
HAL Id: hal-00627821
https://hal.science/hal-00627821v2

Submitted on 30 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quadratic algorithm for road coloring
Marie-Pierre Béal, Dominique Perrin

To cite this version:
Marie-Pierre Béal, Dominique Perrin. A quadratic algorithm for road coloring. Discrete Applied
Mathematics, 2014, 169 (-), pp.15-29. �10.1016/j.dam.2013.12.002�. �hal-00627821v2�

https://hal.science/hal-00627821v2
https://hal.archives-ouvertes.fr

A quadratic algorithm for road coloring

Marie-Pierre Béal and Dominique Perrin ∗†

May 30, 2013

Abstract

The Road Coloring Theorem states that every aperiodic directed
graph with constant out-degree has a synchronized coloring. This the-
orem had been conjectured during many years as the Road Coloring
Problem before being settled by A. Trahtman. Trahtman’s proof leads
to an algorithm that finds a synchronized labeling with a cubic worst-
case time complexity. We show a variant of his construction with a
worst-case complexity which is quadratic in time and linear in space.
We also extend the Road Coloring Theorem to the periodic case.

1 Introduction

Imagine a map with roads which are colored in such a way that a fixed
sequence of colors, called a homing sequence, leads the traveler to a fixed
place whatever the starting point is. Such a coloring of the roads is called
synchronized and finding a synchronized coloring is called the Road Coloring
Problem. In terms of graphs, it consists in finding a synchronized labeling
in a directed graph.

The Road Coloring Theorem states that every aperiodic directed graph
with constant out-degree has a synchronized coloring (a graph is aperiodic
if it is strongly connected and the gcd of the length of the cycles is equal to
1). It has been conjectured under the name of the Road Coloring Problem
by Adler, Goodwin, and Weiss [2], and solved for many particular types of
automata (see for instance [2], [23], [9], [19], [16], [25]). Trahtman settled the
conjecture in [29]. In this paper, by Road Coloring Problem we understand
the algorithmic problem of finding a synchronized coloring on a given graph
(and not the existence of a polynomial algorithm which is solved by the
Road Coloring Theorem).

∗Université Paris-Est, Laboratoire d’informatique Gaspard-Monge CNRS UMR 8049,
5 boulevard Descartes, 77454 Marne-la-Vallée, France, {beal,perrin}@univ-mlv.fr

†This work is supported by French National Agency (ANR) through ”Programme
d’Investissements d’Avenir” (Project ACRONYME n◦ANR-10-LABX-58).

1

Solving the Road Coloring problem in each particular case is not only
a puzzle but has many applications in various areas like coding or design
of computational systems. These systems are often modeled by finite-state
automata (i.e. graphs with labels). Due to some noise, the system may
take a wrong transition. This noise may for instance result from the phys-
ical properties of sensors, from unreliability of computational hardware, or
from insufficient speed of the computer with respect to the arrival rate of
input symbols. It turns out that the asymptotic behavior of synchronized
automata is better than the behavior of unsynchronized ones (see [12]).
Synchronized automata are thus less sensitive to the effect of noise.

In the domain of coding, automata with outputs (i.e. transducers) can
be used either as encoders or as decoders. When they are synchronized, the
behavior of the coder (or of the decoder) is improved in the presence of noise
or errors (see [4], [18]). For instance, the well-known Huffman compression
scheme leads to a synchronized decoder provided the lengths of the code-
words of the Huffman code are relatively prime. It is also a consequence of
the Road Coloring Theorem that coding schemes for constrained channels
can have sliding block decoders and synchronized encoders (see [1] and [21]).

Trahtman’s proof is constructive and leads to an algorithm that finds a
synchronized labeling with a cubic worst-case time complexity [29, 31]. The
algorithm consists in a sequence of flips of edges going out of some state so
that the resulting automaton is synchronized. One first searches a sequence
of flips leading to an automaton which has a so-called stable pair of states
(i.e. with good synchronizing properties). One then computes the quotient
of the automaton by the congruence generated by the stable pairs. The
process is then iterated on this smaller automaton. Trahtman’s method
for finding the sequence of flips leading to a stable pair has a worst-case
quadratic time complexity, which makes his algorithm cubic.

In this paper, we design a worst-case linear time algorithm for finding
a sequence of flips until the automaton has a stable pair. This makes the
algorithm for computing a synchronized coloring quadratic in time and linear
in space. The sequence of flips is obtained by fixing a color, say red, and by
considering the red cycles formed with red edges, taking into account the
positions of the roots of red trees attached to each cycle. The prize to pay
for decreasing the time complexity is some more complication in the choice
of the flips. We also extend the Road Coloring Theorem to periodic graphs
by showing that Trahtman’s algorithms provides a minimal-rank coloring.
Another proof of this result using semigroup tools, obtained independently,
is given in [7]. For related results, see also [30] and [17].

The complexity of synchronization problems on automata has been al-
ready studied (see [20] for a survey). It is well-known that there is an O(n2)
algorithm to test whether an n-state automaton on a fixed-size alphabet is
synchronized. The complexity of computing a specific synchronizing word is
O(n3) (see [14]). However, the complexity of finding a synchronizing word

2

of a given length is NP-complete [14] (see also [24], [27]). The complexity
of problems on automata has also been studied for random automata (see
[8]). Several results prove that, under appropriate hypotheses, a random
irreducible automaton is synchronized [15], [28], and [22]. The average time
complexity of these problems does not seem to be known. In particular, we
do not know the average time complexity of the Road Coloring Problem.

The article is organized as follows. In Section 2, we give some definitions
to formulate the problem in terms of finite automata instead of graphs.
In Section 3 we describe Trahtman’s algorithm and our variant is detailed
in Section 4. We give both an informal description of the algorithm with
pictures illustrating the constructions, and a pseudocode. The time and
space complexity of the algorithm are analyzed in Section 5. The periodic
case is treated in Section 6. A preliminary version of this paper was posted
in [3].

2 The Road Coloring Theorem

In order to formulate the Road Coloring Problem we introduce the notation
concerning automata.

Let A be a finite alphabet and let Q be a finite set. We denote by A∗

the set of words over A.
A (finite) automaton A = (Q,E) over the alphabet A with Q as set of

states is a given by a set E of edges which are triples (p, a, q) where p, q are
states and a is a symbol from A called the label of the edge. Note that no
initial or final states are specified. Let F be the multiset formed of the pairs
(p, q) obtained from the set E by the map (p, a, q) 7→ (p, q). The multigraph
having Q as set of vertices and F as set of edges is called the underlying
graph of A.

A path in the automaton is sequence of consecutive edges. The label of
the path ((pi, ai, pi+1)0≤i≤n is the word a0 · · · an. The state p0 is its origin
and pn+1 is its end. The length of the path is n + 1. The path is a cycle if
p0 = pn+1.

An automaton is deterministic if, for each state p and each letter a,
there is at most one edge starting at p and labeled with a. It is complete
deterministic if, for each state p and each letter a, there is exactly one edge
starting at p and labeled with a. This implies that for each state p and each
word w there is exactly one path starting at p and labeled with w. The end
of this unique path is denoted by p · w.

An automaton is irreducible if its underlying graph is strongly connected.
The period of an automaton is the gcd of length of its cycles. An automaton
is aperiodic if it is irreducible and of period 11.

1Note that this notion, which is usual for graphs, is not the notion of aperiodic automata
used elsewhere and which refers to the period of words labeling the cycles (see e.g. [13]).

3

A synchronizing word of a complete deterministic automaton A = (Q,E)
is a word w ∈ A∗ such that for every pair of states p, q ∈ Q, one has
p · w = q · w. A synchronizing word is also called a reset sequence [14], or a
magic sequence [5, 6], or also a homing word [26]. An automaton which has
a synchronizing word is called synchronized (see an example on the right
part of Fig. 1).

Two automata which have isomorphic underlying graphs are called equiv-
alent. Hence two equivalent automata differ only by the labeling of their
edges. In the sequel, we shall consider only complete deterministic automata.

Proposition 1. A synchronized complete deterministic automaton is ape-
riodic.

Proof. We assume that the automaton has at least one edge. Let (p, a, q)
be an edge of the automaton. Let w be a synchronizing word focusing to a
state r. Since the graph is strongly connected, there is a word v such that
from r ·v = p. Thus p ·awvp = p ·wvp. The lengths of the cycles from p to p
labeled awv and wv differ by 1. This implies that the period of automaton
is 1.

The Road Coloring Theorem can be stated as follows.

Theorem 2 (A. Trahtman [29]). Any aperiodic complete deterministic au-
tomaton is equivalent to a synchronized one.

1 2

3 4

1 2

3 4

Figure 1: Two complete aperiodic deterministic automata over the alphabet
A = {a, b}. A thick red plain edge is an edge labeled by a while a thin blue
dashed edge is an edge labeled by b. The automaton on the left is not
synchronized. The one on the right is synchronized. For instance, the word
aaa is a synchronizing word. The two automata are equivalent since their
underlying graph are isomorphic.

A trivial case for solving the Road Coloring Theorem is the case where
the automaton has a loop edge around some state r [23]. Indeed, since
the graph of the automaton is strongly connected, there is a spanning tree
rooted at r (with the edges of the tree oriented towards the root). Let us
label the edges of this tree and the loop by the letter a. This coloring is
synchronized by the word an−1, where n is the number of states.

4

3 An algorithm for finding a synchronized coloring

Trahtman’s proof of Theorem 2 is constructive and gives an algorithm for
finding a labeling (also called a coloring) which makes the automaton syn-
chronized provided it is aperiodic.

In the sequel A denotes an n-state complete deterministic automaton
over an alphabet A. We fix a particular letter a ∈ A. Edges labeled by a are
also called red edges or a-edges. The other ones are called blue or b-edges.

A pair (p, q) of states in an automaton is synchronizable if there is a word
w with p · w = q · w. It is well-known that an automaton is synchronized if
all its pairs of states are synchronizable (see for instance Proposition 3.6.5
in [4]).

A pair (p, q) of states in an automaton is stable if and only if, for any word
u, the pair (p ·u, q ·u) is synchronizable. This notion was introduced in [10].
In a synchronized automaton, any pair of states is stable. Note that if (p, q)
is a stable pair, then for any word u, (p · u, q · u) is also a stable pair, hence
the terminology. Note also that if (p, q) and (q, r) are stable pairs then (p, r)
is also a stable pair. It follows that the relation defined on the set of states
by p ≡ q if (p, q) is a stable pair is an equivalence relation. As observed in
[19, Lemma 2], this relation is a congruence (i.e. p ·u ≡ q ·u whenever p ≡ q)
called the stable pair congruence. More generally, a congruence is stable if
any pair of states in the same class is stable. The congruence generated by
a stable pair (p, q) is the least congruence such that p and q belong to the
same class. It is a stable congruence. Given a congruence on the states of
an automaton, we denote by p̄ the class of a state p.

If A = (Q,E) is an automaton, the quotient of A by a stable pair
congruence is the automaton B whose states are the classes of Q under
the congruence. The edges of B are the triples (p̄, c, q̄) where (p, c, q) is an
edge of A. The automaton B is complete deterministic when A is complete
deterministic. The automaton B is irreducible (resp. aperiodic) when A is
irreducible (resp. aperiodic).

The following Lemma was obtained by Culik et al. [11]. We repro-
duce the proof since it helps understanding Trahtman’s algorithm (see the
procedure FindSynchronizedColoring below).

Lemma 3 (Culik et al. [11]). If the quotient of an automaton A by a stable
pair congruence is equivalent to a synchronized automaton, then there is a
synchronized automaton equivalent to A.

Proof. Let B be the quotient of A by a stable congruence and let B′ be
a synchronized automaton equivalent to B. We define an automaton A′

equivalent to A as follows. The number of edges of A going out of p and
ending in states belonging to a same class q̄ is equal to the number of edges
of B (and thus B′) going out of p̄ and ending in q̄. We define A′ by labeling

5

these edges according to the labeling of corresponding edges in B′. The
automaton B′ is a quotient of A′.

Let us show that A′ is synchronized. Let w be a synchronizing word of
B′ and r the state ending any path labeled by w in B′. Let p, q be two states
of A′. Then p · w and q · w belong to the same congruence class. Hence
(p · w, q · w) is a stable pair of A′. Therefore (p, q) is a synchronizable pair
of A′. Since all pairs of A′ are synchronizable, A′ is synchronized.

Trahtman’s algorithm for finding a synchronized coloring of an aperiodic
automaton A consists in finding an equivalent automaton A′ of A which has
at least one stable pair (s, t), then in recursively finding a synchronized
coloring B′ for the quotient automaton B by the congruence generated by
(s, t), and finally in lifting up this coloring to the initial automaton as follows.
If there is an edge (p, c, q) in A but no edge (p̄, c, q̄) in B′, then there is an
edge (p̄, d, q̄) in B′ with c 6= d. Then we flip the labels of the two edges
labeled c and d going out of p in A.

The algorithm for finding a synchronized coloring is described in the
following pseudocode. The procedure FindStablePair, which finds an
equivalent automaton which has a stable pair of states, is described in the
next section. The procedureMerge computes the quotient of an automaton
by the stable congruence generated by a stable pair of states. The procedure
Update updates some data needed for the computation as described in
Section 5.1.

FindSynchronizedColoring(aperiodic automaton A, quotient automaton B)

1 B ← A
2 while (size(B) > 1)
3 do Update(B)
4 B, (s, t)← FindStablePair(B)
5 lift the coloring up from B to the automaton A
6 B ← Merge(B, (s, t))
7 return A

The termination of the algorithm is guaranteed by the fact that the num-
ber of states of the quotient automaton of B is strictly less than the number
of states of B. The computation of the quotient automaton (performed by
the Procedure Merge) is described in Section 7.

4 Finding a stable pair

In this section, we consider an aperiodic complete deterministic automaton
A over the alphabet A. We design a linear-time algorithm for finding an
equivalent automaton which has a stable pair.

In order to describe the algorithm, we give some definitions and notation.

6

Let R be the subgraph of the graph of A made of the red edges. The
graph R is a disjoint union of connected components called clusters. Since
each state has exactly one outgoing edge in R, each cluster contains a unique
(red) cycle with trees attached to the cycle at their roots. If r is the root of
such a tree, its children are the states p such that p is not on the a red cycle
and (p, a, r) is an edge. If p, q belong to the same tree, p is an ancestor of q
(or q is a descendant of p) in the tree if there is a red path from q to p. Note
that in these trees, the edges are oriented from the child to the parents and
the paths from the descendant to the ancestors.

If q belongs to some red cycle of length greater than 1, its predecessor is
the unique state p belonging to the same cycle such that (p, a, q) is an edge.
In the case the length of the cycle is 1, we set that the predecessor is q itself.

For each state p belonging to some cluster, we define the level of p as
the distance between p and the root of the tree containing p. If p belongs
to the cycle of the cluster, its level is thus null. The level of an automaton
is the maximal level of its states. A maximal state is a state of maximal
level. A maximal tree is a tree containing at least one maximal state and
rooted at a state of level 0. A maximal root is the root of a maximal tree
and a maximal child of a maximal root r is a child of r having at least one
maximal state as descendant.

The algorithm for finding a coloring which has a stable pair relies on the
following key lemma due to Trahtman [29]. It uses the notion of minimal
images in an automaton. An image in an automaton A = (Q,E) is a set
of states I = Q · w, where w is a word and Q · w = {q · w | q ∈ Q}.
A minimal image in an automaton is an image which does not properly
contain another image. In an irreducible automaton two minimal images
have the same cardinality which is called the minimal rank of A. Also, if I
is a minimal image and u is a word, then I · u is again a minimal image and
the map p→ p · u is one-to-one from I onto I · u.

Note that the hypotheses in the statement below depend on the choice
of the letter a defining the red edges.

Lemma 4 (Trahtman [29]). Let A be an irreducible complete deterministic
automaton with a positive level. If all maximal states in A belong to the
same tree, then A has a stable pair.

Proof. Since A is irreducible, there is a minimal image I containing a max-
imal state p. Let ℓ > 0 the level of p (i.e. the distance between p and the
root r of the unique maximal tree). Let us assume that there is a state q 6= p
in I of level ℓ. Then the cardinal of I · aℓ is strictly less than the cardinal
of I, which contradicts the minimality of I. Thus all states but p in I have
level strictly less than ℓ.

Let m be a common multiple of the lengths of all red cycles. Let C be
the red cycle containing r. Let s0 be the predecessor of r in C and s1 the
child of r containing p in its subtree. Since ℓ > 0, we have s0 6= s1. Let

7

J = I · aℓ−1 and K = J · am. Since the level of all states of I but p is
less than or equal to ℓ− 1, the set J is equal to {s1} ∪ R, where R is a set
of states belonging to the red cycles. Since for any state q in a red cycle,
q · am = q, we get K = {s0} ∪R.

Let w be a word such that Q · w is a minimal image. For any word
v, the minimal images J · vw and K · vw have the same cardinal equal to
the cardinal of I. We claim that the set (J ∪ K) · vw is a minimal image.
Indeed, J · vw ⊆ (J ∪ K) · vw ⊆ Q · vw, hence all three are equal. But
(J ∪ K) · vw = R · vw ∪ s0 · vw ∪ s1 · vw. This forces s0 · vw = s1 · vw
since the cardinality of R · vw cannot be less than the cardinality of R. As
a consequence (s0 · v, s1 · v) is synchronizable and thus (s0, s1) is a stable
pair.

In the sequel, we call Condition C the assumption of Lemma 4: all
maximal states belong to the same tree.

In the subsections below, we describe sequences of flips of edges that
make the resulting equivalent automaton satisfy Condition C and hence
have a stable pair. We consider several cases corresponding to the geometry
of the automaton.

4.1 The case of null maximal level

In this section, we assume that the level of the automaton is ℓ = 0. The
subgraph R of red edges is a disjoint union of cycles.

A set of edges going out of a state p is called a bunch if these edges all
end in a same state q. Note that if a state q has two incoming bunches from
two states p, p′, then (p, p′) is a stable pair.

If the set of outgoing edges of each state is a bunch, then there is only
one red cycle, and the automaton is not aperiodic unless the trivial case
where the length of this cycle is 1. We can thus assume that there is a state
p whose set of outgoing edges is not a bunch. There exists b 6= a and q 6= r
such that (p, a, q) and (p, b, r) are edges. We flip these two edges. This gives
an automaton A which satisfies Condition C . Let s be the state which is
the predecessor of r in its red cycle. It follows from the proof of Lemma 4
that the pair (p, s) is a stable pair.

This case is described in the pseudocode LevelZeroFlipEdges where
GetPredecessor(r) returns the predecessor of r on its red cycle. The
function LevelZeroFlipEdges(A) returns an automaton equivalent to A
together with a stable pair.

8

LevelZeroFlipEdges (automaton A of level ℓ = 0)

1 for each state p on a red cycle C
2 do if the set of outgoing edges of p is not a bunch
3 then let e = (p, a, q) and f = (p, b, r) be edges with b 6= a and q 6= r
4 Flip(e, f)
5 s← GetPredecessor(r)
6 return A, (p, s)
7 return Error(A is not aperiodic)

The procedure Flip(e, f) exchanges the labels of two edges e, f . It also
performs the corresponding update of data as explained in Section 5.1.

4.2 The case of non-null maximal level

In this section, we assume that the level of the automaton is ℓ > 0.

4.2.1 Main treatment

We describe a sequence of flips of edges such that the automaton obtained
after this sequence of flips has a unique maximal tree. Note that the levels
and other useful data will not be recomputed after each flip (which would
increase the time complexity too much).

Let C be a red cycle containing a maximal tree T rooted at r. We
denote by r1 = r, r2, . . . rk the maximal roots of C in the order given by the
orientation of the red edges of the cycle. For k > 1 and 1 ≤ i ≤ k we denote
by I(ri) the set of states contained in the red simple path from the root
rj with j = (i− 1 mod k) + 1 to ri with rj included and ri excluded. For
k = 1 we define I(r) as the set of all states of C. Similarly, for k > 1 and
1 ≤ i ≤ k we denote by J(ri) the set of states contained in the red simple
path from the root rj with j = (i− 1 mod k)+ 1 to ri with rj excluded and
ri included. For k = 1 we define J(r) as the set of all states of C.

We denote by s0 the predecessor of r in C. If the length of C is 1, s0 = r.
We denote by S(r) the set of maximal children of r (i.e. which are ancestors
of some maximal state). Let ρ be the cardinality of S(r). For each s in
S(r), we choose a maximal state p in the subtree rooted at s (see Fig. 2).
There may be several possible choices for the state p and we select one of
them arbitrarily. We denote by P (r) the set of these maximal states. This
set has cardinality ρ.

The key idea, in order to guarantee the global linear complexity, is to
perform operations for each maximal root r, whose time complexity is linear
in the number of nodes belonging to trees attached to the states contained
in J(r).

Since the automaton is irreducible, for each p ∈ P (r) there is at least
one blue edge ending in p. Each blue edge (t, b, p) ending in a state p ∈ P (r)

9

r

s2

p2

s1

p1

s0

rk

t1

r

s2

p2

s1

p1

s0

rk

Figure 2: On the left part the figure, the dashed (blue) edge ending in p1
has type 1 while the one ending in p2 has type 3. On the right part, the set
Ls1 of dashed (blue) edges cover all maximal states of the subtree rooted at
the child s1.

can be of one of the following type depending on the position of t in the
graph:

• type 0: t is not in the same cluster as r, or t has a positive level and
t is not an ancestor of p in T .

• type 1: t is in the same cluster as r, has a null level, and t is outside
the interval I(r).

• type 2: t is in the same cluster as r, has a null level, and t is contained
in the interval I(r). This includes the particular case where k = 1 and
t = r.

• type 3: t is an ancestor of p in T and t 6= r.

Note that it is possible that t = p. In this case the edge (t, b, p) has type 0
since t has a positive level.

A procedure FindEdges(r), that will be described later in detail (see
Section 4.2.2), first flips some edges and returns a value of one of the follow-
ing forms.

• A pair (0, e), where e is an edge of type 0.

• A triple (1, e, f), where e, f are two edges of type 1 or 2 ending in
distinct states of P (r).

• A pair (2, e), where e is an edge of type 1 or 2. Moreover, in this case,
the procedure modifies the tree T in such a way that r has a unique
maximal child.

• A pair (3, e), where e is an edge of type 3 starting at a state which is
an ancestor of all maximal nodes of T .

10

For each maximal root r, the procedure FlipEdges(A, r) returns either
an automaton equivalent to A together with a stable pair, or an automaton
equivalent to A together with one edge (tr, br, pr). Its execution depends on
the value returned by FindEdges(r) according to the following four cases
described below. After running FlipEdges(A, r) on each maximal root, we
obtain either an automaton satisfying Condition C (i.e. which has a stable
pair) or an automaton where each maximal root r has a unique maximal
child and such that the potential flip of (tr, br, pr) with the red edge starting
at tr makes the root r not maximal anymore. In the first case, our goal is
achieved. In the latter case, we flip the blue edge (tr, br, pr) and the red
one starting at tr for all maximal roots r but one. We get an equivalent
automaton which has unique maximal tree and thus has a stable pair by
Lemma 4. The combination of all these transformations is realized by the
procedure FindStablePair given at the end of this section.

The possible values returned by the procedure FlipEdges(A, r) are the
following.

• Case 0. The value returned by FindEdges(r) is (0, e) with e =
(t1, b1, p1) of type 0. The procedure FlipEdges(A, r) returns the au-
tomaton obtained by flipping the edge (t1, b1, p1) and the red edge
going out of t1. This automaton is equivalent to A and satisfies Con-
dition C . Indeed, one may easily check that, after the flip, all states
of maximal level belong to the same tree as p1.

1 9 10

8
r

s2

p2

s1

p1

s0

51516

t1

17

3

18

19

2

1 9 10

8
r

s2

p2

s1

p1

s0

51516

t1

17

3

18

19

2

Figure 3: The picture on the left illustrates Case 1.1. The edge (t1, b1, p1)
if of type 1. After flipping the edge (t1, b1, p1) and the red edge going out of
t1, we get the automaton on the right. It satisfies the Condition C , i.e. it
has a unique maximal tree (here rooted at r). Maximal states are colored
and the (dashed) b-edges of the automaton are not all represented.

• Case 1. The value returned by FindEdges(r) is (1, e1, e2), with e1 =
(t1, b1, p1), e2 = (t2, b2, p2) of type 1 or 2. Recall that p1 6= p2 and that

11

b1, b2 6= a.

– Case 1.1. If e1 (or e2) has type 1, the same conclusion as in Case
0 holds by flipping the edge (t1, b1, p1) and the red edge going out
of t1, as is shown in Fig. 3.

– Case 1.2. In the case both edges e1, e2 have type 2 and t1 6= t2,
without loss of generality, we may assume that t1 < t2 in the
interval I(r) (see Fig. 4). We flip the edge (t1, b1, p1) and the red
edge going out of t1. We denote by T ′ the tree rooted at r after
this flip.

∗ Case 1.2.1. If the height of T ′ is greater than ℓ, the automa-
ton satisfies Condition C (see the right part of Fig. 4).

∗ Case 1.2.2. Otherwise the height of T ′ is at most ℓ (see the left
part of Fig. 5). In that case, we also flip the edge (t2, b2, p2)
and the red edge going out of t2. The new equivalent au-
tomaton satisfies Condition C (see the right part of Fig. 5).
The computation of the size of T ′ is detailed in Section 5.

1 9 10

8
r

21
s2

p2

s1

p1

t2

20

515

t1

17

22

3

18

19

2

1 9 10

8
r

21
s2

p2

s1

p1

t2

20

515

t1

17

22

3

18

19

2

Figure 4: The picture on the left illustrates Case 1.2.1 of the main treatment.
There are two edges (t1, b1, p1), (t2, b2, p2) of type 2. The height of the tree
T ′ obtained after flipping the edge (t1, b1, p1) and the red edge going out of
t1, is 3, which is greater than the maximal level. We get a unique maximal
tree rooted at r in the same cluster. The picture on the right illustrates the
result.

– Case 1.3. In this case both edges e1, e2 have type 2 and t1 = t2.
We denote by s1 (resp. s2) the child of r ancestor of p1 (resp. p2).
We denote by T0 the tree rooted at r obtained by the potential
flip of (t1, b1, p1) and the red edge going out of t1, keeping only r
and the subtree rooted at the child s0. The nodes of the tree T0

rooted at r are represented in salmon in the left part of Fig. 6.
This step again needs a computation of the height of T0 explained

12

1 9 10

8
r

21
s2

p2

s1

p1

t2

20

5

t1

17

22

3

18

19

2

1 9 10

8
r

21
s2

p2

s1

p1

t2

20

5

t1

17

22

3

18

19

2

Figure 5: The picture on the left illustrates Case 1.2.2. The two edges
(t1, b1, p1), (t2, b2, p2) are of type 2. The height of the tree T ′ obtained after
flipping the edge (t1, b1, p1) and the red edge going out of t1, is equal to
ℓ = 2. In this case, we also flip the edge (t2, b2, p2) and the red edge going
out of t2. We get a unique maximal tree rooted at r in the same cluster.
The picture on the right gives the resulting cluster.

in the complexity issue. Case 1.3 occurs when ρ > 1, k = 1 and
t1 = r. In the particular case where the length of C is 1, the
tree T0 is reduced to the node r (it corresponds to the Case 1.3.2
below).

∗ Case 1.3.1. If the height of T0 is greater than the height of
T , we flip (t1, b1, p1) and the red edge going out of t1. The
equivalent automaton satisfies Condition C .

∗ Case 1.3.2. If the height of T0 is less than the height of T ,
we flip (t1, b1, p1) and the red edge going out of t1. We then
call again the procedure FlipEdges(A, r) with this new red
cycle. This time the (new) tree T0 has the same height as T .
Hence this call is done at most one time for a given maximal
root r.

∗ Case 1.3.3. Finally, we consider the case where the heights
of T and T0 are equal (see the left part of Fig. 6).

· Case 1.3.3.1. If the set of outgoing edges of s0 is a bunch
and there is a state si ∈ S(r) whose set of outgoing edges
is also a bunch, we get a trivial stable pair (s0, si).

· Case 1.3.3.2. If the set of outgoing edges of s0 is a bunch
and, for any state s ∈ S(r), the set of outgoing edges
of s is not a bunch (as in the left part of Fig. 6), we
flip (t1, b1, p1) and the red edge going out of t1. The
(new) tree T0 (obtained by the potential flip of (t2, b2, p2)
and the red edge going out of t1, keeping only r and the

13

subtree rooted at the child s1) has the same height as T .
We then call again the procedure FlipEdges(A, r) with
this new red cycle. This time the height of the new tree
T0 is still equal to the height of T and the set of outgoing
edges of the predecessor of r on the cycle is not a bunch.
This call is thus performed at most one time.

· Case 1.3.3.3. If the set of outgoing edges of s0 is not a
bunch, let (s0, b0, q0) be a b-edge going out of s0 with
q0 6= r. If q0 does not belong to T , we get an equivalent
automaton satisfying Condition C by flipping (s0, b0, q0)
and the red edge going out of s0. If q0 belongs to T , we
flip (s0, b0, q0) and the red edge going out of s0. We also
flip (t1, b1, p1) and the red edge going out of t1 if q0 is not
a descendant of s1, or (t1, b2, p2) and the red edge going
out of t1, in the opposite case. Note that s0 6= t1 since
the height of T0 is equal to the non-null height of T . We
get an equivalent automaton satisfying Condition C (see
the right part of Fig. 7).

1 9 10

8
r

21
s2

p2

s1

p1

s0

20

5

t1

17

22

3

18

19

2

1 9 10

8
r

21
s2

p2

s1

p1

s0

20

5

t1

17

22

3

18

19

2

Figure 6: The picture on the left illustrates Case 1.3.3.2 of the main treat-
ment. The two edges (t1, b1, p1) and (t1, b2, p2) are of type 2. Let T0 be the
tree rooted at r obtained by the potential flip of (t1, b1, p1) and the red edge
going out of t1, keeping only r and the subtree rooted at the child s0. The
nodes of the tree T0 rooted at r are represented in salmon in the left part of
the figure. The state s0 is a bunch. After flipping the edge (t1, b1, p1) and
the red edge going out of t1, we get the automaton pictured in the right part
of the figure. The tree T ′

0 is now tree rooted at r obtained by the potential
flip of (t1, b2, p2) and the red edge going out of t1, keeping only r and the
subtree rooted at the child s1. Its states are colored in salmon. The height
of T ′

0 is 2.

• Case 2. We now come to the case where the value returned by Find-

14

1 9 10

8
r

21
s1

p1

s2

p2

s0

20

5

t1

17

22

3

18

19

2

1 9 10

8
r

21
s1

p1

s2

p2

s0

20

5

t1

17

22

3

18

19

2

Figure 7: The picture on the left illustrates Case 1.3.3.3. The two edges
(t1, b1, p1) and (t1, b2, p2) are of type 2. Let T0 be the tree rooted at r
obtained by the potential flip of (t1, b1, p1) and the red edge going out of
t1, keeping only r and the subtree rooted at the child s0. The nodes of the
tree T0 rooted at r are represented in salmon in the left part of the figure.
The state s0 is not a bunch: it has a b-edge (s0, b0, q0) with q0 = s2. After
flipping the edge (t1, b1, p1) and the red edge going out of t1, and flipping
(s0, b0, q0) and the red edge going out of s0, we get a unique maximal tree
rooted at r in the same cluster (see the right part of the figure).

Edges(r) is a pair (2, e) with e = (t1, b1, p1) of type 1 or 2, and T is
modified in such a way that r has a unique maximal child, i.e. ρ = 1.

– Case 2.1. If (t1, b1, p1) has type 1, we flip the edge (t1, b1, p1) and
the red edge going out of t1. We get an equivalent automaton
satisfying Condition C .

– Case 2.2. If (t1, b1, p1) has type 2, we denote by T0 the tree rooted
at r obtained by the potential flip of (t1, b1, p1) and the red edge
going out of t1, keeping only r and the subtree rooted at the
child s0. Case 2.2 occurs when ρ = 1, k = 1 and t1 = r. In the
particular case where the length of C is 1, T0 is reduced to the
node r which corresponds to the Case 2.2.2 below.

∗ Case 2.2.1. If the height of T0 is greater than the height
of T , we do the flip and the equivalent automaton satisfies
Condition C .

∗ Case 2.2.2. If the height of T0 is less than the height of T ,
we do not do the flip, and return the automaton together
with the edge (t1, b1, p1). Note that a possible future flip of
(t1, b1, p1) and the red edge starting at t1 makes the root r
not maximal anymore.

∗ Case 2.2.3. We now come to the case where the height of T0

is equal to the height of T .

15

· Case 2.2.3.1. If the set of outgoing edges of s0 and s1 are
bunches, there is a trivial stable pair (s0, s1).

· Case 2.2.3.2. If the set of outgoing edges of s0 is a bunch
and the set of outgoing edges of s1 is not a bunch (see
the left part of Fig. 8), we flip the edge (t1, b1, p1) and
the red edge going out of t1. We then call the procedure
FlipEdges(A, r) with this new red cycle. The root r has
now a unique child (s1) ancestor of maximal state whose
set of outgoing edges is a bunch (see the right part of
Fig. 8). This call is thus performed at most one time.

· Case 2.2.3.3. Finally, if s0 is a not a bunch, let (s0, b0, q0)
be a b-edge with q0 6= r. If q0 does not belong to T we
flip the edge (s0, b0, q0) and the red edge going out of s0.
The equivalent automaton satisfies Condition C . It q0
belongs to T and is not a descendant of s1, we flip the
edge (t1, b1, p1) and the red edge going out of t1, and we
also flip the edge (s0, b0, q0) and the red edge going out
of s0. The equivalent automaton satisfies Condition C .
If q0 belongs to T and is a descendant of s1, we return
the automaton together with the edge (s0, b0, q0).

1 9 10

8
r

21
s1

p

s0

20

t11516

6

17

3

18

19

2

1 9 10

8
r

21
s0

p

s1

20

t11516

6

17

3

18

19

2

Figure 8: The picture on the left illustrates Case 2.2.3.2 of the main treat-
ment. The edge (t1, b1, p1) has type 2. After flipping the edge (t1, b1, p1)
and the red edge going out of t1, we get the automaton on the right part of
the figure. The root r has a new single child s1 ancestor of a maximal state,
whose set of outgoing edges is a bunch. The new tree rooted at r has here
the same level ℓ = 2 as before and FlipEdges(A, r) is called a second and
last time.

• Case 3. If the value returned by FindEdges(r) is an edge (t1, b1, p1)
of type 3 and t1 is an ancestor of all maximal nodes of T the procedure
FlipEdges(A, r) returns this edge.

16

After running FlipEdges(A, r) on all maximal roots, we get either an
automaton with a stable pair, or an automaton where each cluster fulfills
the following conditions.

• the root r of each maximal tree has a unique maximal child;

• for each maximal root r, there is an edge (tr, br, pr) such that the
potential flip of (tr, br, pr) and the red edge starting at tr makes the
root r not maximal anymore.

If the latter case, we flip the blue edge (tr, br, pr) and the red one starting at
tr for all maximal roots r but one. We get an equivalent automaton which
satisfies Condition C as is shown in Fig. 9. The pseudocode for this final
treatment is given in procedure FindStablePair.

FindStablePair (automaton A)

1 if the maximal level ℓ = 0
2 then return LevelZeroFlipEdges(A)
3 else for each maximal root r
4 do A, S ← FlipEdges(A, r)
5 if S is a (stable) pair of states (s, t)
6 then return A, (s, t)
7 else (S is a b-edge (tr, br, pr)) set e(r) = S
8 for each maximal root r 6= r0
9 do flip the edge e(r) and the red edge starting at tr
10 s← GetPredecessor(r0)
11 t← the child of r0 ancestor of pr0
12 return A, (s, t)

17

1 9 10

8
r

s1

p

s0

20

t11516

6

17

3

18

19

2

1 9 10

8
r

s0

p

s1

20

t11516

6

17

3

18

19

2

Figure 9: The picture on the left illustrates the case where FlipEdges(A, r)
has returned a b-edge e(r) for all maximal roots r. We flip e(r) and the red
edge starting at the same state for all but one maximal root r. The new
cluster is pictured on the right part of the figure. It has a unique maximal
tree. By Lemma 4 the pair (6, 15) is stable.

4.2.2 The auxiliary procedure FindEdges

In this section, we describe the procedure FindEdges(r) which is a prelim-
inary step of the procedure FlipEdges(r).

Let r be a maximal root, S(r) be the set of maximal children of r. For
each s in S(r), we choose a maximal state p in the subtree rooted at s and
we denote by P (r) the set of these maximal states (see Fig. 2). Recall that
the procedure FindEdges(r) flips some edges and returns an equivalent
automaton together with one or two edges of the following forms.

• One edge e of type 0.

• Two edges e, f of type 1 or 2 ending in distinct states of P (r).

• One edge e of type 1 or 2. Moreover, in this case, the procedure
modifies the tree T in such a way that r has a unique maximal child.

• One edge e of type 3 starting at a state which is an ancestor of all
maximal nodes of T .

For each maximal child s, we denote by Ts the subtree of T rooted at
s. The procedure FindEdges(r, s) computes a list Ls of b-edges (q, b, p),
where p is a maximal node of Ts and q is an ancestor of p in T distinct from
r. The starting states q of edges of this list cover the maximal nodes of Ts

in the following sense: for each maximal node p′ in Ts, there is a unique
edge (t, b, p) ∈ Ls such that t is an ancestor of p′ (see for instance the right
part of Fig. 2). The list Ls is computed by scanning at most one time each
node of the tree Ts. For each maximal leaf p, we follow the red edges up

18

to s and either find s or an already scanned node, or find a node with an
outgoing b-edge ending in p. In the latter case, this edge is added to Ls and
we continue with another maximal leaf. In the case the list Ls does not cover
all maximal nodes of Ts, and since the graph of the automaton is strongly
connected, the process finds an edge (ts, bs, ps) where ps is a maximal node
of Ts, of type 0, 1 or 2.

If there is a maximal child s such that an edge (ts, bs, ps) of type 0 is
found, then FindEdges(r) returns this edge.

Otherwise, if there are two maximal children s1 6= s2 such that two edges
(ts1 , bs1 , ps1), (ts2 , bs2 , ps2) of type 1 or 2 are found, then FindEdges(r)
returns these two edges. If there is a maximal child s1 such an edge e =
(ts1 , bs1 , ps1) of type 1 or 2 and covering lists Ls for the other maximal
children s 6= s1 are found, then we perform the following flips. For any
maximal child s 6= s1 and any edge (t, b, p) ∈ Ls, we flip the edge (t, b, p)
and the red edge going out of t. We update the data of the trees attached
to the nodes from p to t in the new red cycle created by the flip. After this
transformation the node r has s1 as unique maximal child. The procedure
FindEdges(r) returns the edge e of type 1 or 2 and r has a unique maximal
child.

Finally, if one obtains covering lists for all maximal children, then, for all
these children s but one, say s1, we flip each edge (t, b, p) ∈ Ls and the red
edge going out of t. We also flip all edges (t, b, p) ∈ Ls1 but one, (t1, b1, p1).
We update the data of the trees attached to the nodes from p to t in the
new red cycle created by each flip. The procedure FindEdges(r) returns
the edge (t1, b1, p1) of type 3. Its starting state t1 is disctinct from r ans is
an ancestor of all maximal states of T .

5 The complexity issue

In this section, we establish the time and space complexity of our algorithm.
We denote by k the size of the alphabet A and by n the number of states
of A. Since A is complete deterministic, it has exactly kn edges.

5.1 Data structures and their updating

Some data attached to the states is useful to obtain the claimed complexity.
This data is updated after the computation of each quotient automaton with
the procedure Update with a time complexity which is linear in the size of
the quotient automaton.

The edges of the automaton can be stored in tables indexed by the states
and labels. The updating procedure computes the level of each state, the
root of its tree in its cluster. It also computes a list of maximal roots and
the predecessor of a state on the cycle. The function GetPredecessor(q)
returns the predecessor of state q on its red cycle in constant time.

19

One computes

• for each root of a tree T , the height of T ,

• for each maximal root, the list of its maximal children,

• for each maximal child, the list of the maximal nodes belonging to the
subtree rooted at this child.

This data can be moreover updated in time linear in the size of the tree.
We also maintain an inverse structure of the quotient automaton. Giving

a label c and a state q, it gives, for each letter c, an unordered list of states p
such that there is an edge (p, c, q) in the quotient automaton. The procedure
Flip(e, f) exchanges the labels of the two edges e = (p, b, q), f = (p, a, q′).
It also updates in the inverse structure the lists of edges coming in p and
p′. Its time complexity is thus upper bounded by the number of edges going
out of p, p′ or coming in p, p′.

5.2 Complexity of the algorithm

Proposition 5. The worst-case complexity of FindSynchronizedCol-
oring applied to an n-state aperiodic automaton is O(kn2) in time, and
O(kn) in space.

Proof. The complexity of FindSynchronizedColoring is at most n times
the complexity of the procedures Update and FindStablePair. Indeed,
each call in the procedure Merge reduces the number of states of the au-
tomaton so that it is called at most n − 1 times. Since each of its steps
without the recursive calls takes a time at most kn, the contribution of
Merge in FindSynchronizedColoring is at most kn. As the procedure
Update has a time complexity O(kn), we just have to show that the time
complexity of FindStablePair is O(kn).

Since LevelZeroFlipEdges contains only one Flip call, we show that
the calls to FlipEdges(A, r) for all maximal roots r can be performed in
time O(kn).

We first examine the complexity of the auxiliary step FindEdges(r) for
a given maximal root r. This procedure requires a scan of the nodes of
trees Ts rooted at the maximal children s of r together with their outgoing
edges. Since the edges contained in the lists Ls have distinct target states
in T , the flips of edges in Ls can be performed with a time complexity
at most E(r), where E(r) is the number of edges going out of or coming
in a node of the tree T rooted by r. Indeed, the update of the inverse
structure for nodes in T can be performed one time for all the flips of edges
in Ls. Note that the updating of the data after the flips is at most the size
of T . Indeed, after a flip of (t, b, p) and (t, a, p′) only the nodes belonging
to trees rooted at nodes along the red path from p to t are updated. As a

20

consequence, the contribution of the auxiliary step in FindStablePair is
O(

∑
r E(r)) = O(2kn).

We now come to the complexity induced by the main treatment. We
denote by Sect(r) the number of edges coming in or going out of a node
belonging to the sector J(r), i.e. the nodes contained in a tree attached to
a node of the cycle between r′ and r (r included and r′), where r′ is the
maximal root preceding r on C. Let us compute for instance the complexity
of the procedure UniqueChildFlipEdges(A, r, e = (t1, b1, p1)) (see Sec-
tion 7). It contains at most two flips of edges ending in T . The height
of the tree T0 is easily computed by scanning all nodes attached to some
node of C between r and r′ (r and r′ both excluded). In the case where
this height is equal to ℓ and the set of outgoing edges of s0 is a bunch, we
flip the edge e. We perform the procedure UpDateSector(r, e) for up-
dating the data of the nodes contained in the trees whose roots belong to
J(r). Then we call a second (and last) time FlipEdges(A, r). Since the
time complexity of UpDateSector(r, e) is at most Sect(r), we get that the
time complexity of UniqueChildFlipEdges(A, r, e) is also Sect(r). Sim-
ilarly, the time complexity of the procedures ChildrenFlipEdgesEqual
and ChildrenFlipEdgesUnEqual is also Sect(r).

Hence the overall time spent for computing FlipEdges(A, r) for all
maximal roots r is O(

∑
r Sect(r)) = O(2kn). The space complexity is O(kn).

Indeed, only linear additional space is needed to perform all operations.

6 The case of periodic graphs

Recall that the period of an automaton is the gcd of the lengths of its
cycles. If the automaton A is an n-state complete deterministic irreducible
automaton which is not aperiodic, it is not equivalent to a synchronized
automaton. Nevertheless, the previous algorithm can be modified as follows
for finding an equivalent automaton with the minimal possible rank. It has
a quadratic-time complexity.

PeriodicFindColoring (automaton A)

1 B ← A
2 while (size(B) > 1)
3 do Update(B)
4 B, (s, t)← FindStablePair(B)
5 lift the coloring up from B to the automaton A
6 if there is a stable pair (s, t)
7 then B ← Merge(B, (s, t))
8 else return A
9 return A

It may happen that FindStablePair returns an automaton B which has
no stable pair (it is made of a cycle where the set of outgoing edges of any

21

state is a bunch). Lifting up this coloring to the initial automaton A leads
to a coloring of the initial automaton whose minimal rank is equal to its
period.

This result can be stated as the following theorem, which extends the
Road Coloring Theorem to the case of periodic graphs.

Theorem 6. Any irreducible automaton A is equivalent to a an automaton
whose minimal rank is the period of A.

Proof. Let us assume that A is equivalent to an automaton A′ which has a
stable pair (s, t). Let B′ be the quotient of A′ by the congruence generated
by (s, t). Let d be the period of A′ (equal to the period of A) and d′ the
period of B′. Let us show that d = d′.

It is clear that d′ divides d (which we denote d′/d). Let ℓ be the length of
a path from s to s′ in A′, where s′ is equivalent to s. Since (s, s′) is stable, it
is synchronizable. Thus there is a word w such that s ·w = s′ ·w. Since the
automaton A′ is irreducible, there is a path labeled by some word u from
s ·w to s. Hence d/(ℓ+ |w|+ |u|) and d/|(w|+ |u|), implying d/ℓ. Let s̄ be
the class of s and z be the label of a cycle around s̄ in B′. Then there is a
path in A′ labeled by z from s to x, where x is equivalent to x. Thus d/|z|.
It follows that d/d′ and d = d′.

Suppose that B′ has rank r. Let us show that A′ also has rank r. Let
I be a minimal image of A′ and J be the set of classes of the states of I in
B′. Two states of I cannot belong to the same class since I would not be
minimal otherwise. As a consequence I has the same cardinal as J . The set
J is a minimal image of B′. Indeed, for any word v, the set J · v is the set
of classes of I · v which is a minimal image of A′. Hence |J · v| = |J |. As a
consequence, B′ has rank r.

Let us now assume that A has no equivalent automaton which has a
stable pair. In this case, we know that A is made of one red cycle where the
set of edges going out of any state is a bunch. The rank of this automaton
is equal to its period which is the length of the cycle.

Hence the procedure PeriodicFindColoring returns an automaton
equivalent to A whose minimal rank is equal to its period.

Since the modification of FindSynchronizedColoring into Period-
icFindColoring does not change its complexity, we obtain the following
corollary.

Corollary 7. Procedure PeriodicFindColoring finds a coloring of min-
imal rank for an n-state irreducible automaton in time O(kn2).

7 Pseudocode

This section contains the pseudocode of some main procedures.

22

7.1 Procedure Merge

The computation of the congruence generated by (s, t) can be performed by
using usual Union/Find functions computing respectively the union of two
classes and the leader of the class of a state. After merging two classes whose
leaders are p and q respectively, we need to merge the classes of p · ℓ and
q · ℓ for any ℓ ∈ A. A pseudocode for merging classes is given in Procedure
Merge below.

Merge (automaton A, stable pair (s, t))

1 x← Find(s)
2 y ← Find(t)
3 if x 6= y
4 then Union(x, y)
5 for ℓ ∈ A
6 do Merge(A, (x · ℓ, y · ℓ))
7 return A

7.2 Procedure FlipEdges

We give below a pseudocode of the procedure FlipEdges(A, r). For each
maximal root r, it returns either an automaton equivalent to A together
with a stable pair, or an automaton equivalent to A together with one
edge. It performs some flips depending on the type of the edges returned by
FindEdges(r). It calls UniqueChildFlipEdges(r, e) in the case r has a
unique maximal child and e is an edge of type 2 returned by FindEdges(r).
It calls ChildrenFlipEdgesUnequal(A, r) in the case r has at least two
maximal children and FindEdges(r) return a pair of edges with distinct
starting states. It calls ChildrenFlipEdgesUnequal(A, r) in the case r
has at least two maximal children and FindEdges(r) returns a pair of edges
which have the same starting state.

Recall that GetPredecessor(r) returns the predecessor of state r on
its red cycle.

23

FlipEdges(automaton A, maximal root r)

1 result ← FindEdges(r)
2 if (r a unique maximal child s1) and (result 6= (3, e))
3 then if (result = (0, e) or (result = (2, e) where e has type 1)
4 then Flip(e)
5 return A and the stable pair (s1,GetPredecessor(r))
6 else (result = (2, e) where e has type 2)
7 return UniqueChildFlipEdges(r, e)
8 if (r at least two maximal children) and (result = (1, e1, e2)

where e1 = (t1, b1, p1), e2 = (t2, b2, p2) have type 1 or 2)
9 then if t1 6= t2
10 then return ChildrenFlipEdgesUnequal(r, e1, e2)
11 else return ChildrenFlipEdgesEqual(r, e1, e2)
12 if result = (3, e) where e is an edge of type 3
13 then return A, e

UniqueChildFlipEdges (automaton A, maximal root r, edge e = (t1, b1, p1) of type 2)

1 let s1 be the unique child of r
2 s0 ← GetPredecessor(r))
3 let T0 be the tree rooted at r obtained by the potential flip of e and the red edge

going out of t1, keeping only r and the subtree rooted at the child s0
4 if height(T0) > height(T)
5 then Flip(t1, b1, p1)
6 return A and the stable pair (s1, s0)
7 if height(T0) < height(T)
8 then return A and the edge e
9 if height(T0) = height(T)
10 then if the set of outgoing edges of s0 and s1 are bunches
11 then return A and the stable pair (s0, s1)
12 if the set of outgoing edges of s0 is a bunch

and the set of outgoing edges of s1 is not a bunch
13 then Flip(t1, b1, p1)
14 UpDateSector(r, e) (we still have height(T0) = height(T))
15 return FlipEdges(A, r)
16 if the set of outgoing edges of s0 is not a bunch
17 then let (s0, b, q0) a b-edge going out of s0 with q0 6= r
18 if q0 /∈ T
19 then Flip(s0, b0, q0)
20 if the level of q0 is positive
21 then r0 ← the root of the tree containing q0
22 s← GetPredecessor(r0)
23 t← the child of r0 ancestor of q0
24 return A and the stable pair (s, t)
25 else r0 ← the root of the tree containing q0
26 s← GetPredecessor(r0)
27 return A and the stable pair (s, s0)
28 else (q0 ∈ T and q0 6= r)
29 return A and the edge (s0, b, q0)

24

ChildrenFlipEdgesEqual (automaton A, maximal root r, edges e1, e2) of type 2

1 set e1 = (t1, b1, p1) and e2 = (t1, b2, p2)
2 s0 ← GetPredecessor(r)
3 let T0 be the tree rooted at r obtained obtained by the potential flip of (t1, b1, p1)

and the red edge going out of t1, keeping only r and the subtree rooted at s0
4 if height(T0) > height(T)
5 then Flip(t1, b1, p1)
6 return A and the stable pair (s1, s0)
7 if height(T0) < height(T)
8 then Flip(t1, b1, p1)
9 UpDateSector(r, e1)
10 return FlipEdges(A, r)
11 if height(T0) = height(T)
12 then if the set of outgoing edges of s0 is a bunch and there is an

integer i ≥ 1 such that the set of outgoing edges of si is a bunch
13 then return A and the stable pair (s0, si)
14 if the set of outgoing edges of s0 is a bunch

and the sets of outgoing edges of si for i ≥ 1 are not bunches
15 then Flip(t1, b1, p1)
16 UpDateSector(r, e1) (we still have height(T0) = height(T))
17 return FlipEdges(A, r)
18 if the set of outgoing edges of s0 is not a bunch
19 then let (s0, b, q0) a b-edge going out of s0 with q0 6= r
20 if q0 /∈ T
21 then Flip(s0, b0, q0)
22 if the level of q0 is positive
23 then r0 ← the root of the tree containing q0
24 s← GetPredecessor(r0)
25 t← the child of r0 ancestor of q0
26 return A and the stable pair (s, t)
27 else r0 ← the root of the tree containing q0
28 s← GetPredecessor(r0)
29 return A and the stable pair (s, s0)
30 else (q0 ∈ T)
31 if q0 is not a descendant of s1
32 then Flip(t1, b1, q1)
33 Flip(s0, b0, q0)
34 t← the child of r ancestor of q0
35 return A and the stable pair (s1, t1)
36 else (q0 is a descendant of s1)
37 Flip(t2, b2, q2)
38 Flip(s0, b0, q0)
39 return A and the stable pair (s1, s2)

The procedure UpDateSector(r, e = (t1, b1, p1)) is called after a flip
of the edge e and the red edge going out of t1. It updates the data of the
nodes (and their trees attached to) along the red path going from p1 to s1,
where s1 is the unique maximal child of r.

25

ChildrenFlipEdgesUnequal (automaton A, maximal root r, edges e1, e2)

1 set e1 = (t1, b1, p1) and e2 = (t2, b2, p2) with t1 6= t2
2 if at least one of e1, e2 (say e1) has type 1 and s1 is the child of r ancestor of p1
3 then s0 ← GetPredecessor(r)
4 Flip(t1, b1, p1)
5 return A and the stable pair (s0, s1)
6 else Flip(t1, b1, p1)
7 let T ′ be the new tree rooted at r
8 if height(T ′) > height(T)
9 then return the stable pair (s1, s0)
10 else (height(T ′) ≤ height(T))
11 Flip(t2, b2, p2)
12 return A and the stable pair (s1, s2)

Acknowledgments The authors would like to thank Florian Sikora, Avraham
Trahtman, and the anonymous referees for pointing us some missing con-
figurations in the algorithm. We also thank the referees for helping us to
improve the presentation of the paper.

References

[1] R. L. Adler, D. Coppersmith, and M. Hassner. Algorithms for sliding
block codes. IEEE Trans. Inform. Theory, IT-29:5–22, 1983.

[2] R. L. Adler, L. W. Goodwyn, and B. Weiss. Equivalence of topological
Markov shifts. Israel J. Math., 27(1):48–63, 1977.

[3] M.-P. Béal and D. Perrin. A quadratic algorithm for road coloring.
CoRR, abs/0803.0726, 2008.

[4] J. Berstel, D. Perrin, and C. Reutenauer. Codes and automata, volume
129 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 2010.

[5] M. Boyle and A. Maass. Expansive invertible onesided cellular au-
tomata. J. Math. Soc. Japan, 52(4):725–740, 2000.

[6] M. Boyle and A. Maass. Erratum to: ”Expansive invertible onesided
cellular automata” [J. Math. Soc. Japan 52 (2000), no. 4, 725–740]. J.
Math. Soc. Japan, 56(1):309–310, 2004.

[7] G. Budzban and P. Feinsilver. The generalized road coloring prob-
lem and periodic digraphs. Appl. Algebra Eng. Commun. Comput.,
22(1):21–35, 2011.

[8] A. Carayol and C. Nicaud. Distribution of the number of accessible
states in a random deterministic automaton. In STACS, volume 14 of

26

LIPIcs, pages 194–205. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2012.

[9] A. Carbone. Cycles of relatively prime length and the road coloring
problem. Israel J. Math., 123:303–316, 2001.

[10] K. Culik, II, J. Karhumäki, and J. Kari. Synchronized automata and
road coloring problem. Technical report, TUCS Technical Report 323,
Turku Center for Computer Science, University of Turku, 1999.

[11] K. Culik, II, J. Karhumäki, and J. Kari. A note on synchronized au-
tomata and road coloring problem. In Developments in language theory
(Vienna, 2001), volume 2295 of Lecture Notes in Comput. Sci., pages
175–185. Springer, Berlin, 2002.

[12] B. Delyon and O. Maler. On the effects of noise and speed on compu-
tations. Theoret. Comput. Sci., 129(2):279–291, 1994.

[13] S. Eilenberg. Automata, Languages, and Machines. Vol. B. Academic
Press, New York, 1976.

[14] D. Eppstein. Reset sequences for monotonic automata. SIAM J. Com-
put., 19(3):500–510, 1990.

[15] C. F. Freiling, D. S. Jungreis, F. Théberge, and K. Zeger. Almost all
complete binary prefix codes have a self-synchronizing string. IEEE
Transactions on Information Theory, 49(9):2219–2225, 2003.

[16] J. Friedman. On the road coloring problem. Proc. Amer. Math. Soc.,
110(4):1133–1135, 1990.

[17] N. Jonoska and S. A. Karl. A molecular computation of the road color-
ing problem. In DNA based computers, II (Princeton, NJ, 1996), vol-
ume 44 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages
87–96. Amer. Math. Soc., Providence, RI, 1999.

[18] H. Jürgensen. Synchronization. Inform. and Comput., 206(9-10):1033–
1044, 2008.

[19] J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoret.
Comput. Sci., 295(1-3):223–232, 2003.

[20] J. Kari and M. V. Volkov. Černý’s conjecture and the road coloring
problem. In Handbook of Automata. European Science Foundation,
2013. to appear.

[21] D. A. Lind and B. H. Marcus. An Introduction to Symbolic Dynamics
and Coding. Cambridge University Press, Cambridge, 1995.

27

[22] C. Nicaud. On the synchronization of random deterministic automata.
preprint, 2013.

[23] G. L. O’Brien. The road-colouring problem. Israel J. Math., 39(1-
2):145–154, 1981.

[24] J. Olschewski and M. Ummels. The complexity of finding reset words in
finite automata. In MFCS, volume 6281 of Lecture Notes in Computer
Science, pages 568–579. Springer, 2010.

[25] D. Perrin and M.-P. Schützenberger. Synchronizing prefix codes and
automata and the road coloring problem. In Symbolic dynamics and
its applications, volume 135 of Contemp. Math., pages 295–318. Amer.
Math. Soc., 1992.

[26] I. Pomeranz and S. M. Reddy. Application of homing sequences to syn-
chronous sequential circuit testing. IEEE Trans. Computers, 43(5):569–
580, 1994.

[27] A. Roman. The NP-completeness of the road coloring problem. Inform.
Process. Lett., 111(7):342–347, 2011.

[28] E. S. Skvortsov and Y. Zaks. Synchronizing random automata. Discrete
Mathematics & Theoretical Computer Science, 12(4):95–108, 2010.

[29] A. N. Trahtman. The road coloring problem. Israel J. Math., 172:51–60,
2009.

[30] A. N. Trahtman. A partially synchronizing coloring. In Proceedings
of CSR 2010, volume 6072 of Lecture Notes in Comput. Sci., pages
362–370. Springer-Verlag, 2010.

[31] A. N. Trahtman. An algorithm for road coloring. In Combinatorial
algorithms, volume 7056 of Lecture Notes in Comput. Sci., pages 349–
360. Springer, Heidelberg, 2011.

28

