zero
growth rate of disturbances, as a function of the wavenumber k, for speci�c Pe-values (Fig.
5). Stable (respectively unstable) regions are labeled with the upper case S (respectively U).
The hatched region denotes unstable �ows, at least for two dimensional perturbations. In the
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Figure 5: Schematic modi�cations of R̂a
1st

(k) for di�erent Pe range of variation. The hatched region indicates
the unstable steady states against two-dimensional disturbances (k = 0). By increasing the Pe-value, the

continuous curves R̂a
1st

(k) move according to the directions showed by the dashed-dotted arrows, in order
to give rise to separated unstable regions. Upper case letters U and S emphasize the unstable or stable
condition of the established steady �ow.

natural convection problem (Pe = 0), two stability curves represented by continuous lines in
Fig. 5(a) begin from points (0,Ra1st

f1
) and (0,Ra1st

f2
). The stable �ow regions are located below

the lower curve and in the upper left portion of the plane bounded by the upper marginal
stability curve. By increasing the Péclet number in the range 60 < Pe < 65, the following
scenario occurs: the stability curves get more and more closer, they join together before to
separate again in the form of two new stability curves. Beyond Pe = 65, one of the two curves
links the two points (0,Ra1st

f1
) and (0,Ra1st

f2
), while the second curve is, from now on, released

from any �xed point in the (R̂a
1st
, k)-plane. As a result, this second curve is free to move

upwards and a new stable region de�ned by Ra1st
f2
< Ra1st < Ra1st

c = mink(R̂a
1st

(k,Pe > 65))
emerges.
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3.2. Second branch of basic solutions

As mentioned at the beginning of this section, the tetra-cellular �ows (Fig. 3(c)) are
located on a second branch of solutions which emerges from a saddle-node bifurcation at
Ra2nd & Ra2nd

s = 1911 (Fig. 6 or bifurcation diagram in Fig. 2). By using the same labels

1911 2000

Ra2nd
s Ra2nd

f

(a) Pe . 25

1911 2000

Ra2nd
s Ra2nd

f Ra2nd
c (Pe > 25)

(b) Pe > 25

Figure 6: Schematic continuation curves for the lower branch of steady solutions as a function of Ra, for (a)
Pe . 25 and (b) Pe > 25. Continuous lines stand for linearly stable solutions, dashed lines indicate unstable
solutions with respect to three-dimensional perturbations and dotted lines specify instabilities also obtained
for two-dimensional perturbations.

for lines drawn in Fig. 4, dotted lines indicate unstable established �ows with respect to
two-dimensional perturbations (k = 0) and dashed lines symbolize instability of basic �ows
against three-dimensional disturbances. In agreement with the published results for natural
convection [5, 6], solutions are always unstable as long as Pe . 25. For Pe > 25, a small

stability region de�ned by Ra2nd
f ' 2000 < Ra2nd < Ra2nd

c = mink(R̂a
2nd

(k,Pe > 25)) appears

and extends with increasing Péclet. The lower boundary Ra2nd
f for the stability region of the

tetra-cellular �ows is de�ned by a pitchfork bifurcation with a wavenumber equal to zero
[4].

The large modi�cations in the continuation curve become clear by analyzing the change

in the shape of the stability curves R̂a
2nd

(k) when the Pe value is increased (Fig. 7). For
0 ≤ Pe . 10 (Fig. 7(a)), two continuous lines can be distinguished. The �rst one is anchored
at the pitchfork two-dimensional bifurcation at (k = 0,Ra2nd

f ). The second one is free to

move, and it crosses the saddle-node bifurcation at Ra2nd
s . Increasing Pe leads to a shift of

the stability curve: that is emphasized by the dashed lines drawn in the same �gure 7(a).
As the arrows indicate, the curve lying on the right side undergoes a rotation toward larger
Ra-values and lower wavenumbers. In Fig. 7(b) it is shown how that curve continues to move
upward and to the left, to �nally go closer and closer to the stability curve extending from
the �xed point (k = 0,Ra2nd

f ). For Pe ≈ 25, the two curves combine together before getting

reorganized so that the stability curve connected to the point (0,Ra2nd
f ) is, from now on, a

decreasing function of Ra (Fig. 7(c)). On the other hand, this reorganization leads to the
appearance of a marginal stability curve which can move upward when Pe increases: this
allows a stable region for the basic �ow to arise.
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Figure 7: Schematic variation of R̂a
2nd

(k) as a function of Pe. See the legend of Fig. 5 for extra details.

3.3. Global stability diagram

Fig. 8 presents the marginal stability curves in the plane of the Rayleigh number and
Péclet number, for mixed convection �ows which are characterized by three di�erent sec-
ondary patterns. The two- and tetra-cellular secondary �ows are stable simultaneously in a
narrow gap of the Rayleigh number, 2000 < Ra < Ra1st

f1
= 2068, with Pe & 25 (region doubly

hatched). On the other hand, the co-existence of the tetra- and hexa-cellular secondary �ows
occurs in a wide range of the parameters, the region �lled in gray, and de�ned by Pe > 65
and Ra1st

f2
= 2456 < Ra < Ra1st

c (Pe > 65). Ra1st
c (Pe) may be approximated by the following

quadratic law, accurate within ±0.5%�

Ra1st
c (Pe) = 0.02095Pe2 + 4.951Pe + 2033, Pe ≥ 65 (12)

At last, beyond the hatched regions, the mixed convective �ows are linearly unstable. For
Pe . 25 (see the enlargement in Fig. 8), the marginal Rayleigh curve, which bounds the
stability region of �uid �ows made of two-crescent shaped cells, is more complex so that
no relevant analytical approximation is given. In contrast, for Pe greater than about 25,
the marginal stability curve for mixed convection �ows is reasonably approximated by the
analytical function

Ra2nd
c (Pe) = 34.2Pe + 1200, Pe ≥ 25 (13)
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Figure 8: Stability diagram in the plane (Pe,Ra) for mixed convection solutions when secondary �ows are
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C6-Stable indicate the stability regions of the corresponding secondary �ows. Symbols lying on curves are
result of numerical simulations. The marginal stability curves Ra1stc (Pe) (Eq. 12) and Ra2ndc (Pe) (Eq. 13) are
also drawn with thick lines.

accurate within ±2%. By focusing on the marginal curve associated with the C2 pattern (see
the enlargement in Fig. 8), we can clearly distinguish two changes in the slope of the curve
Ra1st

c (Pe) for Pe < 30. The �rst change occurs for 9 < Pe < 10 and 1882 < Ra1st < 1941, a
Rayleigh interval in which the so-called virtual-transcritical bifurcation [4, 27] (or imperfect
pitchfork bifurcation [28]) was pointed out in natural convection, around Ra1st = 1920.
According to the works of Petrone et al. [4], this pseudo-bifurcation indicates the beginning
of a large modi�cation of the secondary �ow as a function of the Rayleigh number. Later on,
these changes will give rise to the appearance of four new recirculation cells at Ra1st ' 2270
and, therefore to the birth of the C6-secondary �ow. Such a C6-secondary �ow becomes
stable for mixed convection under certain conditions (see Fig. 8). The sudden evolution in
the slope of the critical Rayleigh number with respect to Pe is also combined with more or
less pronounced discontinuities in the representation of the wavenumber as a function of Pe
for the C2-secondary �ow (see the circles in Fig. 9 drawn using the left and bottom axes).
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These jumps are due to the emergence of new global minima in the curve R̂a
1st

(k) (Fig. 5(a),
dashed curve). Let us recall that our critical values are evaluated by using the algorithm
presented in Sec. 2.2.3, a method providing the calculation of maximum or minimum values
in a local sense, not in global one as it should be. The direct consequence of the adopted
numerical approach is that solutions depend on the initialization of our iterative algorithm
when the solution is not unique and therefore it may converge toward a wrong solution.
Notice however that for a �xed Péclet value, the critical Rayleigh number is generally less
marred by mistakes than the critical wavenumber can be, especially when R̂a varies weakly
as a function of the wavenumber. The analytical approximation of the wavenumber as a
function of the critical Péclet number can be written as follows:

• on the �rst branch of solutions and for the C6-secondary �ows

k1st
c (Pe) =

1

0.01709Pe + 0.8645
, Pe ≥ 65 (14)
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• on the second branch of solutions and for the C4-secondary �ows

k2nd
c (Pe) =

{
−2.468 · 10−3Pe + 0.7517 if 35 ≤ Pe ≤ 60

−1.657 · 10−3Pe + 0.7024 if 60 ≤ Pe ≤ 140
(15)

with an accuracy within about 5%�. Note also that we �nd again a critical wavenumber
slightly above 3 for the natural convection problem (Pe = 0), a value consistent with the
literature data [5, 6].

Once the Péclet number exceeds zero, the dominant perturbation becomes oscillatory
(Hopf bifurcation) for all transitions di�erent from those occurring at Ra1st

f1
, Ra1st

f2
and Ra2nd

f

for which Petrone et al. [4] proved that they correspond to pitchfork bifurcations. The phase
velocity at the transition, λMi /kc, is almost constant, equal to 1.125± 3%. Thus, the linear
disturbance propagates approximately 10% faster that the mean velocity w̄ of the main axial
�ow.

4. Conclusion

The linear stability of the fully developed mixed convection �ows of air has been numeri-
cally investigated for a narrow horizontal cylindrical duct of radius ratio R = 1.2 in the range
0 < Pe < 200 and Ra < 6000. The steady solutions were computed by a Newton algorithm.
Both Laplace and Fourier transforms were used to express the time evolution of in�nitesimal
perturbations and the resulting eigenvalue problem was solved by using the free software
ARPACK [25]. The critical Rayleigh and Péclet numbers as well as the wavenumber and
frequency were iteratively evaluated by means of approached Newton methods which neces-
sitate successive computations of the basic �ow and eigenvalue problem. Our algorithm has
been successfully validated on the natural convection problem for which the critical Rayleigh
and wavenumber are well established in the literature. For mixed convection problems, in
addition to the usual secondary �ow consisting of two crescent-shaped cells, we proved that
two other �ow patterns can also be stable by increasing the Péclet number. These new
solutions are characterized by secondary thermal and dynamical �elds identical to those
encountered in natural convective con�gurations for a two-dimensional annular space, pro-
vided that the parameters are identical. As a result, the instability regions highlighted for
2D natural convection �ows are preserved for mixed convection conditions. A stability dia-
gram in the (Pe,Ra)-plane was drawn to de�ne the stability regions of the secondary �ows
which consist of the two crescent-shaped cells, with zero, two or four extra recirculation cells
located at the top of the horizontal annular duct. Analytical expressions for the variations
of the critical Rayleigh number and wavenumber were established as a function of the Péclet
number. Two regions in the parameters space were pointed out in which two kinds of sec-
ondary �ows are stable. This result indicates a multiplicity of solutions and thus a probable
dependency of the fully developed �ow to the initial conditions.
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