N

HAL

open science

Java Multi-Method Framework

Rémi Forax, Etienne Duris, Gilles Roussel

» To cite this version:

‘ Rémi Forax, Etienne Duris, Gilles Roussel. Java Multi-Method Framework. 2000. hal-00627861

HAL Id: hal-00627861
https://hal.science/hal-00627861

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00627861
https://hal.archives-ouvertes.fr

Java Multi-Method Framework

Rémi Forax, Etienne Duris and Gilles Roussel
Institut Gaspard Monge - Université de Marne-la-Vallée
5 bd Descartes - 77454 Marne-la-Valle Cedex 2 - France

Firstname.LastnameO@univ-mlv.fr

Abstract

In Java, method resolution is done at runtime, by late-binding, with respect to the
dynamic type of the target object. Some object-oriented languages such as CLOS
propose, in addition, late-binding according to dynamic types of arquments. This
feature is known as multi-polymorphism and usually achieved by multi-methods. In
this paper, we propose a pure Java framework that provides multi-methods, without
extending the base Java language nor modifying its semantics but intensively using
the reflection mechanism of the language. This paper focus on the algorithms and the
data structures involved in the method resolution strateqy we have implemented in an
optional package called Java Multi Method Framework.

Résumé

En Java, la résolution de méthode est effectuée a l’exécution, par liaison tardive, en
fonction du type dynamique de l'objet cible. Certains langages orientés objet comme
CLOS proposent de plus la liaison tardive en fonction du type dynamique des arqu-
ments. Cette caractéristique est conue sous le nom de multi-polymorphisme et est
en général obtenue grace auxr multi-méthodes. Dans cet article, nous proposons un
environnement pur Java fournissant des multi-méthodes, sans étendre le langage ni
modifier sa sémantique mais en utilisant le mécanisme de réflexion de Java. Cet
article se concentre sur les algorithmes et les structures de données impliqués dans la
stratégie de résolution de méthode que nous avons implémentée sous la forme d’un
paquetage optionnel nommé Java Multi Method Framework.

1: Introduction

Component-based software development is now recognized as one of the quicker
and cheaper way to produce maintainable applications. This kind of development is
strongly linked to object-oriented concepts and especially to encapsulation and lo-
cality. Indeed, objects provide a simple and modular access to component function-
alities, that corresponds to methods in most object-oriented languages. Moreover,
modularity and encapsulation impose that objects contain implementation of the
functionalities under their own responsibility. This allows to interchange components

that share the same interface with different implementations, facilitating reusability.
Then, given a method call on an object, late binding mechanism of object-oriented
languages dynamically provides a direct access to the right implementation, with
respect to the component the object belongs to.

In Java, late binding only concerns the target object (receiver) of a method call,
and not its arguments. This is generally sufficient for typical operations whose seman-
tics is related to object state. Nevertheless, for operations that depend on the kind
of component or on the relations between objects, late binding on all arguments is
sometimes more suitable. This feature is known as multi-polymorphism and could be
achieved with multi-methods [8, 7, 5, 13, 15]. This paper presents a optional package
providing Java with multi-methods without extending the core language nor modify-
ing the Java Virtual Machine (JVM) semantics. This Java Multi-Method Framework
(JMMF) package is a pure Java API that uses the reflection mechanism of the lan-
guage. This choice and the fact that the class hierarchy is dynamically extensible
imply a fully dynamic implementation, which differs from other works dealing with
multi-polymorphism in Java [5, 13]. In this framework, a multi-method stands as
an object representing a set of methods that have same name and same number of
arguments. For a given context, a target object and a n-uple of actual parameter
types, our method resolution provides the corresponding most specific method (by
default, consistent with standard compile-time method resolution).

Among the advantages of multi-methods [6, 12] we are more concerned with their
ability to simplify the specification of algorithms outside the objects they deal with
(10, 14, 9]. More precisely, in component based software development, where func-
tionalities have to be added to provided components accessible through interfaces,
multi-methods allow to respect an object-oriented style. Indeed, they preserve lo-
cality since a method can be specified for each specific parameter type, and provide
encapsulation since all these methods are specified in a same class. Encapsulation
could also be achieved by successive tests (for instance using an instanceof opera-
tor) but this solution is not object-oriented and does not preserve the locality of the
specification (there is not, for each element kind, one particular method).

After illustrating our framework with an example in section 2, section 3 intuitively
presents the whole method resolution for multi-methods. Its two main stages are
more precisely described in section 4 and section 5. Before conclusion, section 6
presents some benchmarks of our JMMF implementation.

2: Multi-method use-cases

In order to give an intuitive idea of our multi-method framework, we first illustrate
the process of constructing and using a multi-method through a simple example.
Next we discuss some design issues related to the use of multi-methods.

T
Expr : A
Interface | part
/ ': \ algorithm
-~ = extends specifications ' ficati
value Plus | Specl 1cation
. | .
(provided) | (user defined)
int getvValue() Expr getRight()
Expr getLeft() : ToStringAlgo
******** %***********************Lﬁ********I***I*****j***: String toString(Value v)
implements mplementation | String toString(Plus p)
ValueImpl PlusImpl 1 |
classes | String call(Expr e)
(provided) !
.

Figure 1. Algorithm user-specified apart from provided interfaces and classes
2.1: Component-based approach

Consider the mini-expression syntax case with integer values and a single oper-
ation, plus. In a component-based object-oriented conception, assume that a third
party provides us two classes, ValueImpl and PlusImpl that respectively implement
interfaces Value and Plus, both inheriting an empty interface Expr, as illustrated in
figure 1.

In this context, we want to display a string representation of any expression of
type Expr. Since no method performs this algorithm and due to our component-
based approach, we want to respect the two following restrictions: do not change any
given interface and do not change nor modify any provided implementation classes.
Thanks to our multi-method framework, the following class ToStringAlgo allows to
specify the algorithm in a single class apart from the existing hierarchy.
class ToStringAlgo {

MultiMethod mm = MultiMethod.create(getClass(), "toString", 1);

String toString(Value v) { return Integer.toString(v.getValue()); }

String toString(Plus p) { return call(p.getlLeft()) + "+" + call(p.getRight()); }

String call(Expr e) {

try { // call the most specific method toString according to the actual type of e

return (String) mm.invoke(this, new Object[l{e});
} catch(Exception ex) { return null; }

}
}

In this example, the static method create constructs an instance of the class
MultiMethod that stands for the set of classical Java methods hosted by the class
ToStringAlgo, having the name toString and one parameter. Thus, given an argu-
ment expression statically typed Expr, an instance of the class ToStringAlgo could
be used to delegate, to the multi-method mechanism, the resolution of which method
toString had to be called with respect to the dynamic type of the argument (and
recursively on the sub-expressions).

Expr e = new PlusImpl(new ValueImpl(1l), new ValueImpl(2));
System.out.println(new ToStringAlgo().call(e));

When the method invoke is called, transmitting the argument as an Object ar-

ray, the method resolution mechanism for multi-methods looks for the most specific
method toString according to the actual type of the argument and, if any, calls it.

2.2: Some design issues

In the previous example, the method resolution for toString is carried out by a
call to the method call that we name the invocation method. It is also possible to
give the name toString to this invocation method, but this requires to pay partic-
ular attention. Indeed, there could be a clash between static compile-time method
resolution and dynamic multi-method one. To avoid this problem, the argument can
be casted into the parameter type of the invocation method to be sure that this
method will be chosen by the compiler.

We could also note that the parameter of the method call is declared of type
Expr. A parameter of type Object can be used instead, in order to relax static
type-checking, allowing to add other methods to this multi-method (for instance by
inheritance), even if they are not declared with a parameter subtype of Expr.

3: Overview of method resolution for multi-method

The classical method resolution mechanism in Java successively uses compile time
and runtime information to select the most specific method. First, the signature
(name and declared types of target object and parameters) is statically determined;
next, the actual type of the target object (only known at runtime) enables the final
selection. As said before, since our framework is pure Java, the method resolution
for multi-methods does not involve other compile time mechanisms and hence is fully
dynamic.

In order to intuitively expose the problem, consider a call to the invocation method
with a single n-uple of arguments whose actual types are dynamically known as being
(T1,...,T,). The resolution could then be sketched as follows. Given each position
1, find the set S; of types that are both statically declared as i-th parameter of a
method and supertypes of the argument type T; (cf. section 4.3). With these sets for
all positions, find the set M of methods of which signatures appear in S; x ... X .S,.
If this set M is empty, type-checking has failed and an exception will be thrown. If
a single method matches, this is the one to be invoked. If several methods match
and if one is more specific than all the others (cf. section 4.7), it could be invoked.
Otherwise an exception will be thrown.

Since several different n-uples of arguments could be considered, this costly ap-
proach is suboptimal and could be improved by splitting method resolution for
multi-method in two stages: creation time that corresponds to the execution of the
create method and invocation time corresponding to the execution of, for instance,
mm. invoke (target, argArray). At creation time, several computation of the previ-
ous algorithm are factorized. For all combination of types in S x... X .S, we compute
the corresponding applicable methods and if there exists or not a single one. Then,
a data-structure is initialized to cache and speed-up the type hierarchy traversals at

4

invocation time. Furthermore, in conflict cases between several methods, finding if
one is more specific than all others could also being factorized. Finally, the data-
structure could be completed at invocation time when, using a n-uple of dynamic
argument types, we obtain, if it exists, the n-uple of parameter types it behaves like.
In better cases, creation time computations directly give the most specific method.

4: Pre-computation for method resolution

In this section, we first build the set of syntactically applicable methods that gath-
ers the set of classical Java methods on which we will first focus, because they allow
us to determine n-uples of types interesting to consider as possible invocation signa-
tures. The chosen structure representing relations between these types also guides
and supports the computation of some annotations, at creation time. With these an-
notations, we determine the set of semantically applicable methods, that restricts the
set of syntactically applicable methods to those that are correctly typed with respect
to a given n-uple. If several methods are still candidates, a disambiguation process
could find, if any, the most specific method corresponding to this n-uple of declared

types.

4.1: Syntactically applicable methods

As general case in the rest of the paper, we consider the multi-method constructed
by:

MultiMethod mm = MultiMethod.create(hostClass, '"methodName", n);

Since we are looking for the set of methods hosted by class hostClass, declared
with the name methodName and with exactly n parameters, we must add to methods
declared in hostClass those inherited from superclasses and superinterfaces. We call
it the set of syntactically applicable methods since only the name and the number of
parameters match with the required method. In the classical Java method resolution
([11], § 15.12.2.1), the notion of applicable methods is used. It means, in addition to
our syntactically applicable notion, that the type of each argument can be converted
to the type of the corresponding parameter and we will need to take care, further, of
this — semantic — information. We also need to insure that methods have visibility
rights. This is what Java Language Specification (JLS) [11] calls accessible methods
and it depends on the access modifier of each method. At this step, each syntacti-
cally applicable and accessible method only needs type information to become a full
candidate to invocation with respect to n given argument types.

4.2: n-uples of argument types

Suppose the previous step has selected p syntactically applicable and accessible
methods that we note M = {my,...,m,}. We are interested in their n-uples of

parameter types, i.e., each method signature!:
M = {m, : methodName(7} 1, ...,T1), ma: ..., m, : methodName(Ty 1, ...,Tpn)}

For the multi-method, this means that the first argument of an invocation could be
of any type in the set {7} ,...,7,1}, and so forth with each argument until the n-th
argument of a type in the set {7} ,,...,T,,}. For each argument position j € [1..n],
we define 7 (j) as the set of distinct possible types for the j-th argument of a multi-
method invocation:

Vi€ L.n, T(G) ={Ty; | iel.pl}

We also define the set N of all distinct n-uples of declared types, build from these sets,
and representing possible n-uples of argument types in a multi-method invocation:

N ={(Th,...T,) | Vj € [L.n],Tj € T(j)}

We focus our efforts on this set of n-uples, since it allows us to factorize information
computations for static (declared) types. We now investigate, for each n-uple of types
in V, if there exists not any, one, or several corresponding methods m; € M, whose
parameter types could match with these n-uples.

4.3: Subtyping relations

To determine if a method could be called with such a given n-uple, we have to
verify that the value of the i-th element of the n-uple could be converted into the
type of the i-th method parameter, and that for all i € [1..n].

Subtyping relations? are of the main features of object oriented languages. They
allow any subtype 7" of T' to be used in place of T. In Java, there are three cases
where a value of type 7" could be assigned to a variable of type T ([11], § 5.1) and,
when any method is invoked in Java, one of these conversions is necessarily applied
to each argument: identity conversions in cases where T = T'; widening primitive
conversions, for instance, a value of type short could be assigned to a variable of type
int; widening reference conversions provided by (explicit or implicit) inheritance,
interface implementation and some other cases specific to Java (e.g., with arrays, as
shown in figure 2).

Since we will have to compare types to each other and in order to ease the pro-
grammer to deal with subtyping relations, the JMMF package we propose provides
a method getSupertypes (7') that returns the set of all direct supertypes of T'.

4.4: Directed acyclic graph
To store and deal with these relations between types, we use a graph G where

vertices represent types and edges represent subtyping relations. First, this graph G
is oriented such that an edge from T to T" means that T “is a supertype of” T', in

!We do not take return types into account because they are not involved in the Java method resolution.
2We do not make any distinction here between the notions of subtyping and assignation.

Object
—
|

(Serializable |(hloneable

\

[Object
v
))] (] [(x]
.
is a supertype of
o] [o]

Figure 2. Classes, interfaces and primitive types hierarchies

the sense previously described of subtyping. We will note T — T" this relation when
T # T'. Next, from the essence of subtyping, this graph is acyclic. It is not a tree
because of the multiple supertyping allowed by Java features like, for instance, the
ability of an interface to extend more than one interface. Thus, we use a structure
of directed acyclic graph (DAG) for G and we classically note T"—* T" if there is a
path by — from T to T" or if T =T".

Figure 2 gives a hierarchy example of Java classes, interfaces and primitive types,
which is very close to our expected DAG G. Note that, as our DAG will, this figure
does not distinguishes between eztends, implements or other subtyping (assignation)
relations.

Given a multi-method, the corresponding DAG is constructed by adding recursively
all the types that appear as a parameter of its methods, together with all their
supertypes, obtained by the getSupertypes method, until reaching the fix point.
Termination is insured by the types Object and double that are the roots of the
subtyping hierarchies.

4.5: Annotate the DAG

Pursuing our aim of associating methods (signatures) to n-uples of types, we now
want to annotate each vertex of a multi-method DAG by its ability to be an acceptable
argument type for methods represented by the multi-method. This annotation must
be done for each method and at each parameter position. Given a type 7', we then
compute the set of methods m;, noted A(T,j) for which T is able to stand for the
type of the j-th argument in a call to the method m;. Once build, this set is added
to A(T", j) for every subtype T' of T'. The fact that our graph is a DAG provides
that this propagation terminates.

To illustrate our purpose, we choose a guiding example that exploit the (particu-
larly intricate) type hierarchy of figure 2, and consider the multi-method defined as
follows:

MultiMethod myMM=MultiMethod.create(MyHostClass.class, "myMethod",3);
where accessible and syntactically applicable methods myMethod hosted in MyHost-

7

The fact that T could be the type of
- the 2nd parameter of m3 or

Object
- the 3rd parameter of m1

is depicted by 1 % 3
is depicted by <

123

ml
m2
m3

is a supertype of D
—_—=

Ht

B

C E

Figure 3. An example of annotated DAG

Class and having exactly three parameters are defined with the following signatures:
M = {m; : myMethod(B, C,K), my : myMethod(D,I,I), mg:myMethod(D,E,E)}

The annotated DAG obtained for this multi-method is presented in figure 3. A vertex
annotation is figured as a matrix of p rows and n columns where (i,) contains a
bullet?® in order to represent the fact that the corresponding vertex is able to be the
type of the j-th argument in the method m;. In other words, A(T,j) is the j-th
column of the matrix.

4.6: Semantically applicable methods

These annotations tell us if a single given type is acceptable at a given position
of a given method. We now want to deduce, for a given n-uple of types in N, if it
corresponds not any, one and only one, or multiple acceptable methods. Thus, for a
given n-uple u in N, we note SemApp(u) the set of methods for which an invocation
conversion would be able to accept u as argument types. We say that methods in
SemApp(u) are semantically applicable for u, and define them as follows:

Vu = (Tla ey Tn) € Na SemApp(u) = m]G[ln]A(jj’y])

The cardinality of such a set gives us important information, summarize in three
cases:

SemApp(u) | Card Meaning At invocation time
0 0 Not any method matches NoSuchMethodException
{m} 1 Only one method matches Invocation of my,
MultipleMethodException or,
{mp,,...,mp,} | ¢ >1 | Multiple methods match if disambiguation succeed,
invocation of the most specific method

To illustrate these different situations, we go back to our example of multi-method
myMM (cf. section 4.5 and figure 3) and consider all combination of n-uples in N, i.e.,
with either B or D as first argument type, C, I or E as second, and K, I or E as the

8Dark bullets stands for set annotations (types declared as parameter) and light for propagated ones.

With m1 : (B,C,K) B C K mland m2 B C K m3 is D I I m3 is
m2 : (D,I,I) \l/ /r 4\ are not \l/ \l/ J/ more precise \l/ J/ more precise
and m3 : (D,E,E) D I I comparable D E E than m1 D E E than m2

Figure 4. Using partial orders to resolve ambiguities

third argument type. In this case, N contains 18 distinct n-uples but, in the worst
general case, n? could exist.

We now exhibit some illustrating examples. Let u; be the n-uple (B,C,I). It
follows:

SemApp(u;) = A(B,1) N A(C,2) N A(L,3) = {m1} N {my,ma} N {me} =10

Calling invoke on myMM with an object array b,c,i of types B, C and I, e.g.,
myMM.invoke (target, new Object[1{b,c,i}) will throw a NoSuchMethodExcep-
tion exception.

If up = (D, C, I), the same principle gives SemApp(uy) = {my}. Thus, myMM.in-
voke (target, new Object[1{d,c,i}) implies the invocation of msy which is the
most specific method according to these argument types.

Let now uz be the n-uple (D,C, K). It follows that SemApp(us) = {my, ma}.
Here, the execution of myMM. invoke (target, new Object[1{d,c,k}) could either
lead to the invocation of m; or the invocation of ms or else throw a Multiple-
MethodsException. In fact, we do not have enough information to decide here what
will happen and say there is an ambiguity. More precisely, there are different cases
of ambiguity but in the case of uz, we cannot say that m; is more specific than my
nor that my is more specific than m;.

4.7: Disambiguation process

As in the classical method resolution, when at least two methods are semantically
applicable, it is sometimes possible to elect one because it is more specific than all
the others. For instance, if uy = (D, E, E), SemApp(uy) = {m, mo, m3} and the
ambiguity concerns three methods. Nevertheless, we can resolve here the ambiguity
and argue that mjs is more specific than m; and ms, and actually elect ms: we call
this process the disambiguation.

Intuitively, we see that u, is exactly the n-uple declared as mj parameter types,
but this is not the right (only) justification. In fact, ms is more specific than m;
because any parameter type of mg is more precise than (or at least as precise as)
the corresponding parameter type of m;. This notion of precision comes from the
subtyping relations and, for any subtype 1" of a given type T, we said that 1" is more
precise than T'.

More formally, we say that a method my is more precise than another method
my, and note my < my, if any parameter of my, is a subtype? of the corresponding
parameter of my:

‘Either a subtype or this type itself.

mi : (T ooy Tiown) <my: (Tia, ., Tip) © Vi€ [1n], T —* T

If we cannot assert that mjy < m; nor m; < my, we say that my; and m, are not
comparable. Indeed, this relation possibly induces several partial orders among all
syntactically applicable and visible methods (cf. figure 4 for methods my, my and m;
of our example).

4.8: Summary and implementation issues

At this point, for a multi-method definition, we dispose of a process that defines
a function Resolve which provides, given a n-uple of A/, one of the following diag-
nostic: no method fits, one method is the most specific method or multiple methods
fit without a most specific one. In our current implementation, computations cor-
responding to Resolve are completely precomputed at creation time, and tabulated
(cached) in order to be immediately available at invocation time (see section 5.2).
Another implementation choice consists in computing Resolve “on the fly”. The
former case allows the annotation structures to be freed (and also clarify the forth-
coming presentation of dynamic computations) while the latter computes, from the
annotation structures, the values of Resolve when they are required. Nevertheless,
deciding which (implementation) solution is more efficient is an open problem that
we will not discuss here.

5: Multi-method invocation process

Information provided by Resolve is not sufficient to resolve all invocations of the
multi-method. Indeed, the invoke method could be called with any n-uple of argu-
ment types that are not necessarily considered in A/. We have to be able to associate
any invocation n-uple of argument types to a n-uple in N, especially for types that
are only known at invocation time® and that not yet appear in the DAG; this implies
some dynamic part in the process.

In fact, we only need to associate, to each encountered argument type, the type
in the DAG it behaves like. This can be done without taking care of compatibility
between types in the n-uple of arguments, since this information (type combination)
is provided by Resolve.

To guide the whole process, we reuse the DAG of the previous section but, since
we have the function Resolve, we could waste all previous annotations A. In place
of them, we supplement the basic DAG with two kinds of information: subtyping
relations for any newly discovered types (vertices and edges) and behavioral annota-
tions for any type at any position. We call behavioral annotation of a type T at the
position i, noted B(T,1), the closest type of T'in T (i), to be used instead of T'. For
a given vertex 7" and a given position ¢, the behavioral annotation B(7T,7) can take

SRecall that some of these dynamic types could even not been loaded before the invocation time.

10

Behavioral annotations of T
at each parameter position:
123

With two additional methods:
mé : (K, C, K)
m5 : (C, C, K)

there is a conflict case (o)
.. on E in first position.

"no type" (init.) P
strong (set)

weak
(propagated)

conflict

o<fll n<fll n<ll - <]

De e ¢ EE (a) (b) OEE

Figure 5. Behavioral annotations of the DAG

three kinds of values: the initial value ¢ meaning “no type”, a type 7" in 7 (i) or the
value ¢ that represents an insolvable conflict.

Despite unavoidable “dynamic” part of the process, the major part of the behav-
ioral DAG (i.e., the behavioral annotation of the basic DAG) could be computed at
creation time. At invocation time, there will only remain to supplement the DAG
with new types dynamically encountered and to behaviorally annotate them.

5.1: Creation time annotations

In the behavioral annotation of the basic DAG, we distinguish two kinds of anno-
tations: strong and weak. A strong annotation B(T, j) = T is set when T is the type
of the j-th parameter in the declaration of a given m;. This means that T at the
position j will always play the role of (behave as) itself. Now, any subtype 7" of this
T could possibly play the role of (behave as) T' at the position j in an invocation of
the same method m;. This is why we propagate the weak annotation B(T",j) = T.

Our algorithm implements several other rules that we intuitively describe here.
First, any type propagated as annotation on a vertex prevails over € on this vertex.
Next, when an annotation b, is propagated on a vertex v that already has an anno-
tation by, the most specific between b; and by prevails and must be annotated on v
but, in particular, a strong annotation prevails over a weak one. If an annotation
changes on v, its propagation must be pursued on subtypes of v; else, the propagation
is stopped along this particular subtyping branch in the DAG. In the case where two
weak annotations b; and by are not comparable, there is a conflict: the ¢ must be
annoted on v, and propagated on v’s subtypes. This { annotation prevails over any
weak annotation.

Figure 5 (a) shows our DAG example annotated by this algorithm. This example
does not introduce any conflict case but, to illustrate it, suppose that M contains two
supplementary methods, my : (K,C, K) and mj : (C,C, K); then, the corresponding
part of the annotated DAG would have been those presented in figure 5 (b).

We are now able to determine, for a given n-uple arbitrarily chosen among vertices
of the creation time DAG, to which n-uple in N it corresponds, if any. But, in an

11

The newly added type F
behaves as a 1 in second position

and as a K in third position.

Figure 6. Dynamically supplement behavioral DAG

argument type n-uple of a multi-method invocation, if we encounter a type that does
not yet appear in the graph, we also have to be able to associate it to a n-uple in N/,
if any exists.

5.2: From dynamic to declared types

Let us now consider the statement mm.invoke (target, new Object[1{d,c,f})
where f is of a new type F, a class implementing both interfaces I and K. We have to
supplement the initial DAG with F' and determine its behavioral annotations from
those of its supertypes. To add a new vertex to the DAG we reuse the creation
time algorithm described in section 4.4. To propagate behavioral annotations to the
new vertex, rules are similar to those of the section 5.1. In fact, at this stage, these
two algorithms are merged together: whereas the former recursively supplements
the DAG with new vertices, bottom-up in the class hierarchy, the latter propagates
behavioral annotations in the reverse order, top-down. At the termination condition,
i.e., when a existing vertex in the DAG is found, instead of propagating its behavioral
annotations to each of its subtypes, it suffices to only propagate them along the newly
created edge.

Figure 6 shows information computed at invocation time for this example. First,
a vertex is added for the type F' with two edges from I and K. Then, the annotation
propagation provides that F' behaves as ¢ in first position and as I in second position.
For the third position, between the two propagated annotations I and K, K prevails
because, in our example, it is a subtype of I.

At this point, we could deduce that from the point of view of method resolution,
invoking the multi-method with argument types (D, C, F) is equivalent to invoke it
with types (D, C, K). Finally, function Resolve provides us the most specific method,
if any, corresponding to this n-uple of N (in this case, a MultipleMethodException
will be thrown).

Thus, thanks to the behavioral DAG and the function Resolve, and given any
n-uple of dynamic argument types of a multi-method invocation, we are able to
determine information allowing either the corresponding most specific method to be

12

called or the right exception to be thrown.

6: Implementation benchmarks

In order to prove the usability of our implementation framework JMMF®, we
present here some execution times. The table below shows, for two examples, the
creation time and invocation time costs with our multi-method framework, and the
cost of the “equivalent” instanceof-based hand-written program. The first exe-
cution times come from our running example of multi-method myMM (cf. figure 6),
with argument types in B, C, D, E and F. Second example simply chooses, given
three arguments, between three methods of signatures (T1,T1,T1), (T2,T2,T2) and
(T3,T3,T3) (these types do not have any subtyping relation). Given times are aver-
age results over one million calls (with random arguments for which a most specific
method exists) of programs compiled and run with the JDK1.3 on a 32Mb PC Celeron
300Mhz under Windows 98.

Implementation myMM’s example T1, T2, T3 example
Creation of the multi-method 1.02733 ms 0.85500 ms
1 multi-method-based invocation 0.00973 ms 0.00988 ms
1 instanceof-based invocation 0.00227 ms 0.00511 ms

As first observation, the time required to create a multi-method is about hundred
times longer than to invoke it. Thus, it is only worthwhile to create a multi-method
if one expects to call it often. Nevertheless, all the work done at multi-method
creation time should be considered as compile-time computations, and hence, must
be compared to the complex design or the error prone evolution and maintenance of
the instanceof-based version.

Secondly, the times required by one multi-method invocation are equivalent for
both examples but, depending on the example, two or five times slower than one
instanceof-based invocation. We explain the relative velocity of the myMM’s instan-
ceof-based invocation by the fact that, in this example, all parameter types at a given
position could be totally ordered (this is not the case in the second example). This
particularity allows to simplify the nested if-then-else statements in the instanceof
hand-written program.

Finally, multi-method invocation times could still be improved by implementa-
tion tuning (by avoiding creations of some temporary objects and using compression
techniques [2, 16]).

7: Conclusion

This paper presents a Java framework that provides the programmer with multi-
methods. The main feature of our implementation is to be a customizable pure Java

®This framework and some examples are available at http://igm.univ-mlv.fr/~forax/works/jmmf.

13

optional package. It does not involve any JVM patch nor extra keyword to the origi-
nal language definition. Our approach intensively uses the Java reflection mechanism
rather than dynamically producing parts of code (generation of instanceof tests).
The relative efficiency and the usability of JMMF validate our choice of using reflec-
tion. With respect to other research works on multi-method [1, 4, 5, 15] that address
typing issues, ours focus on implementation efficiency and on the simplicity of design
and use rather than on static type checking.

The most important issue of this framework is that it provides the programmer
with an easy way to design and maintain algorithm specification. In particular, multi-
methods simply allow to externally specify algorithm on recursive data-structures [9]
such as trees. For instance, JMMF is intensively used in the project SmartTools [3]
that aims at providing generic tools for compiler constructions and programming
environments.

References

[1] Rakesh Agrawal, Linda DeMichiel, and Bruce Lindsay. Static type-checking of multi-methods. In Pro-
ceedings of Object-Oriented Programming Systems, Languages and Applications (OOPSLA’91), ACM
SIGPLAN, pages 113-128, Phoenix Arizona, October 1991.

[2] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch using compressed
dispatch tables. In Proceedings of Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’94), ACM SIGPLAN Notices, pages 244-258, October 1994.

[3] Isabelle Attali, Franck Chalaux, Carine Courbis, Pascal Degenne, Alexandre Fau,
and Didier Parigot. SmartTools. Cooperative project for Interactive Generic Tools
(http://www-sop.inria.fr/oasis/SmartTools/), June 2000.

[4] Francois Bourdoncle and Stephan Merz. Type-checking higher-order polymorphic multi-methods. In
Proceedings of Principles Of Programming Languages (POPL’97), ACM SIGPLAN-SIGACT, pages
302-315, Paris, France, January 1997.

[5] John Boyland and Giuseppe Castagna. Parasitic methods: An implementation of multi-methods for
Java. In Proceedings of Object-Oriented Programming Systems, Languages and Applications (OOPSLA
’97), number 32-10 in SIGPLAN Notices, pages 6676, New York, October 1997. ACM Press.

[6] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group, Gary T. Leavens, and
Benjamin Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221-242, 1996.

[7] Craig Chambers. Object-oriented multi-methods in Cecil. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP’92), Utrecht, The Netherlands, July 1992.

[8] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object System: An overview. In
Proceedings of European Conference on Object-Oriented Programming (ECOOP’87), pages 151-170,
Paris, France, June 1987.

[9] Rémi Forax and Gilles Roussel. Recursive types and pattern-matching in Java. In Proceedings of Inter-
national Symposium on Generative and Component-based Software Engineering (GCSE’99), number
1799 in LNCS, Erfurt, Germany, September 1999. LNCS.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[11] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java™ Language Specification — Second
Edition. Addison-Wesley, 2000.

[12] Gregor Kiczales, Jim Des Rivieres, and Daniel Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, 1991.

[13] Maxim Kizub. Kiev language specification. An extension of Java language that inherits Pizza features
and provides multi-methods (http://forestro.com/kiev/), July 1998.

[14] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation Pat-
terns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

14

[15] Todd Millstein and Craig Chambers. Modular statically typed multimethods. In Proceedings of Euro-
pean Conference on Object-Oriented Programming (ECOOP 99), number 1628 in LNCS, pages 279-303,
Lisbon, Portugal, June 1999.

[16] Candy Pang, Wade Holst, Yuri Leontiev, and Duane Szafron. Multi-method dispatch using multiple row
displacement. In Proceedings of European Conference on Object-Oriented Programming (ECOOP’99),
pages 304-328, Lisbon, Portugal, June 1999.

15

